1. Trang chủ
  2. » Giáo án - Bài giảng

Đường thẳng song song với đường thẳng

29 476 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đường thẳng song song với đường thẳng
Thể loại bài làm
Định dạng
Số trang 29
Dung lượng 632 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho điểm A nằm ngoài đ ờng thẳng bHãy vẽ đoạn thẳng AH biểu thị khoảng cách từ A đến b... Khoảng cách giữa hai đ ờng thẳng song song... Định nghĩa: Khoảng cách giữa hai đ ờng thẳng son

Trang 1

NhiÖt liÖt chµo mõng c¸c thÇy c« gi¸o vÒ dù giê th¨m líp

Trang 2

Cho điểm A nằm ngoài đ ờng thẳng b

Hãy vẽ đoạn thẳng AH biểu thị khoảng cách từ A

đến b.

a

H

hb

Các điểm cách đ ờng thẳng b cho tr ớc một

khoảng bằng h nằm trên đ ờng nào?

Trang 3

đườngưthẳngưchoưtrước

1 Khoảng cách giữa hai đ ờng thẳng

song song

Trang 5

hb

Trang 7

Ta nói h là khoảng cách giữa hai đ ờng thẳng song song a và b.

T ơng tự mọi điểm thuộc đ ờng thẳng b cách đ ờng thẳng a một khoảng bằng h

Trong hình trên, mọi điểm thuộc đ ờng thẳng a

đều cách đ ờng thẳng b một khoảng bằng h

Định nghĩa: Khoảng cách giữa hai đ ờng thẳng song song là

khoảng cách từ một điểm tùy ý trên đ ờng thẳng này đến đ ờng

thẳng kia

Trang 8

CB’

Trang 10

2 Tính chất của các điểm cách đều một đ ờng thẳng cho tr ớc

Trang 11

ba

AH =MK (=h theo định nghĩa khoảng cách)

Vậy AHKM là hình bình hành  AM // HK hay AM //b

=>Hai đ ờng thẳng AM và a cùng đi qua A và cùng song song với b nên chúng trùng nhau

Trang 13

Đ ờng cao AH = 2 cm không đổi

 A luôn cách đ ờng thẳng BC cố định một khoảng 2cm

 A thuộc 2 đ ờng thẳng song song với BC và cách BC một khoảng 2cm

Trang 14

a

h

ha’

(I)

(II)

Từ định nghĩa khoảng cách 2 đ ờng thẳng song song suy ra

Ma hoặc Ma’ thì khoảng cách từ điểm M đến b là h

Từ tính chất trên ta có:

Nếu M cách b một khoảng bằng h thì Ma hoặc Ma’

Tập hợp các điểm cách một đ ờng thẳng cố định

Kết luận:

Trang 16

3 Đ ờng thẳng song song cách đều

Trang 17

a, b, c, d song song víi nhau.

EFGH

Trang 18

 AEGC là hình thang đáy CG

AB = BC mà B nằm giữa A, C  B là trung điểm AC

Xét hình thang AEGC, đ ờng thẳng b qua trung điểm B của cạnh bên AC,

b // CG vậy b qua trung điểm của EG

F là trung điểm của EG  EF = FG

Trang 19

ABCD

EFGH

C¸c tø gi¸c AEFM, MFGN lµ h×nh b×nh hµnh

=> EF = AM, FG = MN

MN

Trang 20

ABCD

EFGH

M

N

C¸c tø gi¸c AEMB, BMNC lµ h×nh ch÷ nhËt

=> AB = EM, BC = MN

Trang 21

- Nếu các đ ờng thẳng song song cách đều cắt một đ ờng thẳng thì chúng chắn trên đ ờng thẳng đó các đoạn thẳng liên tiếp bằng nhau.

- Nếu các đ ờng thẳng song song cắt một đ ờng thẳng và chúng chắn trên đ ờng thẳng đó các đoạn thẳng liên tiếp bằng nhau thì chúng song song cách đều

Ta có định lý:

Trang 23

B Độ dài đoạn AB.

C Độ dài đoạn AC

D Một đáp án khác

Chọn đáp án đúng.

Bài tập 1:

Trang 24

Cho khoảng cách giữa 2 đ ờng thẳng song a và b là 5 cm Aa; B bBài tập 2:

Trong các khẳng định sau, khẳng định nào luôn đúng?

Trang 25

Cho hình thang ABCD đáy AB có M

là trung điểm của AB, N là trung

điểm của BC thì AB, MN, CD là các

đ ờng thẳng song song cách đều

Khẳng định trên đúng hay

sai? Hãy giải thích.

Bài tập 3:

Đáp án: Khẳng định trên là đúng.

Vì M là trung điểm của AD, N là trung điểm của BC, nên MN là

đ ờng trung bình của hình thang ABCD do đó MN //AB // CD mà

AM = MD (M là trung điểm của AD)

Vậy AB, MN, CD là các đ ờng thẳng song song cách đều.

Trang 26

Lµm bµi tËp 69 SGK

§¸p ¸n: ( 1 ) víi ( 7 )

( 2 ) víi ( 5 ) ( 3 ) víi ( 8 ) ( 4 ) víi ( 6 )

Trang 28

•Sö dông tÝnh chÊt ® êng trung b×nh cña tam gi¸c vµ

h×nh thang.

•C¸ch kh¸c: KÎ thªm ® êng th¼ng Ay song song víi CC’

y

Trang 29

Giờ học đã kết thúc Xin kính chúc các

thầy các cô mạnh

khoẻ

Chúc các em vui vẻ học giỏi

Ngày đăng: 03/07/2013, 21:50

HÌNH ẢNH LIÊN QUAN

=> Tứ giác AHKB là hình chữ nhật => BK = AH = h - Đường thẳng song song với đường thẳng
gt ; Tứ giác AHKB là hình chữ nhật => BK = AH = h (Trang 5)
Chứng minh tứ giác AHKB là hình chữ nhật. - Đường thẳng song song với đường thẳng
h ứng minh tứ giác AHKB là hình chữ nhật (Trang 6)
Trong hình trên, mọi điểm thuộc đường thẳng a đều cách đường thẳng b một khoảng bằng h. - Đường thẳng song song với đường thẳng
rong hình trên, mọi điểm thuộc đường thẳng a đều cách đường thẳng b một khoảng bằng h (Trang 7)
Vậy AHKM là hình bình hành ⇒ AM // HK hay AM //b - Đường thẳng song song với đường thẳng
y AHKM là hình bình hành ⇒ AM // HK hay AM //b (Trang 11)
⇒ AEGC là hình thang đáy CG. AB = BC mà B nằm giữa A, C ⇒  B là trung điểm AC. - Đường thẳng song song với đường thẳng
l à hình thang đáy CG. AB = BC mà B nằm giữa A, C ⇒ B là trung điểm AC (Trang 18)
Các tứ giác AEFM, MFGN là hình bình hành => EF = AM, FG = MN - Đường thẳng song song với đường thẳng
c tứ giác AEFM, MFGN là hình bình hành => EF = AM, FG = MN (Trang 19)
Các tứ giác AEMB, BMNC là hình chữ nhật => AB = EM, BC = MN - Đường thẳng song song với đường thẳng
c tứ giác AEMB, BMNC là hình chữ nhật => AB = EM, BC = MN (Trang 20)
Cho hình vẽ a// b. - Đường thẳng song song với đường thẳng
ho hình vẽ a// b (Trang 23)
Cho hình thang ABCD đáy AB có M là trung điểm của AB, N là trung  - Đường thẳng song song với đường thẳng
ho hình thang ABCD đáy AB có M là trung điểm của AB, N là trung (Trang 25)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w