1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi giữa học kì 2 môn Toán lớp 12 trường THPT Hiệp Bình, Hồ Chí Minh năm 2014 2015

3 285 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 297,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

a Khảo sát sự biến thiên và vẽ đồ thị hàm số.. Từ đó suy ra tọa độ điểm A’ đối xứng với A qua mặt phẳng P.. c Lập phương trình mặt cầu S bán kính bằng 1, có tâm thuộc đường thẳng d và ti

Trang 1

TRƯỜNG THPT HIỆP BÌNH

ĐỀ KIỂM TRA GIỮA HỌC KỲ II – NĂM HỌC 2014 – 2015

MÔN TOÁN – KHỐI 12

Thời gian: 90 phút <không kể thời gian phát đề>

Câu 1 (2 điểm) Cho hàm số 1 4 2

4

yxx  (C)

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số

b) Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và đường thẳng y = 0

Câu 2 (4 điểm) Tính các tích phân sau:

2

0

) ( 1) sin 2

  

ln 8

ln 3

b B   e edx

1

)

e

x

0

1 )

1

x

x

Câu 3 (1,5 điểm) Trong không gian với hệ tọa độ Oxyz , cho các điểm

( 1; 1;0)

A   ,B (1; 1;2)  C (2; 2;1)  ,D ( 1;1;1) 

a) Viết phương trình mặt phẳng (ABC)

b) Viết phương trình mặt cầu (S) tâm D , có bán kính bằng độ dài đoạn AB

Câu 4 (2,5 điểm) Trong không gian với hệ tọa độ Oxyz , cho điểm A (4;0; 2), đường thẳng d có

phương trình 1 2

xyz

  và mặt phẳng (P): 2 x y   2 z   2 0 a) Viết phương trình đường thẳng  qua A và vuông góc với mặt phẳng (P)

b) Tìm tọa độ điểm H là hình chiếu của A lên mặt phẳng (P) Từ đó suy ra tọa độ điểm A’ đối xứng

với A qua mặt phẳng (P)

c) Lập phương trình mặt cầu (S) bán kính bằng 1, có tâm thuộc đường thẳng d và tiếp xúc với mặt

phẳng (P)

… Hết…

Thí sinh không được sử dụng tài liệu Giám thị không giải thích gì thêm.

Họ và tên học sinh : SBD:

Trang 2

Câu 1: a) TXĐ: D = R

lim ;lim

     

3

yxx

0

2

x

x

  

  

Bảng biến thiên

Hàm số đồng biến trên ( 2;0) và (2;)

Hàm số nghịch biến trên ( ; 2) và (0; 2)

Hàm số đạt cực đại tại x=0 ; y = 4.

Hàm số đạt cực tiểu tạix 2 ;y = 0

Đồ thị

c) pt

2

1

4

0

) ( 1)sin 2

  

Đặt

0

2

0 0

1

1

2

du dx

u x

taco

 

ln8

ln3

b B   e edx

Đặt

2

te   t e   tdt e dx

Trang 3

2 2

1 1

2

B t dtt

2

1

e

)

Câu 3 a)

(2;0; 2) (3;1;1) ( 2; 4;1)

AB

AC

AB AC





 

b)

2 2 ( ) : ( 1) ( 1) (z 1) 8

AB

Câu 4: a) (P) có vecto pháp tuyến n(2;1; 2)

 vuông góc (P) nên n(2;1; 2) là vecto chỉ phương của  Ptts của 

4 2

2 2

y t

 

 

  

 b) H   ( )P

8 2 10 ( ; ; )

3 3 3

3 3 3

c) ptts d:

1 3 2

z t

 

   

 

 gọi I là tâm mặt cầu => I(1+3t ;-2+t ;t) (S) tiếp xúc (P) d(I,(P))=1

; ( ; ; );(S) : (x ) ( ) ( ) 1

1; ( 2; 3; 1);(S) : (x 2) ( 3) ( 1) 1



Ngày đăng: 29/05/2017, 15:43

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w