Bài giảng Thống kê y học Bài 6: Thống kê, biến số và phân phối giúp người học có thể trình bày định nghĩa của thống kê, số liệu, thông tin và biến số; phân biệt được các loại biến số 0 định lượng và định tính trong có có biến số nhị giá, danh định hay thứ tự;... Mời các bạn cùng tham khảo nội dung chi tiết.
Trang 1THỐNG KÊ, BIẾN SỐ VÀ PHÂN PHỐI Mục tiêu
Sau khi nghiên cứu chủ đề, học viên có khả năng:
- Trình bày định nghĩa của thống kê, số liệu, thông tin và biến số
- Phân biệt được các loại biến số: định lượng và định tính trong có có biến số nhị giá, danh định hay thứ tự
- Xây dựng được bảng phân phối tần suất cho số liệu định tính và định lượng
- Lựa chọn được các loại biểu đồ hay đồ thị thích hợp để trình bày số liệu định tính và định lượng
- Tính được các số thống kê tóm tắt như trung bình, trung vị, yếu vị, độ lệch chuẩn, phương sai
1 Một số định nghĩa
Thống kê là phương pháp khoa học dùng đề thu thập, tóm tắt, trình bày và phân tích số liệu Phương pháp thống kê được sử dụng trong nghiên cứu nhằm để so sánh một nhóm đối tượng chứ không nhằm nghiên cứu từng cá nhân đơn lẻ
Số liệu: Kết quả có được do việc quan sát hay thu thập đặc tính hay đại lượng ở các đối tượng khác nhau hay ở thời gian khác nhau
Thí dụ: Quan sát giới tính của các học viên trong lớp, số liệu ghi nhận được là:
Nam, nam, nữ, nữ, nữ, nam, nữ, v.v
Thí dụ: Một nhà nghiên cứu đo nồng độ hemoglobin của 70 thai phụ có kết quả như sau:
10.2 13.7 10.4 14.9 11.5 12.0 11.0
10.6 10.5 13.7 11.8 14.1 10.3 13.6
12.1 12.9 11.4 12.7 10.6 11.4 11.9
9.3 13.5 14.6 11.2 11.7 10.9 10.4
13.4 12.1 10.9 11.3 14.7 10.8 13.3
11.2 15.1 10.7 12.9 13.4 12.3 11.0
14.6 11.1 13.5 10.9 13.1 11.8 12.2
và những con số này được gọi là số liệu
Cần lưu ý số liệu phải liên kết với một đặc tính hay đại lượng nhất định Ghi nhận giới tính ở người này, tuổi của người khác, quần áo của một người khác nữa thì kết quả này được không phải là số liệu
Sử dụng phương pháp thống kê chúng ta có thể tóm tắt số liệu trên sử dụng nồng độ hemoglobin trung bình=11,98 và độ lệch chuẩn bằng 1.42 Số liệu được tóm tắt, trình bày hay phân tích bằng phương pháp thống kê sẽ trở thành thông tin
2 Biến số và các loại biến số
Biến số là những đại lượng hay những đặc tính có thể thay đổi từ người này sang người khác hay từ thời điểm này sang thời điểm khác
Trang 2Như vậy biến số có thể thể hiện đại lượng hay đặc tính Nếu nó thể hiện một đại lượng
nó được gọi là biến số định lượng Nếu nó nhằm thể hiện một đặc tính no được gọi là biến số định tính
Biến số định tính
Biến số định tính còn được chia làm 3 loại: biến số thứ tự, biến số danh định và biến số nhị giá
Biến số thứ tự là biến số định tính với các giá trị có thể sắp xếp thứ tự được
Thí dụ: tình trạng kinh tế xã hội (giàu, khá, trung bình, nghèo, rất nghèo) là biến số thứ tự bởi vì người giàu có điều kiện kinh tế tốt hơn người khá, người khá hơn người trung bình, trung bình hơn nghèo, v.v
Những thí dụ khác là học lực của học sinh (giỏi, khá, trung bình, kém), tiên lượng (tốt, khá, xấu, tử vong)
Theo phân loại tăng huyết áp của Tổ chức Y tế Thế giới được trình bày như sau, theo phân loại huyết áp với các giá trị huyết áp bình thường, tăng huyết áp độ 1, tăng huyết áp
độ 2, tăng huyết áp độ 3 là biến số thứ tự
Huyết áp bình thường: HA tâm thu £139 và HA tâm trương £ 89
Tăng huyết áp độ 1: HA tâm thu £ 179 hay HA tâm trương £ 104
Tăng huyết áp độ 2: HA tâm thu ³ 180 hay HA tâm trương >114
Tăng huyết áp độ 3: HA tâm thu ³180 và HA tâm trương ³ 115 mmHg
Biến số danh định là biến số định tính mà giá trị của nó không thể biểu thị bằng số mà phải biểu diễn bằng một tên gọi (danh: tên) và các giá trị này không thể sắp đặt theo một trật tự từ thấp đến cao
Thí dụ: Biến số dân tộc với các giá trị: Kinh, Khmer, Hoa, Chăm,… là biến số định tính
vì chúng ta không thể sắp xếp các giá trị này từ theo một trật tự từ thấp đến cao hay ngược lại
Một số thí dụ khác của biến số danh định là tình trạng hôn nhân (có 4 giá trị: độc thân, có gia đình, li dị, góa) nhóm máu (A, B, AB và O)
Đôi khi biến số danh định chỉ có 2 giá trị: thí dụ như sống hay chết; có hút thuốc lá hay không hút thuốc lá; có suy dinh dưỡng hay không suy dinh dưỡng; nam hay nữ Những biến số thuộc loại này được gọi là biến số nhị giá (binary variable)
Mã hoá
Trong phân tích thống kê, để tiện việc nhập số liệu hay lí giải kết quả, người ta có thể ánh
xạ (mapping) các giá trị của biến định tính vào các con số Việc này được gọi là mã hóa
và cần hiểu rằng việc mã hóa này hoàn toàn có tính chất áp đặt và các con số được dùng trong mã hóa không phản ánh bản chất của biến số danh định
Giới tính là biến số danh định và có hai giá trị là nam và nữ Chúng ta có thể mã hóa giới tính và quy ước Nam là 1 và Nữ là 2 Tuy nhiên việc mã hóa này là áp đặt và chúng ta hoàn toàn có thể quy ước Nam là 1 và Nữ là 0 Việc mã hóa chỉ nhằm giúp việc nhập số liệu và xử lí số liệu trở nên
dễ dàng hơn chứ không nhằm phản ánh bản chất của biến số đó.
Biến số định lượng
Biến số định lượng nhằm thể hiện một đại lượng và do đó có giá trị là những con số
Trang 3Thí dụ: tuổi là biến số liên tục bởi vì ta có thể nói người này 20 tuổi, người kia 32 tuổi, v.v
Những thí dụ khác là đường huyết, hemoglobin, hematocrite, chiều cao, cân nặng, thu nhập, v.v
3 Phương pháp trình bày số liệu bảng
Số liệu ghi nhận các đặc tính hay đại lượng có thể trình bày thành bảng và bảng này được gọi là bảng phân phối tần suất
Phân phối tần suất của biến số định tính
Số liệu của biến số rời rạc có thể được trình bày dưới dạng một phân phối tần suất Phân phối tần suất là một bảng chỉ ra tần suất xuất hiện của từng giá trị rời rạc của biến số (Bảng 1) Như vậy bảng phân phối tần suất gồm 2 cột, một cột liệt kê các giá trị của biến
số và một cột trình bày tần suất tương ứng của các giá trị đó
Table 1 Phân phối giới tính của 69 học sinh lớp cơm thường trường mầm non 23 tháng
11, Huyện Hóc môn
Bảng trên là bản phân phối tần suất của giới tính Bởi vì giới tính có 2 giá trị nam và nữ nên ta liệt kê 2 giá trị này ở một cột Ở cột thứ nhì ta ghi tần suất tương ứng của các giá trị này Ðôi khi bảng phân phối tần suất có thêm cột phần trăm như trong thí dụ ở trên Bảng 2 là một thí dụ khác về bảng phân phối tần suất
Table 2 Phương pháp đỡ đẻ của 600 trẻ trong bệnh viện
Phương pháp đỡ đẻ Số sinh Phần trăm
Ðôi khi trong bảng phân phối người ta không ghi con số thực tế của tần suất mà chỉ ghi nhận phần trăm Trong trường hợp hợp này, phải ghi rõ số đối tượng của toàn bộ phân phối (số đối tượng toàn bộ trong thí dụ trên là 600)
Phân phối tần suất của biến số định lượng
Nếu biến số là biến số liên tục chúng ta không thể liệt kê tất cả các giá trị của biến số Trong trường hợp này chúng ta có thể nhóm (làm tròn) giá trị của biến số lại
Cụ thể các bước xây dựng bảng phân phối tần suất cho biến số định lượng như sau: 1- Tìm phạm vi (giá trị cực tiểu và giá trị cực đại) của số liệu Trong thí dụ về hemoglobin của 70 phụ nữ phạm vi là 8,8 đến 15,1
Trang 42 Chia phạm vi số liệu ra làm n khoảng với độ rộng của mỗi khoảng là d Cần lưu ý độ rộng mỗi khoảng d nên là đại lượng chẵn như 1, 2, 5, 10 hay 0,5, 0,2 và số các khoảng n nên từ 5-12 (trung bình là 7-8) Trong thí dụ trên ta có thể chia phạm vi ra làm 8khoảng với chiều rộng khoảng bằng 1 đơn vị Khi đó các khoảng là: 8-8,9; 9-9,9; 10-10,9; 11-11,9; 12-12,9; 13-13,9; 14-14,9; 15-15,9
3 Ðếm các giá trị thích hợp vào khoảng đã định trước
Hemoglobin
(g/100ml)
Ðếm
11-11,9 1111 1111 1111 1111
4 Xây dựng bảng phân phối tần suất với biến số và các khoảng giá trị của biến số và tần suất tương ứng với các khoảng giá trị đó Chúng ta cũng có thể thêm vào cột phần trăm
và cột phần trăm tích lũy (nếu thích hợp)
Table 3 Hemoglobin của 70 phụ nữ
Hemoglobin Tần suất Phần trăm Phần trăm tích lũy
Thí dụ như nếu biên số là chu vi vòng cánh tay của trẻ chúng ta có thể làm tròn chu vi vòng cánh tay đến 1 cm Khi đó ta có thể xem thang đo của biến số là rời rạc và trình bày bảng phân phối tần suất của biến số (bảng 2)
Trang 5Table 4 Phân phối số đo vòng cánh tay của 69 trẻ lớp cơm thường nhà trẻ 23 tháng 11, Hóc môn
Vòng cánh tay Tần suất Phần trăm Phần trăm tích lũy
4 Các số thống kê mô tả
Việc trình bày số liệu bằng bảng là thỏa mãn cho các biến số định tính (cả biến số danh định và biến số thứ tự) Tuy nhiên các số liệu định lượng có thể tóm tắt hơn nữa bằng các
số thống kê mô tả Có hai loại thống kê mô tả: thống kê mô tả khuynh hướng tập trung và thống kê mô tả tính phân tán
Thống kê mô tả khuynh hướng tập trung
Thống kê mô tả khuynh hướng tập trung có thể là trung bình (mean), trung vị (median)
và yếu vị (mode) Những thống kê này cho biết giá trị tiêu biểu cho số liệu
Thí dụ: có hai loại thuốc hạ áp A và B Giả sử có 5 đối tượng sau khi sử dụng thuốc hạ áp A sẽ có huyết áp 110 - 115 -120 - 125 -130 và ở 5 đối tượng khác sau khi sử dụng thuốc hạ áp B sẽ có huyết áp 120 - 125 - 130 - 135 - 140 Con số tiêu biểu nhất để cho biết tác dụng của thuốc A là huyết áp trung bình sau khi sử dụng thuốc A và là 120 Con số huyết áp trung bình này thấp hơn huyết áp trung bình sau khi sử dụng thuốc B cho biết thuốc A có tác dụng mạnh hơn.
Trung bình của số liệu, được kí hiệu là `x (đọc là x gạch) là tổng các giá trị của số liệu chia cho số lần quan sát (N)
N
x
Thí dụ: Số liệu về huyết áp tâm thu của 5 đối tượng là 120, 125, 130, 135, 150 Huyết áp tâm thu trung bình sẽ là 132
132 5
150 135 130 125 120
N
x
Do không thể thực hiện các phép toán số học trên các biến số định tính (danh định và thứ tự) chúng ta chỉ có thể tính trung bình cho số liệu của biến số định lượng
Nếu chúng ta sắp xếp số liệu theo thứ tự, giá trị đứng ở giữa được gọi là trung vị Nếu có hai giá trị cùng đứng ở giữa, trung bình cộng của hai giá trị này là trung vị
Trang 6Thí dụ: Số liệu về huyết áp tâm thu (mmHg) của 5 đối tượng là 120, 125, 130,
135, 150 Trung vị của huyết áp tâm thu là giá trị đứng ở giữa và bằng 130
Số liệu về chiều cao (cm) của 6 người là 153, 155, 160, 162, 165, 161 Ðể tính trung vị, trước tiên chúng ta phải sắp xếp số liệu này: 153, 155, 160, 161, 162,
165 Do có hai giá trị 160 và 161 cùng ở giữa, trung vị sẽ là (160+161)/2 = 160,5 cm
Ðôi khi người ta chọn con số thống kê tiêu biểu là yếu vị (mode) Yếu vị là giá trị xuất hiện phổ biến nhất (có tần suất cao nhất)
Thí dụ: Số liệu về huyết áp tâm thu (mmHg) của 5 đối tượng là 120, 125, 130,
135, 150 Trong trường hợp này không có yếu vị.
Ðiểm số của 5 học sinh là 5, 5, 6, 7, 9 Yếu vị của điểm số là 5.
Trong một số liệu cụ thể, có thể không có yếu vị, có thể có một yếu vị hoặc hai hay nhiều yếu vị Ðây là khuyết điểm chính của số thống kê này Do vậy người ta thường chỉ dùng trong các trường hợp đặc biệt
Có thể sử dụng trung bình, trung vị hay yếu vị cho biến số định lượng Khi biến số định lượng có phân phối bình thường (hình chuông) thì ba con số này xấp xỉ bằng nhau và khi
đó người ta thường tính trung bình bởi vì trung bình có những đặc tính toán học mạnh Tuy nhiên nếu số liệu bị lệch thì con số trung vị phản ánh giá trị tiêu biểu một cách chính xác hơn
Thí dụ: Bệnh nhân bị loét dạ dày - tá tràng được điều trị theo một phác đồ diệt vi khuẩn Helicobacter Sau điều trị, bệnh nhân được theo dõi và ghi nhận thời gian kể từ khi sử dụng thuốc đến lúc bắt đầu cải thiện triệu chứng đau Ở 10 bệnh nhân thời gian này (ngày ) là như sau: 1, 2, 2, 2, 2, 2, 3, 3, 3, 30 Bệnh nhân có thời gian từ lúc điều trị đến lúc giảm triệu chứng là 30 ngày trên thực chất là bệnh nhân không đáp ứng với điều trị Trung vị và trung bình của số liệu là 2 và 5 ngày Con số trung vị phản ánh chân thực hơn bởi vì với tư cách là một bác sĩ lâm sàng từ số liệu trên có thể nhận xét rằng một bệnh nhân tiêu biểu sẽ giảm đau sau 2 ngày dùng thuốc Con sôs 30 trong thí dụ trên được gọi
là số ngoại lai (outlier) và làm số liệu bị lệch Nhìn chung, khi số liệu bị lệch thì con số trung bình sẽ bị ảnh hưởng rất nhiều và không phản ánh giá trị tiêu biểu như con số trung vị.
Thống kê mô tả tính phân tán:
Thống kê mô tả tính phân tán có tầm quan trọng thứ hai sau con số mô tả khuynh hướng tập trung
Thí dụ: Thuốc hạ áp A được sử dụng trên 5 bệnh nhân và huyết áp tâm thu sau khi dùng thuốc là
110, 115, 120, 125 và 130 Thuốc hạ áp B được sử dụng trên 5 bệnh nhân và có huyết áp sau sử dụng thuốc là 100, 110, 120, 130, 140 Như vậy hai thuốc hạ áp này có hiệu quả hạ áp là tương đương (bởi vì trung bình của hai số liệu là bằng nhau) nhưng kết quả của thuốc B phân tán hơn và điều này làm thuốc B trở nên kém an toàn.
Ðộ lệch chuẩn (standard deviation - viết tắt là SD hay s) là con số đánh giá mức độ phân tán và được tính theo công thức:
n
i
i
N
x x
s
1
2
1
) (
Như vậy độ lệch chuẩn phản ánh khoảng cách trung bình của số liệu so với giá trị tiêu biểu Khái niệm độ lệch chuẩn chỉ có thể áp dụng cho biến số định lượng bởi vì chúng ta
có thể thực hiện các phép toán số học trên các đại lượng nhưng không thể thực hiện trên các giá trị của biến số định tính là các đặc tính
Trang 7Thí dụ: Số liệu về huyết áp tâm thu (mmHg) của 5 đối tượng là 120, 125, 130, 135, 150 Trung bình của huyết áp là 132 và độ lệch chuẩn bằng
5 , 11 5 , 132 4
530 4
324 9 4 49 144
1 5
) 132 150 ( ) 132 135 ( ) 130 132 ( ) 132 125 ( ) 132 120 (
1
) (
2 2
2 2
2 1
2
n i
i
N
x x s
Phương sai về mặt từ nguyên là bình phương của sai - bình phương của độ lệch chuẩn Phương sai (variance) có thể được kí hiệu và Var hay s2 và được tính theo công thức sau:
i
n
1
1
Phạm vi của số liệu là tất cả các giá trị của số liệu từ giá trị nhỏ nhất đến giá trị lớn nhất
Thí dụ: Số liệu về huyết áp tâm thu (mmHg) của 5 đối tượng là 120, 125, 130, 135, 150 Phạm vi của biến số huyết áp là 120 đến 150.
Thí dụ: Thuốc hạ áp A được sử dụng trên 5 bệnh nhân và huyết áp tâm thu sau khi dùng thuốc là
110, 115, 120, 125 và 130 Thuốc hạ áp B được sử dụng trên 5 bệnh nhân và có huyết áp sau sử dụng thuốc là 100, 110, 120, 130, 140 Số liệu của thuốc B có tính phân tán cao hơn do phạm vi thay đổi từ 100-140 trong khi đó phạm vị của số liệu thuốc A chỉ từ 110-130.
Khoảng tứ vị (inter-quartile): Nếu chúng ta chia số liệu sắp theo thứ tự làm 2 phần đều nhau, khoảng tứ vị là khoảng cách của trung vị phần trên và trung vị phần dưới Trung vị của phần trên của số liệu được gọi là tứ vị trên (upper quartile) và trung vị của phân dưới
số liệu được gọi là trung vị dưới (lower quartile)
Thí dụ: Số liệu về huyết áp tâm thu (mmHg) của 5 đối tượng là 120, 125, 130, 135, 150 Số liệu này được chia làm 2 phần: phần 1 gồm 120, 125, 130 và phần 2 gồm 130, 135, và 150 Trung vị của phần trên là 125 - trung vị của phần dưới là 135, do đó phạm tứ vị là 125-135.
Do bản chất của khoảng tứ vị là trung vị của phần số liệu trên và phần số liệu dưới, cũng giống như trung vị, khoảng tứ vị không bị ảnh hưởng bởi các giá trị ngoại lai như trong trường hợp của độ lệch chuẩn Cũng như trung vị, khoảng tứ vị chỉ có thể áp dụng cho biến số định lượng hay thứ tự
Có 3 thống kê mô tả tính phân tán: độ lệch chuẩn, khoảng tứ vị và phạm vi của số liệu Việc lựa chọn thống kê mô tả tính phân tán được trình bày trong bảng 2
Bảng 6 Chọn lựa các thống kê mô tả tính phân tán cho các loại biến số
Trường hợp Thống kê tóm tắt giá trị tiêu
deviation) Thống kê bị lệch Trung vị (median) Khoảng tứ vị (inter-quartile)
Phạm vi (Range)
Trang 8Câu hỏi: Phân tích trên máy tính về biến số hemoglobin cho kết quả sau Hãy thử đọc và
lí giải kết quả:
Variable | Obs Mean Std Dev Min Max
-+ -hemoglobin | 70 11.98429 1.416122 8.8 15.1
Thí dụ về số liệu bị lệch: Thời gian nằm viện của 17 đối tượng sau khi phẫu thuật (được sắp xếp từ nhỏ đến lớn) là:
3 4 4 6 8 8 8 10 10 12 14 14 17 25 27 37 42
Phân phối này bị lệch nên con số thời gian nằm viện trung bình là 14,6 không phải con số phù hợp đo lường trung tâm Ðể đánh giá Từ phân phối này ta nhận thấy trung vị là 10; tứ
vị trên là 17 và tứ vị dưới là 8
Logarithm
Một cách khác để đối phó với số lệch bị lệch, trong trường hợp bị lệch dương là sử dụng logarithm (hay gọi tắt là log) của giá trị số liệu thay vì dùng bản thân giá trị
Có nhiều loại logarithms khác nhau Logarithm cơ số 10 là loại thường được sử dụng trong quá khứ để nhân hay chia các con số một cách nhanh chóng Gần đây do sự phát triển của các máy vi tính và máy tính cầm tay, việc sử dụng logarithms cơ số 10 trở nên
bị phôi pha Hiện này người ta thường chỉ dùng logarithms cơ số e (e=2,71) hay còn gọi
là logarithms tự nhiên do loại logarithms này có một số đặc tính toán học đáng quý Logarithms tự nhiên của một số x thường được kí hiệu ln(x)
Logarithms tự nhiên có các đặc tính toán học chính như sau:
ln(xy)=ln(x) + ln(y)
ln(x/y)=ln(x)-ln(y)
ln(xn)=ln(xx x)=ln(x)+ln(x)+ +ln(x)=nln(x)
ln(1+x)(x (với x nhỏ)
Nếu chúng ta đã biết ln(x) và muốn biết x bằng bao nhiêu chúng ta sử dụng hàm antilog(x) hay còn gọi là hàm exp(x)
Trong trường hợp số liệu bị lệch dương, người ta lấy log của số liệu và tính trung bình của log số liệu Sau đó tính giá trị thời gian nằm viện tiêu biểu (con số này được gọi là trung bình nhân - geometric mean) bằng cách lấy antilog của trung bình của log số liệu Trở lại thí dụ về thời gian nằm viện của 17 bệnh nhân Sau khi lấy log chúng ta có trung bình của log thời gian nằm viện bằng 2,41 và lấy antilog của số này chúng ta có trung bình nhân của thời gian nằm viện là 11,13 Con số này gần với giá trị trung vị là 10 hơn con số trung bình cộng là 14,6
Biểu đồ và đồ thị
Số liệu cũng có thể được trình bày dưới dạng đồ thị hoặc biểu đồ Mặc dù không có ranh giới tuyệt đối hoàn toàn rõ rệt, nói chung đồ thị (graph) có tính chất toán học nhiều hơn, trong đó có trục hoành và trục tung còn biểu đồ (chart) là hình ảnh mang tính chất tượng trưng
Trang 9Nếu biến số là biến rời rạc, cĩ thể trình bày dưới dạng biểu đồ hình thanh (bar chart -hình 1) hoặc biểu đồ -hình bánh (pie chart) Nếu biến số là biến liên tục, thì phân phối của biến số cĩ thể trình bày dưới dạng tổ chức đồ (histogram - hình 2) hoặc đa giác tần suất
Biểu đồ hình thanh
Biểu đồ hình thang là biểu đồ nhằm mơ tả sự phân bố của biến số rời rạc Biểu đồ hình thanh gồm cĩ trục hồnh trên đĩ xác định những giá trị của biến số Ứng với từng giá trị của biến số người ta vẽ các thanh cĩ chiều cao tỉ lệ với tần suất của giá trị đĩ Cần lưu ý luơn luơn cĩ khoảng trống giữa các thanh
45
24
0
10
20
30
40
50
Figure 2 Biểu đồ hình thanh (bar chart) mơ tả phân bố giới tính của những học sinh trong trường mầm non 23/11, Hĩc mơn
Chúng ta cũng cĩ thể xây dựng các thanh theo chiều ngang như trong ví dụ sau
478 65
57
Sinh thường
Sinh forceps
Sinh mổ
Figure 3 Phương pháp sinh của 600 trẻ sanh tại bệnh viện X trong năm 1998
Ðối với biến số thứ tự, điều cần lưu ý là các giá trị của biến số phải được sẵp xếp thứ tự theo trục hồnh
Trang 10e d u m a t
0
1 0 0 0
2 0 0 0
Figure 4 Trình độ học vấn của các bà mẹ trong nghiên cứu
Biểu đồ hình bánh
Biểu đồ hình bánh cũng được dùng để mơ tả sự phân bố của biến số rời rạc Biểu đơ hình bánh là một vịng trịn được chia làm nhiều cung tương ứng với các giá trị của biến số
Ðộ lớn của cung tỉ lệ với tần suất của giá trị biến số
Nữ 35%
Nam 65%