1. Trang chủ
  2. » Giáo án - Bài giảng

Một khac thác ứng dụng của BĐT Cosi trong Giảng dạy toan 9

4 547 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Một Khai Thác Ứng Dụng Của BĐT Cosi Trong Giảng Dạy Toán 9
Chuyên ngành Toán học
Thể loại Tiểu luận
Định dạng
Số trang 4
Dung lượng 259,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bất đẳng thức CÔ-SI- một kiến thức thú vịtrong chơng trình ********************* Với những ai đã trải qua một thời học và dạy Toán thì chắc chắn chúng ta sẽ không thể nào không biết tới

Trang 1

Bất đẳng thức CÔ-SI- một kiến thức thú vị

trong chơng trình

*********************

Với những ai đã trải qua một thời học và dạy Toán thì chắc chắn chúng ta sẽ không thể nào không biết tới và quên đợc Bất đẳng thức CÔ- SI -Đó là một kiến thức vô cùng thú vị của chơng trình Toán học phổ thông, nó đã đợc các tác giả giới thiệu và đề cập tới rất sớm và khá nhiều trong trong SBT Toán lớp 9.Vì thế, tôi viết bài này xin đợc nêu vài cách giải cho một trờng hợp đặc biệt rất phổ biến của Bất đẳng thức Cô- Si cùng với những vận dụng rất cơ bản ban đầu bất đẳng thức đó

Cho a,b0.Chứng minh : abab

2

(Bất đẳng thức CÔ-SI cho 2 số không âm)

(Bài 44-Trang 9-SBTToán 9-NXBGD-2005).

Lời giải:

Cách 1: Xét hiệu(A-B…=> A-B 0  AAB )

a;b0 Tacó abab

2 =

2

2 ab b

2

2 ) ( ) ( a 2  b 2  ab =

2

) ( 2

b

2 0 Do đó abab

2 a;b0.

Dấu ‘‘=‘‘ sảy ra a = b.

Cách 2: Biến đổi tơng đơng

Ta có: abab

2  a+b2 ab( a ) 2 +( b ) 2 -2 ab 0

( a - b ) 2

0 luôn đúnga;b0.Do vậy abab

2 a;b0 Dấu ‘‘=‘‘ sảy ra a = b.

Cách 3:Sử dụng bất đẳng thức có sẳn luôn đúng

a;b0,ta luôn có: ( a - b ) 2

0 ( a ) 2 +( b ) 2 -2 ab 0 ( a ) 2 +( b ) 2

2 aba+b2 ababab

2

Dấu ‘‘=‘‘ sảy ra a = b.

Cách 4 (Sử dụng t/c AB 0  AB )

Tacó: (a-b) 2 0a 2 +b 22ab a 2 +b 2 +2ab4ab(a+b) 24ab lấy căn bậc hai , hai vế không âm ta đợc:

a+b2 aba;b0abab

2 a;b0.

Dấu ‘‘=‘‘ sảy ra a = b.

Bất đẳng thức CÔ_-SI cho 2 số không âm chỉ đơn giản là thế nh ng nó lại rất thú vị bởi sự linh hoạt và sáng tạo khi cho avà b nhận những giá trị cụ thể và thích hợp nào đó.Chẳng hạn nh:

Khi cho a0và b = 1 thì ta có 1

2

1

a

a

Khi đó suy ra đợc bất đẳng thức: a +12 a .a0 Hoặc cho a = x-1 với x1 và b =1 thì ta có ( 1 ) 1

2

1 ) 1 (

x

Khi đó suy ra đợc bất đẳng thức x2 x 1 x1.

1

Trang 2

Hay khi cho a và b là hai kích thớc của một hình chữ nhật có diện tích không đổi là S thì từ abab

2 ta có abs

2

(vì diện tích của hình chữ nhật là ab)2(a+b)4 S Chu vi của hình chữ nhật đó nhỏ nhất là 4 S a = b Mà khi a = b thì hình chữ nhật sẽ trở thành hình vuông

Và nh thế ta đã chứng minh đợc kết luận sau: ‘‘Trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi nhỏ nhất’‘

(Bài 67b trang 13-SBT-Toán 9-NXBGD-2005).

Tơng tự ta cũng có kết luận sau: ‘‘Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất’‘

(Bài 67a trang 13-SBT-Toán 9-NXBGD-2005).

Không dừng lại ở đó,Bất đẳng thức CÔ- SI cho hai số không âm sẽ còn thú vị hơn rất nhiều nếu ta áp dụng nhiều lần cho những trờng hợp riêng-cụ thể nh trên, rồi bằng cách cộng hay nhân hai vế của các bất

đẳng thức vừa có đợc cùng với việc vận dụng các tính chất cơ bản của bất đẳng thức thì khi đó rất nhiều bài toán Hay và Khó sẽ xuất hiện Chẳng hạn nh sau:

1/áp dụng 2 lần rồi cộng từng vế tơng ứng :

Ví dụ : x,y 1.

2

1 ) 1 (x   x  x2 x 1 xy 2y x 1 (1)

Tơng tự thì có ( 1 ) 1

2

1 ) 1 (y   y  y2 y 1 xyx y 1 (2)

xy + xy2y x 1+ x y 1 xy y x 1+ x y 1.

Khi đó ta sẽ chứng minh đợc bài toán :

Bài 1 : Chứng minh rằng: y x 1+ x y 1. xy x,y 1

(Trích đề thi vào lớp 10 Lê Hồng Phong năm 1999)

2/ áp dụng2 lần rồi nhân từng vế tơng ứng

Ví dụ : a;b0 Ta có

2

2

a

a

; .8

2

8

b

b

2

2

a

8 2 2

8

b a

b

(a+2)(b+8) 16

ab .

Khi đó ta sẽ chứng minh đợc bài toán :

Bài 2 Chứng minh rằng : (a+2)(b+8) 16 ab .a;b0

3/ áp dụng3 lần rồi cộng từng vế tơng ứng :

Ví dụ : a;b0 Ta có

a b a.b

2 

; .1

2

1

a

a

; .1

2

1

b

b

aba b  abab

2

1 2

1 2

a++b+1 abab

Khi đó ta chứng minh đợc bài toán sau:

Bài 3 :Chứng minh rằng: a+b+1abab 0 a;b0

4/ áp dụng 3 lần rồi nhân từng vế tơng ứng :

Ví dụ 1 : a;b;c0 Ta có

a b a.b

2 

; b c b.c

2 

; c a c.a

2 

a b b c c a ab. bc. ca

2

2

.

2

Trang 3

(a+b)(b+c)(c+a) 8abc

Khi đó ta sẽ dễ dàng giải đợc bài toán sau:

Bài 4 :Cho 3 số dơng a;b;c có tích bằng 1.Hãy tìm giá trị nhỏ nhất củaA Với A=(a+b)(b+c)(c+a)

Ví dụ2 : a;b0 Ta có

a b a.b

2 

; b c b.c

2 

; c a c.a

2 

2

2 2

2

2 ab a b

b a b a

(a+b)(a+2)(b+2) 16ab.

Khi đó ta chứng minh đợc bài toán sau:

Bài 5 :Chứng minh rằng:a 2 b+ab 2 +2a 2 +2b 2 +4a+4b 12ab a;b0 5/ áp dụng nhiều lần rồi cộng hay nhân từng vế tơng ứng :

Ví dụ1 : Ta có 1 2

2

2 1

2

3 2

2

4 3

2

5 4

;

5 6

2

6 5

2

7 6

2

8 7

2

9 8

                

2

9 8 2

8 7 2

7 6 2

6 5 2

5 4 2

4 3 2

3

2

2

2

1

72 56 42 30 20 12

6

Khi đó ta chứng minh đợc bài toán sau:

Bài 6 :Chứng minh rằng: 2  6  12  20  30  42  56  72 < 40 Tổng quát bài toán này ta còn chứng minh đợc bài toán sau:

Bài 7: Hãy chứng minh: 1 2  2 3  3 4   n(n 1 ) <

2

) 2 ( n n

.N *

Ví dụ 2: a;b;c0 Ta có : b c b.c

2 

b+c2 bc

a+a+ b+c 2 a2 +2 bc .

Mà theo bất đẳng thức CÔ-SI cho hai số không âm ta lại có : 2 a2 +2

bc2. 2 a 22. bc =4 4 a2bc a+a+ b+c 4 4 a2bc

Tơng tự thì b+a+b+c 4 4 a b2c ; c+a+b+c4 abc4 2

( a+a+ b+c)( b+a+b+c)( b+a+b+c)  4 4 a2bc .4 4 a b2c . 4 abc4 2 .

Nếu thêm giả thiết a+b+c=1 th ìcó (a+1)(b+1)(c+1) 64abc.

Khi đó ta chứng minh đợc bài toán sau:

Bài 8:Cho a;b;c là 3 số dơng có tổng bằng 1.

Hãy chứng minh :(1+

a

1

) (1+

b

1

).(1+

c

1

)64.

Sau đây là vài bài tập chứng minh bất đẳng thức.Xin mời các bạn hãy vận dụng Bất đẳng thức CÔ- SI cho hai số không âm để giải:

1 

x

x

.x> 1

2/ (a+b+c)(

a

1

+

b

1

+

c

1

) 9 .a;b;c>0.

3/ 2 2  2 2

y

x

y

x

x>y thoả mãn x.y =1

4 /

a

bc

+

b

ca

+

c

ab

a+b+c a;b;c>0.

5/ ab(a+b)+bc(b+c)+ca(c+a) 6abc .a;b;c>0

3

Trang 4

Gi¸o viªn Trêng T.H.C.S h¶I v©n (su T©m)

4

Ngày đăng: 01/07/2013, 01:27

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w