1. Trang chủ
  2. » Ngoại Ngữ

Strengthening concrete structures with prestressed CFRP sheets Laboratory and numerical investigations to field application

448 107 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 448
Dung lượng 10,67 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Library and Archives CanadaBibliotheque et Archives Canada Published Heritage Branch 395 W ellington Street Ottawa ON K1A 0N4 Canada Your file Votre reference ISBN: 978-0-494-18522-3 Our

Trang 1

with Prestressed CFRP Sheets:

Laboratory and Numerical Investigations

to Field Application

by

Y ail (Jim m y) K im

A thesis subm itted to the D epartm ent o f C ivil E ngineering

in co nform ity w ith th e requirem ents for the degree o f

Trang 2

Library and Archives Canada

Bibliotheque et Archives Canada

Published Heritage Branch

395 W ellington Street Ottawa ON K1A 0N4 Canada

Your file Votre reference ISBN: 978-0-494-18522-3 Our file Notre reference ISBN: 978-0-494-18522-3

Direction du Patrimoine de I'edition

395, rue W ellington Ottawa ON K1A 0N4 Canada

NOTICE:

The author has granted a non­

exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by

telecommunication or on the Internet, loan, distribute and sell theses

worldwide, for commercial or non­

commercial purposes, in microform, paper, electronic and/or any other formats.

AVIS:

L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par I'lnternet, preter, distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres, sur support microforme, papier, electronique et/ou autres formats.

The author retains copyright ownership and moral rights in this thesis Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriete du droit d'auteur

et des droits moraux qui protege cette these.

Ni la these ni des extraits substantiels de celle-ci ne doivent etre imprimes ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included

in the document page count, their removal does not represent any loss of content from the thesis.

Conformement a la loi canadienne sur la protection de la vie privee, quelques formulaires secondaires ont ete enleves de cette these.

Bien que ces formulaires aient inclus dans la pagination,

il n'y aura aucun contenu manquant.

Trang 3

It a in ’t o ver till it ’s o ver

i Yail J K im , P E ng., P h.D T hesis

Trang 4

G eneral

Abstract

M any o f the structures in C anada w ere constructed during the 1950’s and 19 6 0 ’s and they

are in need o f reh ab ilitatio n due to deterioration T he application o f carbon fibre

reinforced p o ly m er (C F R P ) sheets fo r strengthening dam aged structures is a v iable and

prom ising solution C FR P is an em erging advanced com posite m aterial w ith v ery high

tensile strength (i.e., 10 tim es stro n g er th an that o f steel) The strengthening effec t w hen

using C FR P sheets can b e significantly im p ro v ed b y applying p restress to the sheets T his

thesis p resents the ap p licatio n o f p re stressed C FR P sheets for concrete structures and

consists o f four m ain categories as follow s:

• C om putational sim ulation:

A n o n lin ear 3-D finite elem ent analysis (F E A ) is conducted to in v estig ate the b eh av io u r

o f p re stressed concrete beam s stren g th en ed w ith p restressed C F R P sheets, including

experim ental validation T he flexural beh av io u r o f the b eam s, befo re and after

strengthening, is pred icted and com p ared against experim ental results in cluding the

increase o f lo ad-carrying capacity, failure m ode, ductility, and cracking behaviour The

m od ellin g tech n iq u e is extended to a tw o -w ay flat slab strengthened w ith p re stressed

C FR P sheets, including investigations on the load-carrying capacity, n u m erical crack

grow th, and slab-colum n conn ectio n behaviour

• E xperim ental investigation:

T en reinforced concrete beam s stren g th en ed w ith prestressed C FR P sheets are tested as

part o f the d evelopm ent o f a n o n -m etallic anchor system N o n -m etallic anchors are

ii Y ail J K im , P E ng., P h.D T hesis

Trang 5

n ecessary to avoid corrosion dam age T he load-carrying capacity o f the stren g th en ed

beam s u sin g the innovative m eth o d is up to 3 tim es greater than the u n stren g th en e d beam

V arious failure m odes are o b served d epending on the type o f the applied an c h o r system

The develo p ed n o n -m etallic an ch o r system overcom es brittle and abru p t failures that are

com m only o b serv ed in C F R P -stren g th en ed structures

• T heoretical investigation:

C losed-form solutions fo r the b eh a v io u r o f strengthened concrete beam s are derived, and

they exhibited g o o d agreem ent w ith the experim ental results P ractical n o n lin ear fracture

m echanics m odels, rep resen tin g the b eh a v io u r o f the anchor system that is req u ired to

prestress C FR P sheets, are also developed

• S ite application:

The technology studied in the labo rato ry is applied to a site application T he M ain Street

B ridge-overpass No 4, W innipeg, M B , has been significantly dam aged by frequent

collisions o f h ea v y trucks T he innovative strengthening m ethod u sin g prestressed C FR P

sheets is su ccessfully applied T he lo ad-carrying capacity o f the dam aged brid g e is

recovered w ith resp ect to the un d am ag ed state N o tice that this rep air p ro ject is the first

N orth A m erican site ap p licatio n u sin g prestressed C FR P sheets

iii Y ail J K im , P E ng., P h.D T hesis

Trang 6

G eneral

Co-authorship

T his thesis is p art o f the P h.D w o rk co nducted b y the au th o r w ho p erfo rm ed the

experim ental and analytical investigations, exam ined the research results, and w ro te the

entire m anuscripts u n d er the supervision o f Dr M ark F G reen an d Dr R G ord o n W ight

T he follow ing m an u scrip ts h ave b een p rep ared w ith contribution o f the co-authors

C oncrete B eam s S trengthened

w ith P restressed C FR P Sheets

A S C E ,

J Eng

M ech.

S ubm itted(M E /2006/024384)

5

F lexure o f T w o-w ay Slabs

S trengthened w ith P restressed

or N o n -p restressed C FR P Sheets

K im , Y.J.;

L ongw orth, J.M ; W ight,

6

T w o -w ay S lab-C olum n

C onnections: R etro fit w ith

P restressed or N on-p restressed

C FR P Sheets

K im , Y.J.;

L ongw orth, J.M ; W ight,

7

F lexural B eh av io u r o f

R ein fo rced or P restressed

C oncrete B eam s S trengthened

iv Y ail J K im , P E ng., P h.D T hesis

Trang 7

w ith P restressed C FR P Sheets:

A c cep ted(B E /2006/023236)

9

F lexural B eh av io u r o f an

Im p ac t-d am ag e d P restressed

C oncrete G ird er B ridge

S trengthened w ith P restressed

C FR P Sheets

K im , Y.J.;

G reen, M F ;

and W ight, R.G

N R C ,

Can J

Civ Eng.

S ubm itted(06-184)

3 ld Int C onf on C onstruction

M aterials (C onM at05),

V ancouver, B C , A ug 2005

4

C lo sed -fo rm S olutions for the

T ra n sfer o f P restressed C FR P Sheets

Kim , Y.J.;

W ight, R G , and G reen,

3ld Int C onf on C onstruction

M aterials (C onM at05),

v Y ail J K im , P E ng., P h.D T hesis

Trang 8

P restressed C oncrete G irder

B ridge: C lause 5.7 L ive L oad

K im , Y.J.;

G reen, M F ;

and W ight, R.G

34th C anadian Society for

C ivil E n g in eerin g ( C SCE)

A nnual C onf., C algary, A B ,

M ay 2006

vi Y ail J K im , P E ng., P h.D T hesis

Trang 9

Acknowledgem ents Thank-you to

Issac N ew ton, C hristian O tto M ohr, D u P erro n R ene D escartes, L eo n h ard E uler, T hom as

Y oung, S im on-D enis Poisson, R o b ert H ooke, G alileo G alilei, L eonardo da V inci,

M ich aelan g elo B uonarroti

Dr M u rty K S M adugula, Dr S ungchul L ee, D r C hangsik M in, D r T Iv an C am pbell,

Dr C olin M acD ougall, Dr A m ir F am , Dr L uke B isby, Dr L au ren t B izindavyi, Dr

M arie-A n n e E rki, Dr D ave T urcke, Dr K e v in H all, Dr K eith P ilkey, M r G arth J Fallis,

M s M ax in e W ilson, M s F io n a F roats, M s C athy W agar, M r Jam ie E scoba, M r D ave

T ryon, M r Paul T hrasher, M s D arlene G affney, M s D anielle G rondin, M r L eo M anes,

M r O scar R ielo, M r D e x te r G askin

Intelligent Sensing for Innovative Structures N etw o rk s (ISIS C anada)

N atural Sciences and E ngineering R esearch C ouncil o f C anada (N S E R C )

Q ueen's U niversity

T he R oyal M ilitary C ollege o f C anada

V ector C onstruction G roup, W innipeg, M an ito b a

G raduate students at Q ueen's U niv ersity

F am ilies in S eoul, K orea

vii Y ail J K im , P E ng., P h.D T hesis

Trang 10

G eneral

Table o f Contents

1.2.1 T h e B e h a v io u r o f S tre n g th e n e d B eam s w ith P re s tre s se d C F R P

1.2.5 R ep air o f a D am ag ed B ridge S uperstructure 7

P art A Effectiveness o f Strengthened Structures with Prestressed Carbon F ibre

R einforced P olym er (CFRP) Sheets: Laboratory-scale Investigations

2.7.5 C ontribution o f T en sio n in C oncrete 31

viii Y ail J K im , P E ng., P h.D T hesis

Trang 11

Chapter 3 M ech an ical A n ch o rag e fo r A p p licatio n o f P restressed C F R P Sheets 48

3.4.2 M odel P ro p o sed b y K im et al (2004) 52

3.4.3.1 L in ear E lastic F racture M echanics (L E F M ) A pproach 533.4.3.2 N o n linea r F racture M echanics (N L FM ) A pp ro ach 553.4.3.3 V alid atio n o f the P roposed M odels 57

P restressed C FR P Sheets: N o n -m etallic A n c h o r S ystem 88

Trang 12

G eneral

4.6.1.2 C orrelatio n w ith the L aboratory 106

4.7.1.1 B eam s w ith N on-anchored U -w raps 1084.7.1.2 B eam s w ith M echanically A nchored U -w rap s 1094.7.1.3 B eam s w ith C F R P -anchored U -w raps 1114.7.2 P e e lin g -o ff C rack P ro p ag atio n 111

4.7.3.1 B eam s w ith N on -an ch o red U -w raps 1124.7.3.2 B eam s w ith A n ch o red U -w raps 1134.7.3.3 B eh av io u r o f Side Sheets D epending on A n ch o r-ty p e 1144.7.4 Stress R ed istrib u tio n in the R einfo rcem en t 114

4.7.4.1 T he C oncept (K im et al 2005b) 114

4.7.5 T ransverse D e fo rm atio n in the A nchored R eg io n 1174.7.6 S train P rofiles and F ailure o f U -w raps 117

5.6.1 F lexural B eh av io u r and the E ffect o f S trengthening 144

5.6.4 C rack M outh O p ening D isp lacem en t 151

Trang 13

6.4.4 P restressin g O peration 172

6.7.4 C o rrelatio n o f the P redictio n s w ith the E x p erim en t 184

7.3.2 P ractical A pplicatio n s o f H illerborg M odel 202

7.3.2.1 R ein fo rced C oncrete B eam (K im et al 2006) 203

7.3.2.3 P restressed C oncrete B eam S trengthened w ith P restressed

7.6 N o n lin ear Iterative M odel: S trength-based T heory 212

7.7.1 E ffect o f the S ize-d ep en d en t P aram eter 2137.7.2 S tress-strain R elatio n o f C oncrete in B ending 214

P art B Innovative Strengthening Application to Site

8.3 D esign and R ep air o f the D am ag ed B ridge 231

8.3.1 D e scrip tio n o f the D am ag ed B ridge 231

xi Y ail J K im , P E ng., P h.D T hesis

Trang 14

G eneral

8.4 F easib ility o f the R ep air D esig n (K im et al 2004) 235

8.7 A ssessm en t on E ffectiveness o f the R ep air 249

9.3 R eview o f E xisting F E A for F u ll-scale B ridge M odelling 2729.4 B ackground o f R esearch (K im et al 2006a) 2749.5 C alibration o f the F E A m odel (K im et al 2006b) 275

9.6 F ull-scale M odelling o f the M ain S treet B ridge (K im et al 2006b) 2779.7 T he C oncept o f the L ive L oad D istrib u tio n F acto r 277

9.7.1 T he B en d in g M o m e n t-b a se d A pproach 277

9.8 M eth o d o lo g y to C alculate the Live L oad D istribution 278

9.11.1 C om parison o f Live L oad D istribution F actors 285

9.11.1.1 C om parison to A A S H T O L R FD 2869.11.1.2 C om parison o f the U ndam aged, D am aged, and R epaired

xii Y ail J K im , P E ng., Ph.D T hesis

Trang 15

9.11.2 D istrib u tio n o f L ive L oad M om ent 287

9.11.2.1 C o m p ariso n to A A S H T O L R FD and C H B D C 287

9 1 1 2 2 C o m p a ris o n a m o n g th e U n d a m a g e d , D a m a g e d , an d

A ppendix B In n o v ativ e F lexural S treng th en in g for R C B eam s 324

A ppendix C R ep air o f B ridge G ird er D am aged by Im pact L oads 337

xiii Y ail J K im , P E ng., Ph.D T hesis

Trang 16

G eneral

List o f Tables

T able 1.1 S um m ary o f specim ens investigated in the thesis 13

T able 2.2 D escrip tio n o f the investig ated beam s 38

T able 2.3 S um m ary o f significant values in flexure 39

T able 3.2 S um m ary o f laboratory results (im m ediate loss) 78

T able 3.3 M easu red short-term loss (up to 56 days) o f applied p restress 79

T able 5.2 S um m ary o f flexural b eh a v io u r o f the slabs 158

T able 5.3 S um m ary o f energy absorption and ductility index {jig) 159

T able 6.4 S um m ary o f p unching shear b eh a v io u r o f each slab 191

T able 8.1 D esig n p roperties o f the M ain S treet B ridge ex terio r g ird er 256

T able 8.2 S um m ary o f the m om ents ap p lied to the external g ird er u n d er the extrem e

xiv Y ail J K im , P E ng., P h.D T hesis

Trang 17

loading based on A A S H T O L R F D at critical section 256

T able 8.3 S u m m a ry o f a p p lie d m o m en ts o b tain ed from th e F E A u n d e r th e ex trem e

T able 8.4 F ailure loads and m odes o f the specim ens (K im et al 2004) 257

T able 8.5 C om parison o f net deflectio n o f the ex terio r girder at critical section u n d er the

Table 8.6 T he operating rating factors at critical section o f the external gird er u n d er the

T able 9.1 D esig n p ro perties for calculating live load d istribution (K im et al 2006a) 295

T able 9.2 S um m ary o f live load effects based on C H B D C (K im et al 2006a) 295

T able 9.3 C om parison o f live load distribution factors (undam aged state only) 295

T able 9.4 C o m parison o f live load distribution factors in the M ain S treet B ridge 296

T able 9.5 T he load com binations at critical section in the u n dam aged state 296

T able 9.6 S um m ary o f the load com b in atio n s at critical section in the dam aged state 297

Table 9.7 S um m ary o f the load com binations at critical section in the repaired state 298

Table A l M aterial p ro perties o f Wabo® M B race C F 160 322

T able A 2 M aterial pro p erties o f Wabo® M B race C F 130 322

T able A 3 M aterial p ro perties o f Wabo® M B race S aturant 323

T able C l T he m ultiple presen ce factor (A A S H T O L R F D Cl 3.6.1.1.2) 353

Table C.2 S um m ary o f L ive load D istrib u tio n F actors fo r the ex terio r gird er 353

Table C 3 T he m ultiple p resen ce factor (C H B D C T able 3.8.4.2) 353

Table C 4 S um m ary o f L ive load effects b ase d on C H B D C 353

T able C.5 S um m ary o f the F E A in the u n d am ag ed state 354

x v Y ail J K im , P E ng., P h.D T hesis

Trang 18

G eneral

T able C.6 S um m ary o f the F E A in the dam aged state 355

T able C l S um m ary o f the F E A in the repaired state 356

T able C.8 T he load com binations at critical section in the u n d am aged state 357

T able C.9 S um m ary o f the load com binations at critical section in the d am aged state 358

T able C 10 S um m ary o f the load com binations at critical section in the rep aired state 359

T able D 3 SO L ID 45 item and sequence n u m bers for the E T A B L E and E S O L 374

T able D 8 SOL1D65 item and sequence n u m bers fo r the E T A B L E and E S O L 384

T able D l 1 S H ELL63 item and sequence n um bers for the E T A B L E and E S O L 395

T able D 13 L IN K 8 item and sequence n u m bers fo r the E T A B L E and E S O L 401

xvi Y ail J K im , P E ng., P h.D T hesis

Trang 19

List o f Figures

Fig 2.6 C om parison o f typical crack patterns b etw e en the laboratory an d the F E A 45

Fig 2.9 C ontribution o f tension in concrete after cracking 47

Fig 3.2 L oad-d isp lacem en t resp o n se o f the ten sio n an ch o r 80

Fig 3.4 T ypical com parison b etw een the laboratory and the theory (Eqs 1 and 2) 81

Fig 3.5 P aram etric study on the p late an c h o r system 82

Fig 3.7 S h ort-term prestress losses in the C FR P sheet 83

Fig 3.8 S train d istributions on the an ch o r plates (J-3) 84

Fig 3.10 T ypical com parison o f the p restress in the C FR P sheet 86

Fig 3.11 C om parison o f the theo retical m odel vs laboratory 86

Fig 3.13 C om parison b etw een the experim ental and F E A strains 87

xvii Y ail J K im , P E ng., Ph.D T hesis

Trang 20

G en eral

Fig 4.4 S hear stress co ncentration n ea r the c u t-o ff p o in t o f C FR P sheets 127

Fig 4.5 S train v ariations along the b eam d uring p restressing C FR P sheets (J-3) 127

Fig 4.6 T ypical prestress loss in the C FR P sheets afte r anchor-set (J-5) 128

Fig 4.8 R em oval o f steel an ch o r (K im et al 2005a) 129

Fig 4.9 T ypical variations o f prestress before and after the cut (J-3) 129

Fig 4.11 T ypical com p ariso n b etw e en the th eo re tic al m odel and the lab o rato ry afte r

rem oval o f the steel anchors (K im et al 2005a) 130

Fig 4.16 L o ad -strain resp o n se in re b ar (stren g th en ed vs u n stren g th en e d ) (K im et al

Fig 4.17 L oad-strain response o f tested beam s at m id -sp an 135

Fig 4.19 S train pro file w ith po ssib le failure m ode o f U -w raps 136

xviii Y ail J K im , P E ng., P h.D T hesis

Trang 21

Fig 5.2 C onstructed F E A slab m odel (cut-aw ay v iew to show the rein fo rcem en t) 160

Fig 5.3 L o ad -d eflectio n resp o n se o f each slab 161

Fig 5.5 T ypical cracking pattern s and failure m odes o f the tested slabs 163

Fig 5.7 T ypical n um erical crack p ro p a g atio n o f a slab w ith prestressed C FR P s 164

Fig 6.1 T ypical experim ental set-up and instru m en tatio n 192

Fig 6.3 T im e vs prestress v aria tio n in C F R P 193

Fig 6.6 S train p ro fd es in re b ar along the loading span 195

Fig 6.8 F orm ation and inclination o f p u n ch in g shear cracks 196

Fig 6.9 C om parison o f co m putational crack p attern s 197

Fig 6.10 S hear stress pro file along the loading span 198

Fig 6.11 C om parison o f the pred ictio n s w ith the laboratory 198

Fig 7.1 T he concept o f p ro p o sed fracture m echanics m odel by H illerborg (1990) and

xix Y ail J K im , P E ng., P h.D T hesis

Trang 22

G eneral

Fig 7.4 B rie f flow -chart o f the n o n lin ear iterative m odel 223

Fig 7.5 E ffect o f the size-dependent p aram eter on load-strain re sp o n se 224

Fig 7.6 S tress-strain response com p ariso n o f concrete in bending to u n iax ial loading 225

Fig 7.7 C om prehensive com parison o f load-strain response 226

Fig 7.8 C om prehensive com parison o f m o m ent-curvature response 227

Fig 8.1 S chem atic o f the M ain S treet B ridge (N o.4 overpass) 258

Fig 8.2 C ross-sectional v iew o f the dam aged gird er (F allis et al 2004) 258

Fig 8.4 D etailed anchor system fo r p restressin g C F R P sheets 259

Fig 8.5 T ypical ten sio n test specim en (K im et al 2004) 260

Fig 8.6 T ypical failure o f the specim ens (K im et al 2004) 261

Fig 8.7 T ypical strain v ariations on the C FR P sheet ( A - l) (K im et al 2004) 262

Fig 8.8 T ypical load-strain curves at m id-span ( A - l) (K im et al 2004) 262

Fig 8.9 D ev elo p m en t o f T heoretical M o d els (K im et al 2004) 263

Fig 8.10 C onstructed finite elem ent analysis m odel for the anchor test 263

Fig 8.11 C o m parison o f the ten sio n test results (K im et al 2004) 264

Fig 8.14 N et increase o f deflection u n d e r the extrem e loading 268

Fig 8.15 N et increase o f strain in steel strands u n d er the extrem e loading 269

Fig 9.1 V arious F E A m od ellin g techniques (K im et al 2006b) 299

Fig 9.2 S chem atic o f the M ain S treet B ridge (K im et al 2006b) 299

xx Y ail J K im , P E ng., P h.D T hesis

Trang 23

Fig 9.3 S chem atic o f the internal reinfo rcem en t 300

Fig 9.5 S im ulated double T -b eam bridge for calibration o f the F E A technique 302

Fig 9.6 C alibration o f the F E A w ith the experim ental data (K im et al 2006b) 303

Fig 9.7 C onstructed full-scale F E A m odel o f the M ain Street B ridge 303

Fig 9.8 T he effect o f loading span on live load distributions on the exterio r and interio r

Fig 9.9 T he effect o f daily traffic v olum e o n live load distributions on the exterio r and

Fig 9.10 L o ngitudinal d eflection along the exterio r girder 305

Fig 9.11 T ransverse deflection across the critical section 306

Fig 9.12 N et deflectio n increase o f each loading case across the critical section 307

Fig 9.13 D eflectio n co n to u r on the brid g e u n d er various loadings (K im et al 2006a) 308

Fig 9.14 C om prehensive com p ariso n o f the dam aged exterior gird er u n d e r the extrem e

Fig 9.15 C om parison o f strains in the p restressin g strands located at 153 m m from the

Fig 9.16 N et strain increase along the exterio r gird er 310

Fig 9.17 L ive load distribution across the bridge at critical section 311

Fig 9.18 C om parison o f the live load d istrib u tio n am ong the undam aged, dam aged, and

Fig 9.19 C om parison o f the live load distribution am ong the undam aged, dam aged, and

xxi Y ail J K im , P E ng., P h.D T hesis

Trang 24

G eneral

Fig B 4 S train v ariations on the C FR P sheets during prestressin g 328

Fig B 5 S train v ariations on the C FR P sheets during beam testing 329

Fig B 6 S train variations before and after cutting the prestressed C F R P sheets 331

Fig B 9 T he finite elem ent analysis for the end-cap an ch o r 336

Fig C 4 L ive loads p er lane to induce the m axim um m om ents in the g ird er 362

Fig C 5 L oading com binations for live load d istrib u tio n factor 363

Fig C.6 T he m axim um m om ent based on C H B D C (2000) 364

Fig D L C onstitutive beh av io u r o f m aterial m o d ellin g 365

xxii Y ail J K im , P E ng., P h.D T hesis

Trang 25

Fig D 9 L IN K 8 3-D sp ar output 399

Fig D 10 3-D F ailure surface in prin cip al stress space 406

Fig D 12 F ailu re surface in prin cip al stress space 411

xxiii Y ail J K im , P E ng., P h.D T hesis

Trang 26

A s = cross-sectio n al areas o f steel p late (m m ); area o f tension rein fo rcin g steel (m m )

As = area o f com p ressio n rein fo rcin g steel (m m 2)

A rocj = cross-sectio n al area o f ro d (m m 2)

a = infinitesim al initial flaw (m m ); partial lengths o f the p late (m m ); ind icato r for critical

p erim eter

b = w id th o f reinforced or p restressed concrete beam (m m ); total bon d ed w id th o f C FR P

(m m ); the p artia l lengths o f the p late (m m ); indicator for critical p erim eter

bbond ~ w idth o f C F R P -bonded area (m m )

bo = length o f colum n w idth plus effective depth o f slab (m m )

C = co m pliance o f a system (m 2/N ); resu ltan t com p ressio n force (kN )

C f= correctio n factor

C; = constant o f general solution

c = clear concrete cov er (m m ); d istance from the extrem e com pression fibre to the neutral

axis (m m ); n eutral axis o f rein fo rced or p re stressed concrete beam (m m ); in d icato r for

critical p erim eter

C 2 = colum n w id th (m m )

D = un facto red dead load effect

d = effective depth o f the tension rein fo rcem en t (m m )

db = re b ar d iam eter (m m )

xxiv Y ail J K im , P E ng., P h.D T hesis

Trang 27

E f= elastic m odulus o f C FR P (G Pa) (El)transformed- transform ed flexural rig id ity (N m 2)

E p = elastic m odulus o f p restressing strands (G Pa)

E p ‘ = secant m odulus o f p restressin g strands (G P a) Epiate = elastic m odulus o f ja c k in g p late (G Pa) Erod = elastic m odulus o f rod (G Pa)

E s = elastic m odulus o f steel (G Pa)

e = eccentricity o f p restress (m m ); eccen tricity o f d esig n truck or a d esign lane load from

centre o f g ravity o f p attern o f g ird er (m m )

F = w o rk done by the applied load (kN m ); w id th d im ension factor

F m = am plification factor

f = prestress levels o f C FR P sheet w ith resp ect to the ultim ate capacity

f c = specified concrete strength (M Pa)

f Pi = initially ap p lied prestress in strands (M Pa)

f pe = effective prestress in strands (M P a)

f , = m odulus o f ru pture (M Pa)

f , = ultim ate strength o f rein fo rcem en t (M P a)

f y = yield strength o f reinforcem ent (M P a)

G = energy release rate

G f = fracture energy (kN m ); critical strain energy release rate Gepoxy = sh ea r m odulus and thickness o f adhesiv e (G Pa)

h = h eig h t o f rein fo rced or p re stressed con crete beam (m m ); thickness o f slab (m m )

I = dynam ic load allow ance

xxv Y ail J K im , P E ng., Ph.D T hesis

Trang 28

G eneral

I conc = m om en t o f inertia o f concrete section (m m 4) brack = m om en t o f inertia o f cracked section (m m 4) Ix.x = m om en t o f in ertia o f gross section (m m 4)

ki = co efficient for b o n d p ro perties o f rebar

k 2 = co efficient to account for strain gradient

L = span length o f specim en (m m ); live load effect Lbond = length o f C F R P -bonded area (m m )

L F j = load fractio n factor for zth girder/ = total b o n d ed length o f C FR P (m m ); adjusted d epth (m m ); gripping length o f anchor

p late (m m )

/ ’ = effective length o f C FR P sheet (m m )

Ipiate = length o f jac k in g p late (m m )

I rod = length o f rod (m m )

A f o.ooi = m om ent w hen the m axim um concrete com pressive strain reaches 0.001 (kN m ) Mappijed(x) = m om ent applied to m odel (kN m )

Mbeam-ijne = m ax im u m bending m om ent ob tain ed from a sim ple b eam analysis w ith a

single lane o f traffic (kN m )

M cr = cracking m om ent (kN m )

M o = m o m en t due to dead load (kN m )

^distributed = largest bending m om ent that a g ird er m ay experience (kN m )

M j„, - m om ent due to prestress (kN m )

M f= factored m om ent (kN m )

M g_avg = average bending m om en t p e r gird er (kN m )

xxvi Y ail J K im , P E ng., P h.D T hesis

Trang 29

M i = m o m en t due to live load (kN m )

M n = n om inal m o m en t (kN m )

M r = resisting m om en t (kN m )

M steei(x) = internal m om ent in steel p late (kN m )

M r = m axim um bend in g m om en t p e r d esig n lane (kN m )

M uit = ultim ate m om ent capacity o f the sectio n (kN m )

M with u = m o m en t w ith live loads (kN m )

M Wi(iout l l = m om ent w ithout live loads (kN m )

m c = rad ial m o m en t resistan ce co lu m n strip (kN m )

m u = ultim ate m om en t capacity o f slab (kN m )

mo = radial m om ent resistances in o u ter strip (kN m )

N = n u m b er o f girders

N l = n u m b er o f loaded lanes u n d er consideration; n u m b er o f girder

n = n u m b er o f bon d ed surfaces; n u m b er o f design lanes

P - total applied tensile force in an an ch o r system (kN ); applied load (kN )

P f r p - resu ltan t force o f C FR P (kN )

Psteel= resu ltan t force o f steel (kN)

P ( l ) = applied force at x = I (kN )

xx v ii Y ail J K im , P E ng., P h.D T hesis

Trang 30

G eneral

P ui, = ultim ate load o f reinforced or p re stressed concrete beam (kN )

p = p restress levels o f p restressin g strands w ith respect to the ultim ate cap acity (% )

R = fracture resistance; reaction on an exterio r beam in term s o f lanes (kN )

R 2 = co efficient o f d eterm ination

R F = rating factor

R l = m odificatio n factor for m ultiple loading

S = prestress effect; spacing o f beam s (m m ); cen tre-to-centre gird er spacing (m m )

s = spacing b etw een the rein fo rcem en t (m m )

s m = average crack spacing (m m )

U = strain energy stored in structure (kN m ) Uvieid = energy ab sorbed until yield load (kN m ) Unit= energy absorbed until u ltim ate load (kN m ) u(x,y) = horizontal d isplacem ent o f m odel (m m ) uo(x) = initial length o f the beam (m m )

Uconc(x) = defo rm ed length o f concrete (m m ) ufrp(x) = deform ed length o f the C FR P sheet (m m )

xxviii Y ail J K im , P E ng., P h.D T hesis

Trang 31

list (x) = defo rm ed length o f an ch o r p late (m m ) us,.o(x) = initial length o f an ch o r p late (m m ) Vfjex = flexural load capacity (kN )

Vu = ultim ate load capacity including flexure/punching in teraction (kN ) v(x,y) = v ertical d isplacem ent o f m odel (m m )

W = energy req u ired fo r crack p ro p a g atio n (kN m ); energy stored b y app lied force (kN m );

edge-to-edge w id th o f a brid g e (m m )

We = w idth o f a d esig n lane (m m )

w m = average crack w idth (m m ) Opiate= w id th o f ja c k in g p late (m m )

x = distance from the c u t-o ff p o in t o f the C FR P sheet to an arbitrary location (m m );

h orizontal d istance from the centre o f grav ity o f the pattern o f girders to each girder

(m m )

Xgxt = horizontal distance from the centre o f gravity o f the pattern o f girders to the exterio r

gird er (m m )

y = distance from centroid to the extrem e fibre o f concrete beam (m m )

Z = crack control p aram eter (N /m m )

z = shear span (m m )

a = coefficients for the equivalent concrete stress block; p unching shear angle o f slab (°);

nu m b er o f w heels

/? = coefficients for the equivalent concrete stress block; prop o rtio n ality factor depending

on the size-p aram eter

A sfrp = strain variatio n in C FR P (m m /m m )

xxix Y ail J K im , P E ng., Ph.D T hesis

Trang 32

G eneral

A max = m ax im u m d isplacem ent (m m )

AP = loss o f prestress (kN )

Ax = d istan ce b etw e en tw o arbitrary po in ts (m m )

S = displacem ent o f a system (m m ) Sf= disp lacem en t o f C FR P (m m )

dj = deflection o f ith gird er (m m )

Sj = deflection o f / h gird er (m m )

Ss — displacem ent o f steel p late (m m )

e = strain ob tain ed before the p eak stress (m m /m m )

e ’ = com b in ed strain (m m /m m )

sc = concrete strain at an arbitrary load level (m m /m m )

£ce = concrete strain at the level o f steel (m m /m m )

£C f = bottom concrete strain (m m /m m )

£cfe = concrete strain at the level o f C FR P (m m /m m )

£co = concrete strain at the specified concrete strength (m m /m m )

£Cu ~ ultim ate concrete strain (m m /m m )

£f= C F R P strain at an arbitrary load level (m m /m m )

£fe = C FR P strain induced by p restressin g (m m /m m )

£f-i„i = initial strain o f p restressed C FR P sheets (m m /m m )

£f, = ultim ate strain in C FR P (m m /m m )

ep = strain in p restressin g strand at arbitrary load level (m m /m m )

£pe = steel strain induced by p restressing (m m /m m )

£py = yield strain o f prestressing strand (m m /m m )

xxx Y ail J K im , P E ng., Ph.D T hesis

Trang 33

£totai(x) - strain variatio n in C FR P sheets (m m /m m )

eu = ultim ate strain o f rein fo rcem en t (m m /m m )

sy = yield strain o f rein fo rcem en t (m m /m m )

£0 - axial strain o f steel plate bey o n d bon d in g area (m m /m m )

Ei = size-p aram eter

£ j i = axial strain (m m /m m )

ij = m ultip lier to concrete strain to determ ine the m axim um concrete stress

He = ductility index based on the energy concept

£ = m u ltip lier indicating neutral axis o f section

p = rein fo rcem en t ratio

p ef = ratio b etw een reinfo rcem en t and its effective em bedm ent zone

G»»c= stress in concrete (M P a)

<jy = y ield strength o f steel (M Pa)

ai = concrete stress at top fibre o f b eam section (M Pa)

?ave(x) = average shear stress (M Pa) Tave-design - average ultim ate shear stress in tw o-w ay slab (M Pa)

<t> = diam eter o f strip (m m )

<I>f = resistance facto r o f C FR P

0 R n = n om inal strength o f section (kN m )

&s = resistan ce factor o f steel 9°o.ooi = curvature at M'o.ooi (1/m m ) (pui, = curvature at M „/,(l/m m )

xxxi Y ail J K im , P E ng., P h.D T hesis

Trang 34

C hapter 1: G eneral In tro d u ctio n

Chapter 1 G eneral Introduction

1.1 Introduction

M uch o f the civil in frastructure constructed d uring the 19 5 0 ’s and 1960’s is in need o f

reh ab ilitatio n due to deterioration, including increased service loads, corrosion, and

p hysical or environm ental dam age (K im et al 2006) V arious m ethods h ave been

p roposed and applied to inadequate structural m em bers to im prove th e ir p erform ance

R ecent technical surveys co nducted support the requirem ent for re h ab ilitatio n (R izkalla

and L abossiere 1999, A S C E 2003) T he introduction o f A dvanced C o m p o site M aterials

such as F ibre R einforced P olym ers (F R P ) has significantly im pacted the rehabilitation

industry (B alds et al 2002) E xternal strengthening m ethods u sin g F R P s have attained

popu larity b ecause o f th eir ease o f application; for instance, F R P sheets/plates are bon d ed

onto the ten sile side o f a target structure to com pensate for the deficient tensile

reinforcem ent In addition, the follow ing technical benefits are expected: high tensile

strength, in significant increase o f perm an en t dead loads, corrosion resistant

characteristics, and good fatigue resistan ce (M eier 1995, N eale 2000, T eng et al 2003)

C arbon F R P (C F R P ) generally displays su perior structural p erfo rm an ce to o th er types o f

FR Ps in external strengthening ap plications (M eier 1995) F urtherm ore, C F R P m ay be

p restressed to im prove its effectiveness P restressin g creates an active load-carrying

m echanism , in cluding im proved serviceability and durability, and requ ires an chorage that

can p o ten tially prev en t (or delay) prem atu re p e e lin g -o ff failure o f the C FR P sheets w hen

subjected to loads T o date, tensioning against the strengthened b eam its e lf is the m ost

w idely u sed m ethod to p restress C F R P sheets (Izum o et al 1997, W ight et al 2001, El-

H acha et al 2003, K im et al 2005)

1 Y ail J K im , P E ng., P h.D T hesis

Trang 35

T rian tafillo u et al (1992) conducted a p io n eerin g study on the application o f prestressed

C FR P sheets M eier (1995) reported a sim ple com parison o f a reinforced concrete beam

strengthened w ith p re stressed C FR P sheets to a beam w ith non -p restressed C F R P sheets,

as w ell as an u n stren g th en ed beam T he b eam strengthened w ith p re stressed C FR P sheets

exhibited h ig h er stiffness than o th er beam s, bu t show ed no increase o f the ultim ate load

com pared to the beam w ith n o n -p restressed C FR P sheets Izum o et al (1997) evaluated

the significance o f prestressed C F R P sheet applications and found that a rein fo rced

concrete b eam strengthened w ith p re stressed C FR P sheets show ed a 6.8 % in crease o f the

ultim ate load com p ared to a beam w ith n o n -p restressed C FR P sheets (12 % increase

com pared to the u n stren g th en e d beam ) W ight et al (2001) d escribed the effectiveness o f

prestressed C FR P applications including n u m erical m odels T he beam strengthened w ith

prestressed C FR P sheets show ed an increase o f up to 7 % in the ultim ate load com pared

to the beam w ith n o n -p restressed C F R P sheets E l-H ach a et al (2004) investigated the

beh av io u r o f p re stressed concrete beam s strengthened w ith prestressed C FR P sheets

u n d er ro o m and low tem p eratu res including analytical m odelling, and found that the

decrease in tem perature did not significantly contribute to the flexural b eh a v io u r o f the

beam s strengthened w ith prestressed C FR P sheets D espite these structural advantages,

there appears to be a dearth o f info rm atio n available on the research w ork related to the

application o f p re stressed C FR P sheets fo r strengthening concrete structures

1.2 The D efinition o f Problem s 1.2.1 The behaviour o f strengthened beam s with prestressed CFRP sheets

To enhance the effectiveness o f C F R P -strengthening, p restress m ay be directly applied to

C FR P sheets T he application w ith p o st-ten sio n ed C FR P sheets exhibits better structural

2 Y ail J K im , P E ng., Ph.D T hesis

Trang 36

C hapter 1: G eneral In tro d u ctio n

perfo rm an ce w ith respect to non -p restressed C FR P applications, in clu d in g significan t

increase o f load-carrying capacity u n d e r both live and sustained loads, im proved

serviceability, satisfactory fatigue resistance, and good perfo rm an ce in harsh

environm ental conditions (R izkalla and L abossiere 1999, K achlakev and M cC u rry 2000,

E l-H ach a et al 2004, H e ffem a n and E rki 2004, K im et al 2005)

T he advantages o f applications usin g p re stressed C F R P sheets w ere clearly show n above

in term s o f the increase o f load-carrying capacity and im proved serviceability;

n evertheless, m ore detailed inform ation on strengthened beam s w ith p re stressed C F R P

sheets is still req u ired to con sid er d u ctility issues (particularly consid erin g the b rittle

failure ch aracteristic o f the C FR P m aterial), d etailed investigations on local b eh aviour

including anchorage, cracking m odes including crack progression, the effect o f d ifferent

prestress levels in C FR P sheets, and the dev elo p m en t o f m ore accurate p redictive m odels

1.2.2 Anchorage for prestressing

A n chorage is req u ired to hold the C FR P sheets during a p restressing operation or during

service u n d e r various loading conditions M etallic anchors are com m o n ly used for

p re stressed C F R P sheet applications T he follow ing an ch o r system s h ave b een reported: a

box-type an ch o r (Izum o et al 1997), a ro u n d -b ar-ty p e (W ight et al 2001), a screw -bolt-

type (H o llaw ay and L eem ing 1999), and a p late-ty p e (E l-H acha et al 2003, K im et al

2005) E l-H ach a et al (2003) p articu larly co nducted an experim ental param etric study

regarding the shape o f anchors, and reco m m en d ed a plate-type anchor

3 Y ail J K im , P E ng., Ph.D T hesis

Trang 37

A ll o f the m en tio n ed anchors w ere m ade o f steel; thus, the anchors can be a source o f

problem s in site applications because the m etallic anchors m ay corrode and the

appearance o f the m o unted steel anchors m ay be u ndesirable w hen con sid erin g aesthetics

F urtherm ore, galvanic corrosion w ould be a concern for bonding C FR P to steel T his

p ro b lem could be red u ced by using stainless steel for the anchor or elim inated by placin g

a layer o f G F R P u n d er the C FR P H ow ever, this consideration is outside the scope o f the

current study T herefore, it m ay be desirable to rem ove the m etallic anchors, i f possible,

after adequate curing o f the strengthening system O nce the m etallic anchors are rem oved,

alternative an ch o r system s m ay be n ee d ed to re strain the prestress loss in C FR P sheets

From a practical aspect, the rem o v ed steel anchors can be used repeatedly on m ultiple

girders o f a bridge, for exam ple T he level o f sustained p restress in the C FR P sheets after

the rem oval o f m etallic anchors is one o f the critical concerns D etailed investigations on

the replacem ent o f the m etallic anchors are thus required and investigated in this thesis

1.2.3 Application to two-way slabs

The application o f C FR P sheets to rein fo rce d or prestressed concrete beam s is w ell

d ocum ented (M eier 1995, R izk alla and L abossiere 1999, N eale 2000, E l-H ach a et al

2001, B akis et al 2002, T eng et al 2003, L op ez and N anni 2006) T he application o f

C FR P sheets to tw o-w ay slabs, h o w ever, has been rarely investigated despite the com m on

use o f tw o-w ay slabs as structural elem ents in buildings E rki and H e ffem a n (1995)

conducted a study on the b eh a v io u r o f tw o w ay slabs strengthened w ith C F R P sheets and

reported that the load-carrying capacity o f C F R P -strengthened slabs increased by up to

240 % com pared to the u n stren g th en ed slab Several researchers conducted further

investigations on the b eh av io u r o f tw o -w ay slabs strengthened w ith C FR P sheets (H arajli

4 Y ail J K im , P E ng., Ph.D T hesis

Trang 38

C hapter 1: G eneral Intro d u ctio n

and S oudki 2003, M osallam and M o salam 2003, E bead and M a rzo u k 2004)

In v estigations into tw o-w ay slabs strengthened w ith prestressed C FR P sheets h ave been,

ho w ever, extrem ely lim ited (W ight et al 2003, L ongw orth et al 2004)

A lthough co m puter aided analysis is beco m in g m ore popular, pred ictiv e m odels o f tw o-

w ay slabs have rarely b een reported w h en com pared to beam o r one-w ay slab m odels

because o f th eir com p licated b eh a v io u r and tim e-consum ing m od ellin g efforts M odels

em ploying n o n lin ear solid elem ents and d iscrete reinfo rcem en t elem ents are especially

rare M o st o f the reported m odels for tw o-w ay slabs are based on sim plified shell

elem ents including layered shells (H orm an et al 2002, M arzouk et al 2003, M osallam

and M osalam 2003), w here i) detailed cracking analyses m ay not be p erfo rm ed in the

case o f having only in-plane G aussian quadratures, and ii) exact strain variatio n s (or

stress analysis) in the rein fo rcem en t m ay no t be investigated due to the sim p lified

sm eared stiffness F urtherm ore, the sm eared re inforcing schem e m ay con trib u te to stiffer

beh av io u r o f the m odel as show n in M arzo u k et al (2003) D espite these lim itations,

structural slabs are com m only m o d elled w ith shell elem ents b ecause o f m od ellin g

convenience A s com pared to the sim plified shell m odels, 3-D solid m odels m ay pro v id e

superior advantages: a detailed cracking investigation is available and the structural

com ponents (e.g., rein fo rcin g bars) can be represented w ith m inim al sim plifications

T herefore, a reliab le 3-D solid m odel w ith d iscrete reinforcem ent is d eveloped in this

thesis to p ro v id e a b etter u n d erstan d in g o f the b eh a v io u r o f tw o-w ay slabs strengthened

w ith C FR P sheets

5 Y ail J K im , P E ng., Ph.D T hesis

Trang 39

1.2.4 Conventional analysis and design

The strength-based th eo ry is co n v en tio n ally em ployed for the p re d ic tio n o f flexural

b ehaviour o f rein fo rced or p re stressed concrete beam s M ost o f the existing concrete

codes (C S A A 23.3-94 1995, A C I 318-02 2002) for design are corresp o n d in g ly based on

this theory A lthough the strength-based d esig n m ethod has b een com m only used for the

d esign o f re in fo rced concrete beam s, it does not p re d ic t detailed structural b eh a v io u r such

as fracture propagation, failure m echanism , and size effects T he introduction o f fracture

m echanics to the design o f re in fo rced or p re stressed concrete beam s m ay en hance the

effectiveness o f the design by consid erin g the factors m entioned above In spite o f the

relatively long history, m ost fracture m ech an ics applications still rem ain in the

investigations on localized p h en o m en a in cluding m icro-scale observations such as ten sio n

crack p ropagations (S hah et al 1995)

H illerborg (1990) prop o sed a un iq u e fracture m echanics approach to exam ining flexural

b ehaviour o f a reinforced concrete beam , but its validation against experim ental or any

other analytical results w as no t conducted T hus, it w as hard to evaluate that the p ro p o se d

m odel m ight enhance the analysis technique o ver the conventional strength-based theory,

as H illerborg (1990) stated A n assessm ent o f the proposed m odel is required

F urtherm ore, the ap p licatio n to strengthening re in fo rced or prestressed concrete beam s

using prestressed C F R P sheets m ay enlarge the existing analysis techniques In this thesis,

analytical m odels are developed, based on H ille rb o rg ’s fracture m echanics approach, and

experim ental and com putational valid atio n s are conducted to evaluate the developed

fracture m echanics m odel

6 Y ail J K im , P.E ng., P h.D T hesis

Trang 40

C hapter 1: G eneral In tro d u ctio n

1.2.5 Repair o f a damaged bridge superstructure

M o d ern bridges d eteriorate due to m any reasons m entio n ed in Sec 1.1., resu ltin g in

deficient flex u ral or shear strength in the bridges; therefore, u p g ra d in g m ay be required

T he C FR P rep air m ethods have been increasingly applied to sites in recen t years

(R izkalla and L abossiere 1999, Fallis et al 2004, L opez and N an n i 2006) D eterio rated

bridges are u su ally stren g th en ed b y bonding C FR P sheets on the tensile soffit o f

deteriorated girders to increase the insufficient load-carrying capacity D esp ite their

n um erous advantages addressed earlier, the lim it o f com m only used C F R P re p air m ethods

is found in its passiv e load-carrying m ech an ism including insig n ifican t im p ro v em en t o f

serviceability A n innovative strengthening m ethod u sin g prestressed C FR P sheets is thus

required for the case that an active load-carrying m echanism is n ecessary to im prove no t

only the strength o f the brid g e but also its serviceability

M any research results have been reported to date on the reh ab ilitatio n o f deteriorated

bridges as discu ssed above, b u t m ost o f th em have b een m ainly focused on a strength

aspect T herefore, m ore detailed investigations regarding changes o f d eflection, stress in

the reinforcem ent, load d istributions u n d er various loading conditions on a bridge

superstructure are req u ired to adequately evaluate the effectiveness o f a re p a ir m ethod

using prestressed C F R P sheets F urtherm ore, the b eh av io u r o f a bridge su perstructure

before and after dam age as w ell as after rep air needs to be investigated to im prove the

u n d erstanding o f the innovative re p air m ethod

7 Y ail J K im , P E ng., P h.D T hesis

Ngày đăng: 12/05/2017, 22:39

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm