Library and Archives CanadaBibliotheque et Archives Canada Published Heritage Branch 395 W ellington Street Ottawa ON K1A 0N4 Canada Your file Votre reference ISBN: 978-0-494-18522-3 Our
Trang 1with Prestressed CFRP Sheets:
Laboratory and Numerical Investigations
to Field Application
by
Y ail (Jim m y) K im
A thesis subm itted to the D epartm ent o f C ivil E ngineering
in co nform ity w ith th e requirem ents for the degree o f
Trang 2Library and Archives Canada
Bibliotheque et Archives Canada
Published Heritage Branch
395 W ellington Street Ottawa ON K1A 0N4 Canada
Your file Votre reference ISBN: 978-0-494-18522-3 Our file Notre reference ISBN: 978-0-494-18522-3
Direction du Patrimoine de I'edition
395, rue W ellington Ottawa ON K1A 0N4 Canada
NOTICE:
The author has granted a non
exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by
telecommunication or on the Internet, loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform, paper, electronic and/or any other formats.
AVIS:
L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par I'lnternet, preter, distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres, sur support microforme, papier, electronique et/ou autres formats.
The author retains copyright ownership and moral rights in this thesis Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de celle-ci ne doivent etre imprimes ou autrement reproduits sans son autorisation.
In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.
While these forms may be included
in the document page count, their removal does not represent any loss of content from the thesis.
Conformement a la loi canadienne sur la protection de la vie privee, quelques formulaires secondaires ont ete enleves de cette these.
Bien que ces formulaires aient inclus dans la pagination,
il n'y aura aucun contenu manquant.
Trang 3It a in ’t o ver till it ’s o ver
i Yail J K im , P E ng., P h.D T hesis
Trang 4G eneral
Abstract
M any o f the structures in C anada w ere constructed during the 1950’s and 19 6 0 ’s and they
are in need o f reh ab ilitatio n due to deterioration T he application o f carbon fibre
reinforced p o ly m er (C F R P ) sheets fo r strengthening dam aged structures is a v iable and
prom ising solution C FR P is an em erging advanced com posite m aterial w ith v ery high
tensile strength (i.e., 10 tim es stro n g er th an that o f steel) The strengthening effec t w hen
using C FR P sheets can b e significantly im p ro v ed b y applying p restress to the sheets T his
thesis p resents the ap p licatio n o f p re stressed C FR P sheets for concrete structures and
consists o f four m ain categories as follow s:
• C om putational sim ulation:
A n o n lin ear 3-D finite elem ent analysis (F E A ) is conducted to in v estig ate the b eh av io u r
o f p re stressed concrete beam s stren g th en ed w ith p restressed C F R P sheets, including
experim ental validation T he flexural beh av io u r o f the b eam s, befo re and after
strengthening, is pred icted and com p ared against experim ental results in cluding the
increase o f lo ad-carrying capacity, failure m ode, ductility, and cracking behaviour The
m od ellin g tech n iq u e is extended to a tw o -w ay flat slab strengthened w ith p re stressed
C FR P sheets, including investigations on the load-carrying capacity, n u m erical crack
grow th, and slab-colum n conn ectio n behaviour
• E xperim ental investigation:
T en reinforced concrete beam s stren g th en ed w ith prestressed C FR P sheets are tested as
part o f the d evelopm ent o f a n o n -m etallic anchor system N o n -m etallic anchors are
ii Y ail J K im , P E ng., P h.D T hesis
Trang 5n ecessary to avoid corrosion dam age T he load-carrying capacity o f the stren g th en ed
beam s u sin g the innovative m eth o d is up to 3 tim es greater than the u n stren g th en e d beam
V arious failure m odes are o b served d epending on the type o f the applied an c h o r system
The develo p ed n o n -m etallic an ch o r system overcom es brittle and abru p t failures that are
com m only o b serv ed in C F R P -stren g th en ed structures
• T heoretical investigation:
C losed-form solutions fo r the b eh a v io u r o f strengthened concrete beam s are derived, and
they exhibited g o o d agreem ent w ith the experim ental results P ractical n o n lin ear fracture
m echanics m odels, rep resen tin g the b eh a v io u r o f the anchor system that is req u ired to
prestress C FR P sheets, are also developed
• S ite application:
The technology studied in the labo rato ry is applied to a site application T he M ain Street
B ridge-overpass No 4, W innipeg, M B , has been significantly dam aged by frequent
collisions o f h ea v y trucks T he innovative strengthening m ethod u sin g prestressed C FR P
sheets is su ccessfully applied T he lo ad-carrying capacity o f the dam aged brid g e is
recovered w ith resp ect to the un d am ag ed state N o tice that this rep air p ro ject is the first
N orth A m erican site ap p licatio n u sin g prestressed C FR P sheets
iii Y ail J K im , P E ng., P h.D T hesis
Trang 6G eneral
Co-authorship
T his thesis is p art o f the P h.D w o rk co nducted b y the au th o r w ho p erfo rm ed the
experim ental and analytical investigations, exam ined the research results, and w ro te the
entire m anuscripts u n d er the supervision o f Dr M ark F G reen an d Dr R G ord o n W ight
T he follow ing m an u scrip ts h ave b een p rep ared w ith contribution o f the co-authors
C oncrete B eam s S trengthened
w ith P restressed C FR P Sheets
A S C E ,
J Eng
M ech.
S ubm itted(M E /2006/024384)
5
F lexure o f T w o-w ay Slabs
S trengthened w ith P restressed
or N o n -p restressed C FR P Sheets
K im , Y.J.;
L ongw orth, J.M ; W ight,
6
T w o -w ay S lab-C olum n
C onnections: R etro fit w ith
P restressed or N on-p restressed
C FR P Sheets
K im , Y.J.;
L ongw orth, J.M ; W ight,
7
F lexural B eh av io u r o f
R ein fo rced or P restressed
C oncrete B eam s S trengthened
iv Y ail J K im , P E ng., P h.D T hesis
Trang 7w ith P restressed C FR P Sheets:
A c cep ted(B E /2006/023236)
9
F lexural B eh av io u r o f an
Im p ac t-d am ag e d P restressed
C oncrete G ird er B ridge
S trengthened w ith P restressed
C FR P Sheets
K im , Y.J.;
G reen, M F ;
and W ight, R.G
N R C ,
Can J
Civ Eng.
S ubm itted(06-184)
3 ld Int C onf on C onstruction
M aterials (C onM at05),
V ancouver, B C , A ug 2005
4
C lo sed -fo rm S olutions for the
T ra n sfer o f P restressed C FR P Sheets
Kim , Y.J.;
W ight, R G , and G reen,
3ld Int C onf on C onstruction
M aterials (C onM at05),
v Y ail J K im , P E ng., P h.D T hesis
Trang 8P restressed C oncrete G irder
B ridge: C lause 5.7 L ive L oad
K im , Y.J.;
G reen, M F ;
and W ight, R.G
34th C anadian Society for
C ivil E n g in eerin g ( C SCE)
A nnual C onf., C algary, A B ,
M ay 2006
vi Y ail J K im , P E ng., P h.D T hesis
Trang 9Acknowledgem ents Thank-you to
Issac N ew ton, C hristian O tto M ohr, D u P erro n R ene D escartes, L eo n h ard E uler, T hom as
Y oung, S im on-D enis Poisson, R o b ert H ooke, G alileo G alilei, L eonardo da V inci,
M ich aelan g elo B uonarroti
Dr M u rty K S M adugula, Dr S ungchul L ee, D r C hangsik M in, D r T Iv an C am pbell,
Dr C olin M acD ougall, Dr A m ir F am , Dr L uke B isby, Dr L au ren t B izindavyi, Dr
M arie-A n n e E rki, Dr D ave T urcke, Dr K e v in H all, Dr K eith P ilkey, M r G arth J Fallis,
M s M ax in e W ilson, M s F io n a F roats, M s C athy W agar, M r Jam ie E scoba, M r D ave
T ryon, M r Paul T hrasher, M s D arlene G affney, M s D anielle G rondin, M r L eo M anes,
M r O scar R ielo, M r D e x te r G askin
Intelligent Sensing for Innovative Structures N etw o rk s (ISIS C anada)
N atural Sciences and E ngineering R esearch C ouncil o f C anada (N S E R C )
Q ueen's U niversity
T he R oyal M ilitary C ollege o f C anada
V ector C onstruction G roup, W innipeg, M an ito b a
G raduate students at Q ueen's U niv ersity
F am ilies in S eoul, K orea
vii Y ail J K im , P E ng., P h.D T hesis
Trang 10G eneral
Table o f Contents
1.2.1 T h e B e h a v io u r o f S tre n g th e n e d B eam s w ith P re s tre s se d C F R P
1.2.5 R ep air o f a D am ag ed B ridge S uperstructure 7
P art A Effectiveness o f Strengthened Structures with Prestressed Carbon F ibre
R einforced P olym er (CFRP) Sheets: Laboratory-scale Investigations
2.7.5 C ontribution o f T en sio n in C oncrete 31
viii Y ail J K im , P E ng., P h.D T hesis
Trang 11Chapter 3 M ech an ical A n ch o rag e fo r A p p licatio n o f P restressed C F R P Sheets 48
3.4.2 M odel P ro p o sed b y K im et al (2004) 52
3.4.3.1 L in ear E lastic F racture M echanics (L E F M ) A pproach 533.4.3.2 N o n linea r F racture M echanics (N L FM ) A pp ro ach 553.4.3.3 V alid atio n o f the P roposed M odels 57
P restressed C FR P Sheets: N o n -m etallic A n c h o r S ystem 88
Trang 12G eneral
4.6.1.2 C orrelatio n w ith the L aboratory 106
4.7.1.1 B eam s w ith N on-anchored U -w raps 1084.7.1.2 B eam s w ith M echanically A nchored U -w rap s 1094.7.1.3 B eam s w ith C F R P -anchored U -w raps 1114.7.2 P e e lin g -o ff C rack P ro p ag atio n 111
4.7.3.1 B eam s w ith N on -an ch o red U -w raps 1124.7.3.2 B eam s w ith A n ch o red U -w raps 1134.7.3.3 B eh av io u r o f Side Sheets D epending on A n ch o r-ty p e 1144.7.4 Stress R ed istrib u tio n in the R einfo rcem en t 114
4.7.4.1 T he C oncept (K im et al 2005b) 114
4.7.5 T ransverse D e fo rm atio n in the A nchored R eg io n 1174.7.6 S train P rofiles and F ailure o f U -w raps 117
5.6.1 F lexural B eh av io u r and the E ffect o f S trengthening 144
5.6.4 C rack M outh O p ening D isp lacem en t 151
Trang 136.4.4 P restressin g O peration 172
6.7.4 C o rrelatio n o f the P redictio n s w ith the E x p erim en t 184
7.3.2 P ractical A pplicatio n s o f H illerborg M odel 202
7.3.2.1 R ein fo rced C oncrete B eam (K im et al 2006) 203
7.3.2.3 P restressed C oncrete B eam S trengthened w ith P restressed
7.6 N o n lin ear Iterative M odel: S trength-based T heory 212
7.7.1 E ffect o f the S ize-d ep en d en t P aram eter 2137.7.2 S tress-strain R elatio n o f C oncrete in B ending 214
P art B Innovative Strengthening Application to Site
8.3 D esign and R ep air o f the D am ag ed B ridge 231
8.3.1 D e scrip tio n o f the D am ag ed B ridge 231
xi Y ail J K im , P E ng., P h.D T hesis
Trang 14G eneral
8.4 F easib ility o f the R ep air D esig n (K im et al 2004) 235
8.7 A ssessm en t on E ffectiveness o f the R ep air 249
9.3 R eview o f E xisting F E A for F u ll-scale B ridge M odelling 2729.4 B ackground o f R esearch (K im et al 2006a) 2749.5 C alibration o f the F E A m odel (K im et al 2006b) 275
9.6 F ull-scale M odelling o f the M ain S treet B ridge (K im et al 2006b) 2779.7 T he C oncept o f the L ive L oad D istrib u tio n F acto r 277
9.7.1 T he B en d in g M o m e n t-b a se d A pproach 277
9.8 M eth o d o lo g y to C alculate the Live L oad D istribution 278
9.11.1 C om parison o f Live L oad D istribution F actors 285
9.11.1.1 C om parison to A A S H T O L R FD 2869.11.1.2 C om parison o f the U ndam aged, D am aged, and R epaired
xii Y ail J K im , P E ng., Ph.D T hesis
Trang 159.11.2 D istrib u tio n o f L ive L oad M om ent 287
9.11.2.1 C o m p ariso n to A A S H T O L R FD and C H B D C 287
9 1 1 2 2 C o m p a ris o n a m o n g th e U n d a m a g e d , D a m a g e d , an d
A ppendix B In n o v ativ e F lexural S treng th en in g for R C B eam s 324
A ppendix C R ep air o f B ridge G ird er D am aged by Im pact L oads 337
xiii Y ail J K im , P E ng., Ph.D T hesis
Trang 16G eneral
List o f Tables
T able 1.1 S um m ary o f specim ens investigated in the thesis 13
T able 2.2 D escrip tio n o f the investig ated beam s 38
T able 2.3 S um m ary o f significant values in flexure 39
T able 3.2 S um m ary o f laboratory results (im m ediate loss) 78
T able 3.3 M easu red short-term loss (up to 56 days) o f applied p restress 79
T able 5.2 S um m ary o f flexural b eh a v io u r o f the slabs 158
T able 5.3 S um m ary o f energy absorption and ductility index {jig) 159
T able 6.4 S um m ary o f p unching shear b eh a v io u r o f each slab 191
T able 8.1 D esig n p roperties o f the M ain S treet B ridge ex terio r g ird er 256
T able 8.2 S um m ary o f the m om ents ap p lied to the external g ird er u n d er the extrem e
xiv Y ail J K im , P E ng., P h.D T hesis
Trang 17loading based on A A S H T O L R F D at critical section 256
T able 8.3 S u m m a ry o f a p p lie d m o m en ts o b tain ed from th e F E A u n d e r th e ex trem e
T able 8.4 F ailure loads and m odes o f the specim ens (K im et al 2004) 257
T able 8.5 C om parison o f net deflectio n o f the ex terio r girder at critical section u n d er the
Table 8.6 T he operating rating factors at critical section o f the external gird er u n d er the
T able 9.1 D esig n p ro perties for calculating live load d istribution (K im et al 2006a) 295
T able 9.2 S um m ary o f live load effects based on C H B D C (K im et al 2006a) 295
T able 9.3 C om parison o f live load distribution factors (undam aged state only) 295
T able 9.4 C o m parison o f live load distribution factors in the M ain S treet B ridge 296
T able 9.5 T he load com binations at critical section in the u n dam aged state 296
T able 9.6 S um m ary o f the load com b in atio n s at critical section in the dam aged state 297
Table 9.7 S um m ary o f the load com binations at critical section in the repaired state 298
Table A l M aterial p ro perties o f Wabo® M B race C F 160 322
T able A 2 M aterial pro p erties o f Wabo® M B race C F 130 322
T able A 3 M aterial p ro perties o f Wabo® M B race S aturant 323
T able C l T he m ultiple presen ce factor (A A S H T O L R F D Cl 3.6.1.1.2) 353
Table C.2 S um m ary o f L ive load D istrib u tio n F actors fo r the ex terio r gird er 353
Table C 3 T he m ultiple p resen ce factor (C H B D C T able 3.8.4.2) 353
Table C 4 S um m ary o f L ive load effects b ase d on C H B D C 353
T able C.5 S um m ary o f the F E A in the u n d am ag ed state 354
x v Y ail J K im , P E ng., P h.D T hesis
Trang 18G eneral
T able C.6 S um m ary o f the F E A in the dam aged state 355
T able C l S um m ary o f the F E A in the repaired state 356
T able C.8 T he load com binations at critical section in the u n d am aged state 357
T able C.9 S um m ary o f the load com binations at critical section in the d am aged state 358
T able C 10 S um m ary o f the load com binations at critical section in the rep aired state 359
T able D 3 SO L ID 45 item and sequence n u m bers for the E T A B L E and E S O L 374
T able D 8 SOL1D65 item and sequence n u m bers fo r the E T A B L E and E S O L 384
T able D l 1 S H ELL63 item and sequence n um bers for the E T A B L E and E S O L 395
T able D 13 L IN K 8 item and sequence n u m bers fo r the E T A B L E and E S O L 401
xvi Y ail J K im , P E ng., P h.D T hesis
Trang 19List o f Figures
Fig 2.6 C om parison o f typical crack patterns b etw e en the laboratory an d the F E A 45
Fig 2.9 C ontribution o f tension in concrete after cracking 47
Fig 3.2 L oad-d isp lacem en t resp o n se o f the ten sio n an ch o r 80
Fig 3.4 T ypical com parison b etw een the laboratory and the theory (Eqs 1 and 2) 81
Fig 3.5 P aram etric study on the p late an c h o r system 82
Fig 3.7 S h ort-term prestress losses in the C FR P sheet 83
Fig 3.8 S train d istributions on the an ch o r plates (J-3) 84
Fig 3.10 T ypical com parison o f the p restress in the C FR P sheet 86
Fig 3.11 C om parison o f the theo retical m odel vs laboratory 86
Fig 3.13 C om parison b etw een the experim ental and F E A strains 87
xvii Y ail J K im , P E ng., Ph.D T hesis
Trang 20G en eral
Fig 4.4 S hear stress co ncentration n ea r the c u t-o ff p o in t o f C FR P sheets 127
Fig 4.5 S train v ariations along the b eam d uring p restressing C FR P sheets (J-3) 127
Fig 4.6 T ypical prestress loss in the C FR P sheets afte r anchor-set (J-5) 128
Fig 4.8 R em oval o f steel an ch o r (K im et al 2005a) 129
Fig 4.9 T ypical variations o f prestress before and after the cut (J-3) 129
Fig 4.11 T ypical com p ariso n b etw e en the th eo re tic al m odel and the lab o rato ry afte r
rem oval o f the steel anchors (K im et al 2005a) 130
Fig 4.16 L o ad -strain resp o n se in re b ar (stren g th en ed vs u n stren g th en e d ) (K im et al
Fig 4.17 L oad-strain response o f tested beam s at m id -sp an 135
Fig 4.19 S train pro file w ith po ssib le failure m ode o f U -w raps 136
xviii Y ail J K im , P E ng., P h.D T hesis
Trang 21Fig 5.2 C onstructed F E A slab m odel (cut-aw ay v iew to show the rein fo rcem en t) 160
Fig 5.3 L o ad -d eflectio n resp o n se o f each slab 161
Fig 5.5 T ypical cracking pattern s and failure m odes o f the tested slabs 163
Fig 5.7 T ypical n um erical crack p ro p a g atio n o f a slab w ith prestressed C FR P s 164
Fig 6.1 T ypical experim ental set-up and instru m en tatio n 192
Fig 6.3 T im e vs prestress v aria tio n in C F R P 193
Fig 6.6 S train p ro fd es in re b ar along the loading span 195
Fig 6.8 F orm ation and inclination o f p u n ch in g shear cracks 196
Fig 6.9 C om parison o f co m putational crack p attern s 197
Fig 6.10 S hear stress pro file along the loading span 198
Fig 6.11 C om parison o f the pred ictio n s w ith the laboratory 198
Fig 7.1 T he concept o f p ro p o sed fracture m echanics m odel by H illerborg (1990) and
xix Y ail J K im , P E ng., P h.D T hesis
Trang 22G eneral
Fig 7.4 B rie f flow -chart o f the n o n lin ear iterative m odel 223
Fig 7.5 E ffect o f the size-dependent p aram eter on load-strain re sp o n se 224
Fig 7.6 S tress-strain response com p ariso n o f concrete in bending to u n iax ial loading 225
Fig 7.7 C om prehensive com parison o f load-strain response 226
Fig 7.8 C om prehensive com parison o f m o m ent-curvature response 227
Fig 8.1 S chem atic o f the M ain S treet B ridge (N o.4 overpass) 258
Fig 8.2 C ross-sectional v iew o f the dam aged gird er (F allis et al 2004) 258
Fig 8.4 D etailed anchor system fo r p restressin g C F R P sheets 259
Fig 8.5 T ypical ten sio n test specim en (K im et al 2004) 260
Fig 8.6 T ypical failure o f the specim ens (K im et al 2004) 261
Fig 8.7 T ypical strain v ariations on the C FR P sheet ( A - l) (K im et al 2004) 262
Fig 8.8 T ypical load-strain curves at m id-span ( A - l) (K im et al 2004) 262
Fig 8.9 D ev elo p m en t o f T heoretical M o d els (K im et al 2004) 263
Fig 8.10 C onstructed finite elem ent analysis m odel for the anchor test 263
Fig 8.11 C o m parison o f the ten sio n test results (K im et al 2004) 264
Fig 8.14 N et increase o f deflection u n d e r the extrem e loading 268
Fig 8.15 N et increase o f strain in steel strands u n d er the extrem e loading 269
Fig 9.1 V arious F E A m od ellin g techniques (K im et al 2006b) 299
Fig 9.2 S chem atic o f the M ain S treet B ridge (K im et al 2006b) 299
xx Y ail J K im , P E ng., P h.D T hesis
Trang 23Fig 9.3 S chem atic o f the internal reinfo rcem en t 300
Fig 9.5 S im ulated double T -b eam bridge for calibration o f the F E A technique 302
Fig 9.6 C alibration o f the F E A w ith the experim ental data (K im et al 2006b) 303
Fig 9.7 C onstructed full-scale F E A m odel o f the M ain Street B ridge 303
Fig 9.8 T he effect o f loading span on live load distributions on the exterio r and interio r
Fig 9.9 T he effect o f daily traffic v olum e o n live load distributions on the exterio r and
Fig 9.10 L o ngitudinal d eflection along the exterio r girder 305
Fig 9.11 T ransverse deflection across the critical section 306
Fig 9.12 N et deflectio n increase o f each loading case across the critical section 307
Fig 9.13 D eflectio n co n to u r on the brid g e u n d er various loadings (K im et al 2006a) 308
Fig 9.14 C om prehensive com p ariso n o f the dam aged exterior gird er u n d e r the extrem e
Fig 9.15 C om parison o f strains in the p restressin g strands located at 153 m m from the
Fig 9.16 N et strain increase along the exterio r gird er 310
Fig 9.17 L ive load distribution across the bridge at critical section 311
Fig 9.18 C om parison o f the live load d istrib u tio n am ong the undam aged, dam aged, and
Fig 9.19 C om parison o f the live load distribution am ong the undam aged, dam aged, and
xxi Y ail J K im , P E ng., P h.D T hesis
Trang 24G eneral
Fig B 4 S train v ariations on the C FR P sheets during prestressin g 328
Fig B 5 S train v ariations on the C FR P sheets during beam testing 329
Fig B 6 S train variations before and after cutting the prestressed C F R P sheets 331
Fig B 9 T he finite elem ent analysis for the end-cap an ch o r 336
Fig C 4 L ive loads p er lane to induce the m axim um m om ents in the g ird er 362
Fig C 5 L oading com binations for live load d istrib u tio n factor 363
Fig C.6 T he m axim um m om ent based on C H B D C (2000) 364
Fig D L C onstitutive beh av io u r o f m aterial m o d ellin g 365
xxii Y ail J K im , P E ng., P h.D T hesis
Trang 25Fig D 9 L IN K 8 3-D sp ar output 399
Fig D 10 3-D F ailure surface in prin cip al stress space 406
Fig D 12 F ailu re surface in prin cip al stress space 411
xxiii Y ail J K im , P E ng., P h.D T hesis
Trang 26A s = cross-sectio n al areas o f steel p late (m m ); area o f tension rein fo rcin g steel (m m )
As = area o f com p ressio n rein fo rcin g steel (m m 2)
A rocj = cross-sectio n al area o f ro d (m m 2)
a = infinitesim al initial flaw (m m ); partial lengths o f the p late (m m ); ind icato r for critical
p erim eter
b = w id th o f reinforced or p restressed concrete beam (m m ); total bon d ed w id th o f C FR P
(m m ); the p artia l lengths o f the p late (m m ); indicator for critical p erim eter
bbond ~ w idth o f C F R P -bonded area (m m )
bo = length o f colum n w idth plus effective depth o f slab (m m )
C = co m pliance o f a system (m 2/N ); resu ltan t com p ressio n force (kN )
C f= correctio n factor
C; = constant o f general solution
c = clear concrete cov er (m m ); d istance from the extrem e com pression fibre to the neutral
axis (m m ); n eutral axis o f rein fo rced or p re stressed concrete beam (m m ); in d icato r for
critical p erim eter
C 2 = colum n w id th (m m )
D = un facto red dead load effect
d = effective depth o f the tension rein fo rcem en t (m m )
db = re b ar d iam eter (m m )
xxiv Y ail J K im , P E ng., P h.D T hesis
Trang 27E f= elastic m odulus o f C FR P (G Pa) (El)transformed- transform ed flexural rig id ity (N m 2)
E p = elastic m odulus o f p restressing strands (G Pa)
E p ‘ = secant m odulus o f p restressin g strands (G P a) Epiate = elastic m odulus o f ja c k in g p late (G Pa) Erod = elastic m odulus o f rod (G Pa)
E s = elastic m odulus o f steel (G Pa)
e = eccentricity o f p restress (m m ); eccen tricity o f d esig n truck or a d esign lane load from
centre o f g ravity o f p attern o f g ird er (m m )
F = w o rk done by the applied load (kN m ); w id th d im ension factor
F m = am plification factor
f = prestress levels o f C FR P sheet w ith resp ect to the ultim ate capacity
f c = specified concrete strength (M Pa)
f Pi = initially ap p lied prestress in strands (M Pa)
f pe = effective prestress in strands (M P a)
f , = m odulus o f ru pture (M Pa)
f , = ultim ate strength o f rein fo rcem en t (M P a)
f y = yield strength o f reinforcem ent (M P a)
G = energy release rate
G f = fracture energy (kN m ); critical strain energy release rate Gepoxy = sh ea r m odulus and thickness o f adhesiv e (G Pa)
h = h eig h t o f rein fo rced or p re stressed con crete beam (m m ); thickness o f slab (m m )
I = dynam ic load allow ance
xxv Y ail J K im , P E ng., Ph.D T hesis
Trang 28G eneral
I conc = m om en t o f inertia o f concrete section (m m 4) brack = m om en t o f inertia o f cracked section (m m 4) Ix.x = m om en t o f in ertia o f gross section (m m 4)
ki = co efficient for b o n d p ro perties o f rebar
k 2 = co efficient to account for strain gradient
L = span length o f specim en (m m ); live load effect Lbond = length o f C F R P -bonded area (m m )
L F j = load fractio n factor for zth girder/ = total b o n d ed length o f C FR P (m m ); adjusted d epth (m m ); gripping length o f anchor
p late (m m )
/ ’ = effective length o f C FR P sheet (m m )
Ipiate = length o f jac k in g p late (m m )
I rod = length o f rod (m m )
A f o.ooi = m om ent w hen the m axim um concrete com pressive strain reaches 0.001 (kN m ) Mappijed(x) = m om ent applied to m odel (kN m )
Mbeam-ijne = m ax im u m bending m om ent ob tain ed from a sim ple b eam analysis w ith a
single lane o f traffic (kN m )
M cr = cracking m om ent (kN m )
M o = m o m en t due to dead load (kN m )
^distributed = largest bending m om ent that a g ird er m ay experience (kN m )
M j„, - m om ent due to prestress (kN m )
M f= factored m om ent (kN m )
M g_avg = average bending m om en t p e r gird er (kN m )
xxvi Y ail J K im , P E ng., P h.D T hesis
Trang 29M i = m o m en t due to live load (kN m )
M n = n om inal m o m en t (kN m )
M r = resisting m om en t (kN m )
M steei(x) = internal m om ent in steel p late (kN m )
M r = m axim um bend in g m om en t p e r d esig n lane (kN m )
M uit = ultim ate m om ent capacity o f the sectio n (kN m )
M with u = m o m en t w ith live loads (kN m )
M Wi(iout l l = m om ent w ithout live loads (kN m )
m c = rad ial m o m en t resistan ce co lu m n strip (kN m )
m u = ultim ate m om en t capacity o f slab (kN m )
mo = radial m om ent resistances in o u ter strip (kN m )
N = n u m b er o f girders
N l = n u m b er o f loaded lanes u n d er consideration; n u m b er o f girder
n = n u m b er o f bon d ed surfaces; n u m b er o f design lanes
P - total applied tensile force in an an ch o r system (kN ); applied load (kN )
P f r p - resu ltan t force o f C FR P (kN )
Psteel= resu ltan t force o f steel (kN)
P ( l ) = applied force at x = I (kN )
xx v ii Y ail J K im , P E ng., P h.D T hesis
Trang 30G eneral
P ui, = ultim ate load o f reinforced or p re stressed concrete beam (kN )
p = p restress levels o f p restressin g strands w ith respect to the ultim ate cap acity (% )
R = fracture resistance; reaction on an exterio r beam in term s o f lanes (kN )
R 2 = co efficient o f d eterm ination
R F = rating factor
R l = m odificatio n factor for m ultiple loading
S = prestress effect; spacing o f beam s (m m ); cen tre-to-centre gird er spacing (m m )
s = spacing b etw een the rein fo rcem en t (m m )
s m = average crack spacing (m m )
U = strain energy stored in structure (kN m ) Uvieid = energy ab sorbed until yield load (kN m ) Unit= energy absorbed until u ltim ate load (kN m ) u(x,y) = horizontal d isplacem ent o f m odel (m m ) uo(x) = initial length o f the beam (m m )
Uconc(x) = defo rm ed length o f concrete (m m ) ufrp(x) = deform ed length o f the C FR P sheet (m m )
xxviii Y ail J K im , P E ng., P h.D T hesis
Trang 31list (x) = defo rm ed length o f an ch o r p late (m m ) us,.o(x) = initial length o f an ch o r p late (m m ) Vfjex = flexural load capacity (kN )
Vu = ultim ate load capacity including flexure/punching in teraction (kN ) v(x,y) = v ertical d isplacem ent o f m odel (m m )
W = energy req u ired fo r crack p ro p a g atio n (kN m ); energy stored b y app lied force (kN m );
edge-to-edge w id th o f a brid g e (m m )
We = w idth o f a d esig n lane (m m )
w m = average crack w idth (m m ) Opiate= w id th o f ja c k in g p late (m m )
x = distance from the c u t-o ff p o in t o f the C FR P sheet to an arbitrary location (m m );
h orizontal d istance from the centre o f grav ity o f the pattern o f girders to each girder
(m m )
Xgxt = horizontal distance from the centre o f gravity o f the pattern o f girders to the exterio r
gird er (m m )
y = distance from centroid to the extrem e fibre o f concrete beam (m m )
Z = crack control p aram eter (N /m m )
z = shear span (m m )
a = coefficients for the equivalent concrete stress block; p unching shear angle o f slab (°);
nu m b er o f w heels
/? = coefficients for the equivalent concrete stress block; prop o rtio n ality factor depending
on the size-p aram eter
A sfrp = strain variatio n in C FR P (m m /m m )
xxix Y ail J K im , P E ng., Ph.D T hesis
Trang 32G eneral
A max = m ax im u m d isplacem ent (m m )
AP = loss o f prestress (kN )
Ax = d istan ce b etw e en tw o arbitrary po in ts (m m )
S = displacem ent o f a system (m m ) Sf= disp lacem en t o f C FR P (m m )
dj = deflection o f ith gird er (m m )
Sj = deflection o f / h gird er (m m )
Ss — displacem ent o f steel p late (m m )
e = strain ob tain ed before the p eak stress (m m /m m )
e ’ = com b in ed strain (m m /m m )
sc = concrete strain at an arbitrary load level (m m /m m )
£ce = concrete strain at the level o f steel (m m /m m )
£C f = bottom concrete strain (m m /m m )
£cfe = concrete strain at the level o f C FR P (m m /m m )
£co = concrete strain at the specified concrete strength (m m /m m )
£Cu ~ ultim ate concrete strain (m m /m m )
£f= C F R P strain at an arbitrary load level (m m /m m )
£fe = C FR P strain induced by p restressin g (m m /m m )
£f-i„i = initial strain o f p restressed C FR P sheets (m m /m m )
£f, = ultim ate strain in C FR P (m m /m m )
ep = strain in p restressin g strand at arbitrary load level (m m /m m )
£pe = steel strain induced by p restressing (m m /m m )
£py = yield strain o f prestressing strand (m m /m m )
xxx Y ail J K im , P E ng., Ph.D T hesis
Trang 33£totai(x) - strain variatio n in C FR P sheets (m m /m m )
eu = ultim ate strain o f rein fo rcem en t (m m /m m )
sy = yield strain o f rein fo rcem en t (m m /m m )
£0 - axial strain o f steel plate bey o n d bon d in g area (m m /m m )
Ei = size-p aram eter
£ j i = axial strain (m m /m m )
ij = m ultip lier to concrete strain to determ ine the m axim um concrete stress
He = ductility index based on the energy concept
£ = m u ltip lier indicating neutral axis o f section
p = rein fo rcem en t ratio
p ef = ratio b etw een reinfo rcem en t and its effective em bedm ent zone
G»»c= stress in concrete (M P a)
<jy = y ield strength o f steel (M Pa)
ai = concrete stress at top fibre o f b eam section (M Pa)
?ave(x) = average shear stress (M Pa) Tave-design - average ultim ate shear stress in tw o-w ay slab (M Pa)
<t> = diam eter o f strip (m m )
<I>f = resistance facto r o f C FR P
0 R n = n om inal strength o f section (kN m )
&s = resistan ce factor o f steel 9°o.ooi = curvature at M'o.ooi (1/m m ) (pui, = curvature at M „/,(l/m m )
xxxi Y ail J K im , P E ng., P h.D T hesis
Trang 34C hapter 1: G eneral In tro d u ctio n
Chapter 1 G eneral Introduction
1.1 Introduction
M uch o f the civil in frastructure constructed d uring the 19 5 0 ’s and 1960’s is in need o f
reh ab ilitatio n due to deterioration, including increased service loads, corrosion, and
p hysical or environm ental dam age (K im et al 2006) V arious m ethods h ave been
p roposed and applied to inadequate structural m em bers to im prove th e ir p erform ance
R ecent technical surveys co nducted support the requirem ent for re h ab ilitatio n (R izkalla
and L abossiere 1999, A S C E 2003) T he introduction o f A dvanced C o m p o site M aterials
such as F ibre R einforced P olym ers (F R P ) has significantly im pacted the rehabilitation
industry (B alds et al 2002) E xternal strengthening m ethods u sin g F R P s have attained
popu larity b ecause o f th eir ease o f application; for instance, F R P sheets/plates are bon d ed
onto the ten sile side o f a target structure to com pensate for the deficient tensile
reinforcem ent In addition, the follow ing technical benefits are expected: high tensile
strength, in significant increase o f perm an en t dead loads, corrosion resistant
characteristics, and good fatigue resistan ce (M eier 1995, N eale 2000, T eng et al 2003)
C arbon F R P (C F R P ) generally displays su perior structural p erfo rm an ce to o th er types o f
FR Ps in external strengthening ap plications (M eier 1995) F urtherm ore, C F R P m ay be
p restressed to im prove its effectiveness P restressin g creates an active load-carrying
m echanism , in cluding im proved serviceability and durability, and requ ires an chorage that
can p o ten tially prev en t (or delay) prem atu re p e e lin g -o ff failure o f the C FR P sheets w hen
subjected to loads T o date, tensioning against the strengthened b eam its e lf is the m ost
w idely u sed m ethod to p restress C F R P sheets (Izum o et al 1997, W ight et al 2001, El-
H acha et al 2003, K im et al 2005)
1 Y ail J K im , P E ng., P h.D T hesis
Trang 35T rian tafillo u et al (1992) conducted a p io n eerin g study on the application o f prestressed
C FR P sheets M eier (1995) reported a sim ple com parison o f a reinforced concrete beam
strengthened w ith p re stressed C FR P sheets to a beam w ith non -p restressed C F R P sheets,
as w ell as an u n stren g th en ed beam T he b eam strengthened w ith p re stressed C FR P sheets
exhibited h ig h er stiffness than o th er beam s, bu t show ed no increase o f the ultim ate load
com pared to the beam w ith n o n -p restressed C FR P sheets Izum o et al (1997) evaluated
the significance o f prestressed C F R P sheet applications and found that a rein fo rced
concrete b eam strengthened w ith p re stressed C FR P sheets show ed a 6.8 % in crease o f the
ultim ate load com p ared to a beam w ith n o n -p restressed C FR P sheets (12 % increase
com pared to the u n stren g th en e d beam ) W ight et al (2001) d escribed the effectiveness o f
prestressed C FR P applications including n u m erical m odels T he beam strengthened w ith
prestressed C FR P sheets show ed an increase o f up to 7 % in the ultim ate load com pared
to the beam w ith n o n -p restressed C F R P sheets E l-H ach a et al (2004) investigated the
beh av io u r o f p re stressed concrete beam s strengthened w ith prestressed C FR P sheets
u n d er ro o m and low tem p eratu res including analytical m odelling, and found that the
decrease in tem perature did not significantly contribute to the flexural b eh a v io u r o f the
beam s strengthened w ith prestressed C FR P sheets D espite these structural advantages,
there appears to be a dearth o f info rm atio n available on the research w ork related to the
application o f p re stressed C FR P sheets fo r strengthening concrete structures
1.2 The D efinition o f Problem s 1.2.1 The behaviour o f strengthened beam s with prestressed CFRP sheets
To enhance the effectiveness o f C F R P -strengthening, p restress m ay be directly applied to
C FR P sheets T he application w ith p o st-ten sio n ed C FR P sheets exhibits better structural
2 Y ail J K im , P E ng., Ph.D T hesis
Trang 36C hapter 1: G eneral In tro d u ctio n
perfo rm an ce w ith respect to non -p restressed C FR P applications, in clu d in g significan t
increase o f load-carrying capacity u n d e r both live and sustained loads, im proved
serviceability, satisfactory fatigue resistance, and good perfo rm an ce in harsh
environm ental conditions (R izkalla and L abossiere 1999, K achlakev and M cC u rry 2000,
E l-H ach a et al 2004, H e ffem a n and E rki 2004, K im et al 2005)
T he advantages o f applications usin g p re stressed C F R P sheets w ere clearly show n above
in term s o f the increase o f load-carrying capacity and im proved serviceability;
n evertheless, m ore detailed inform ation on strengthened beam s w ith p re stressed C F R P
sheets is still req u ired to con sid er d u ctility issues (particularly consid erin g the b rittle
failure ch aracteristic o f the C FR P m aterial), d etailed investigations on local b eh aviour
including anchorage, cracking m odes including crack progression, the effect o f d ifferent
prestress levels in C FR P sheets, and the dev elo p m en t o f m ore accurate p redictive m odels
1.2.2 Anchorage for prestressing
A n chorage is req u ired to hold the C FR P sheets during a p restressing operation or during
service u n d e r various loading conditions M etallic anchors are com m o n ly used for
p re stressed C F R P sheet applications T he follow ing an ch o r system s h ave b een reported: a
box-type an ch o r (Izum o et al 1997), a ro u n d -b ar-ty p e (W ight et al 2001), a screw -bolt-
type (H o llaw ay and L eem ing 1999), and a p late-ty p e (E l-H acha et al 2003, K im et al
2005) E l-H ach a et al (2003) p articu larly co nducted an experim ental param etric study
regarding the shape o f anchors, and reco m m en d ed a plate-type anchor
3 Y ail J K im , P E ng., Ph.D T hesis
Trang 37A ll o f the m en tio n ed anchors w ere m ade o f steel; thus, the anchors can be a source o f
problem s in site applications because the m etallic anchors m ay corrode and the
appearance o f the m o unted steel anchors m ay be u ndesirable w hen con sid erin g aesthetics
F urtherm ore, galvanic corrosion w ould be a concern for bonding C FR P to steel T his
p ro b lem could be red u ced by using stainless steel for the anchor or elim inated by placin g
a layer o f G F R P u n d er the C FR P H ow ever, this consideration is outside the scope o f the
current study T herefore, it m ay be desirable to rem ove the m etallic anchors, i f possible,
after adequate curing o f the strengthening system O nce the m etallic anchors are rem oved,
alternative an ch o r system s m ay be n ee d ed to re strain the prestress loss in C FR P sheets
From a practical aspect, the rem o v ed steel anchors can be used repeatedly on m ultiple
girders o f a bridge, for exam ple T he level o f sustained p restress in the C FR P sheets after
the rem oval o f m etallic anchors is one o f the critical concerns D etailed investigations on
the replacem ent o f the m etallic anchors are thus required and investigated in this thesis
1.2.3 Application to two-way slabs
The application o f C FR P sheets to rein fo rce d or prestressed concrete beam s is w ell
d ocum ented (M eier 1995, R izk alla and L abossiere 1999, N eale 2000, E l-H ach a et al
2001, B akis et al 2002, T eng et al 2003, L op ez and N anni 2006) T he application o f
C FR P sheets to tw o-w ay slabs, h o w ever, has been rarely investigated despite the com m on
use o f tw o-w ay slabs as structural elem ents in buildings E rki and H e ffem a n (1995)
conducted a study on the b eh a v io u r o f tw o w ay slabs strengthened w ith C F R P sheets and
reported that the load-carrying capacity o f C F R P -strengthened slabs increased by up to
240 % com pared to the u n stren g th en ed slab Several researchers conducted further
investigations on the b eh av io u r o f tw o -w ay slabs strengthened w ith C FR P sheets (H arajli
4 Y ail J K im , P E ng., Ph.D T hesis
Trang 38C hapter 1: G eneral Intro d u ctio n
and S oudki 2003, M osallam and M o salam 2003, E bead and M a rzo u k 2004)
In v estigations into tw o-w ay slabs strengthened w ith prestressed C FR P sheets h ave been,
ho w ever, extrem ely lim ited (W ight et al 2003, L ongw orth et al 2004)
A lthough co m puter aided analysis is beco m in g m ore popular, pred ictiv e m odels o f tw o-
w ay slabs have rarely b een reported w h en com pared to beam o r one-w ay slab m odels
because o f th eir com p licated b eh a v io u r and tim e-consum ing m od ellin g efforts M odels
em ploying n o n lin ear solid elem ents and d iscrete reinfo rcem en t elem ents are especially
rare M o st o f the reported m odels for tw o-w ay slabs are based on sim plified shell
elem ents including layered shells (H orm an et al 2002, M arzouk et al 2003, M osallam
and M osalam 2003), w here i) detailed cracking analyses m ay not be p erfo rm ed in the
case o f having only in-plane G aussian quadratures, and ii) exact strain variatio n s (or
stress analysis) in the rein fo rcem en t m ay no t be investigated due to the sim p lified
sm eared stiffness F urtherm ore, the sm eared re inforcing schem e m ay con trib u te to stiffer
beh av io u r o f the m odel as show n in M arzo u k et al (2003) D espite these lim itations,
structural slabs are com m only m o d elled w ith shell elem ents b ecause o f m od ellin g
convenience A s com pared to the sim plified shell m odels, 3-D solid m odels m ay pro v id e
superior advantages: a detailed cracking investigation is available and the structural
com ponents (e.g., rein fo rcin g bars) can be represented w ith m inim al sim plifications
T herefore, a reliab le 3-D solid m odel w ith d iscrete reinforcem ent is d eveloped in this
thesis to p ro v id e a b etter u n d erstan d in g o f the b eh a v io u r o f tw o-w ay slabs strengthened
w ith C FR P sheets
5 Y ail J K im , P E ng., Ph.D T hesis
Trang 391.2.4 Conventional analysis and design
The strength-based th eo ry is co n v en tio n ally em ployed for the p re d ic tio n o f flexural
b ehaviour o f rein fo rced or p re stressed concrete beam s M ost o f the existing concrete
codes (C S A A 23.3-94 1995, A C I 318-02 2002) for design are corresp o n d in g ly based on
this theory A lthough the strength-based d esig n m ethod has b een com m only used for the
d esign o f re in fo rced concrete beam s, it does not p re d ic t detailed structural b eh a v io u r such
as fracture propagation, failure m echanism , and size effects T he introduction o f fracture
m echanics to the design o f re in fo rced or p re stressed concrete beam s m ay en hance the
effectiveness o f the design by consid erin g the factors m entioned above In spite o f the
relatively long history, m ost fracture m ech an ics applications still rem ain in the
investigations on localized p h en o m en a in cluding m icro-scale observations such as ten sio n
crack p ropagations (S hah et al 1995)
H illerborg (1990) prop o sed a un iq u e fracture m echanics approach to exam ining flexural
b ehaviour o f a reinforced concrete beam , but its validation against experim ental or any
other analytical results w as no t conducted T hus, it w as hard to evaluate that the p ro p o se d
m odel m ight enhance the analysis technique o ver the conventional strength-based theory,
as H illerborg (1990) stated A n assessm ent o f the proposed m odel is required
F urtherm ore, the ap p licatio n to strengthening re in fo rced or prestressed concrete beam s
using prestressed C F R P sheets m ay enlarge the existing analysis techniques In this thesis,
analytical m odels are developed, based on H ille rb o rg ’s fracture m echanics approach, and
experim ental and com putational valid atio n s are conducted to evaluate the developed
fracture m echanics m odel
6 Y ail J K im , P.E ng., P h.D T hesis
Trang 40C hapter 1: G eneral In tro d u ctio n
1.2.5 Repair o f a damaged bridge superstructure
M o d ern bridges d eteriorate due to m any reasons m entio n ed in Sec 1.1., resu ltin g in
deficient flex u ral or shear strength in the bridges; therefore, u p g ra d in g m ay be required
T he C FR P rep air m ethods have been increasingly applied to sites in recen t years
(R izkalla and L abossiere 1999, Fallis et al 2004, L opez and N an n i 2006) D eterio rated
bridges are u su ally stren g th en ed b y bonding C FR P sheets on the tensile soffit o f
deteriorated girders to increase the insufficient load-carrying capacity D esp ite their
n um erous advantages addressed earlier, the lim it o f com m only used C F R P re p air m ethods
is found in its passiv e load-carrying m ech an ism including insig n ifican t im p ro v em en t o f
serviceability A n innovative strengthening m ethod u sin g prestressed C FR P sheets is thus
required for the case that an active load-carrying m echanism is n ecessary to im prove no t
only the strength o f the brid g e but also its serviceability
M any research results have been reported to date on the reh ab ilitatio n o f deteriorated
bridges as discu ssed above, b u t m ost o f th em have b een m ainly focused on a strength
aspect T herefore, m ore detailed investigations regarding changes o f d eflection, stress in
the reinforcem ent, load d istributions u n d er various loading conditions on a bridge
superstructure are req u ired to adequately evaluate the effectiveness o f a re p a ir m ethod
using prestressed C F R P sheets F urtherm ore, the b eh av io u r o f a bridge su perstructure
before and after dam age as w ell as after rep air needs to be investigated to im prove the
u n d erstanding o f the innovative re p air m ethod
7 Y ail J K im , P E ng., P h.D T hesis