b Tìm tọa độ điểm I là tâm của đường tròn ngoại tiếp tam giác ABC.. PHẦN RIÊNG 3,0 điểm Học sinh chỉ được chọn làm bài một trong hai phần sau phần 1 hoặc phần 2 1.. Tìm tọa độ điểm A thu
Trang 1SỞ GD&ĐT QUẢNG NAM
TRƯỜNG THPT NGUYỄN HUỆ
ĐỀ A
ĐỀ KIỂM TRA HỌC KỲ 1
Năm học 2014 - 2015
Môn: TOÁN, Lớp: 10
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
I PHẦN CHUNG CHO TẤT CẢ HỌC SINH (7,0 điểm)
Câu 1 (1,0 điểm): Cho các tập hợp A 0;3 ,B 2; 2
Hãy xác định các tập hợp sau: AB,AB,B\ A,B
Câu 2 (1,0 điểm): Tìm tập xác định của hàm số 1 1
1
x
Câu 3 (2,0 điểm): Cho hàm số y x 22x có đồ thị là parabol (P)
1) Vẽ (P)
2) Dựa vào (P), hãy tìm tất cả các giá trị của tham số m để đường thẳng d:y3m2 cắt (P) tại hai điểm phân biệt
Câu 4 (3,0 điểm):
1) Cho tam giác ABC Trên cạnh AC lấy điểm M sao cho MC2MA
Chứng minh rằng MA MB MC AB
2) Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(2; 2), (1;1), ( 2;0) B C
a) Tính tích vô hướng AB CB
b) Tìm tọa độ điểm I là tâm của đường tròn ngoại tiếp tam giác ABC
II PHẦN RIÊNG (3,0 điểm)
Học sinh chỉ được chọn làm bài một trong hai phần sau (phần 1 hoặc phần 2)
1 Theo chương trình Cơ bản:
Câu 5a (2,0 điểm):
1) Giải phương trình: 5x2x2 1 x 1
2) Không sử dụng máy tính, hãy giải hệ phương trình: 3 2
x y
Câu 6a (1,0 điểm): Trong mặt phẳng tọa độ Oxy cho hai điểm B(2;1), (1; 2)C
Tìm tọa độ điểm A thuộc trục tung sao cho số đo góc C của tam giác ABC bằng1200
2 Theo chương trình Nâng cao:
Câu 5b (2,0 điểm):
1) Giải phương trình: 4 2x 3 x2
2) Giải hệ phương trình:
2 2
2 2
Câu 6b (1,0 điểm): Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(2; 1), (4;3), B
(0; 3)
C Tìm tọa độ điểm B’ đối xứng với điểm B qua đường thẳng AC
-HẾT -(Giám thị coi thi không giải thích gì thêm)
Họ và tên thí sinh:………
Lớp: 10…
SBD:………… Phòng thi:…………
Trang 2SỞ GD&ĐT QUẢNG NAM
TRƯỜNG THPT NGUYỄN HUỆ
ĐỀ B
ĐỀ KIỂM TRA HỌC KỲ 1
Năm học 2014 - 2015
Môn: TOÁN, Lớp: 10
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
I PHẦN CHUNG CHO TẤT CẢ HỌC SINH (7,0 điểm)
Câu 1 (1,0 điểm): Cho các tập hợp A 1; 2 , B0;3
Hãy xác định các tập hợp sau: AB,AB,B\ A,B
Câu 2 (1,0 điểm): Tìm tập xác định của hàm số 1 1
1
x
Câu 3 (2,0 điểm): Cho hàm số y x 22x có đồ thị (P)
1) Vẽ (P)
2) Dựa vào (P), hãy tìm tất cả các giá trị của tham số m để đường thẳng d:y2m3 cắt (P) tại hai điểm phân biệt
Câu 4 (3,0 điểm):
1) Cho tam giác ABC Trên cạnh AB lấy điểm N sao cho NA2NB
Chứng minh rằng NA NB NC BC
2) Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(1; 2), (5;0), (4; 3) B C
a) Tính tích vô hướng AC CB
b) Tìm tọa độ điểm I là tâm của đường tròn ngoại tiếp tam giác ABC
II PHẦN RIÊNG (3,0 điểm)
Học sinh chỉ được chọn làm bài một trong hai phần sau (phần 1 hoặc phần 2)
1 Theo chương trình Cơ bản:
Câu 5a (2,0 điểm):
1) Giải phương trình: 13 7 x x 2 x 1
2) Không sử dụng máy tính, hãy giải hệ phương trình: 2 1
Câu 6a (1,0 điểm): Trong mặt phẳng tọa độ Oxy cho hai điểm A(1;1), (5; 1)B
Tìm tọa độ điểm C thuộc trục hoành sao cho số đo góc B của tam giác ABC bằng1350
2 Theo chương trình Nâng cao:
Câu 5b (2,0 điểm):
1) Giải phương trình: x 1 5 7x2
2) Giải hệ phương trình:
2 2
2 2
Câu 6b (1,0 điểm): Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(1; 1), (5; 3), B (2;0)
C Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng BC
-HẾT -(Giám thị coi thi không giải thích gì thêm)
Họ và tên thí sinh:………
Lớp: 10…
SBD:………….Phòng thi:…………
Trang 3SỞ GD&ĐT QUẢNG NAM
Năm học 2014 - 2015
Môn: TOÁN - Lớp: 10 HƯỚNG DẪN CHẤM – THANG ĐIỂM
+ A B 2;3
+ A B 0; 2
+ B A\ 2;0
+ B 1,0,1, 2
0.25 0.25 0.25 0.25
+ A B 1;3
+ A B 0; 2 + A B\ 1;0
+ B 0,1, 2
Hàm số xá định khi 1 0
1 0
x x
1
1 1
x x
x
Tập xác định: D 1;
0.25 0.5 0.25
Hàm số xá định khi 1 0
1 0
x x
1
1 1
x x x
Tập xác định: D1;
1)
+ Tọa độ đỉnh: 1; 1
+ Trục đối xứng: x1
+ Đồ thị:
Biểu diễn được đỉnh, trục đối xứng, tọa
độ một số điểm thuộc đồ thị
Vẽ chính xác đồ thị
0.5 0.25 0.25 0.25
1) + Tọa độ đỉnh: 1; 1
+ Trục đối xứng: x 1 + Đồ thị:
Biểu diễn được đỉnh, trục đối xứng, tọa
độ một số điểm thuộc đồ thị
Vẽ chính xác đồ thị 2) Dựa vào (P), ta có: d cắt (P) tại hai
điểm phân biệt 3 2m 1
2
m
Vậy m 2 là giá trị cần tìm
Chú ý: Nếu học sinh không sử dụng đồ thị
mà giải đúng thì cho 0.5 điểm.
0.25 0.25 0.25
2) Dựa vào (P), ta có: d cắt (P) tại hai điểm phân biệt 2m 3 1
1
m
Vậy m1 là giá trị cần tìm
Chú ý: Nếu học sinh không sử dụng đồ thị
mà giải đúng thì cho 0.5 điểm.
1)
MA MB MC MA MA AB MC
2
AB AM MC
AB CM MC
AB
0.25 0.25 0.25 0.25
1)
2
BC NA NB
BC NA AN
BC
2)
a) AB 1;3, CB 3;1
0
AB CB
0.5 0.5
2) a) AC 3; 1 , CB 1;3 0
AC CB
Trang 4Theo a) ta có AB CB 0ABCB
tam giác ABC vuông tại B
I là trung điểm của cạnh AC
I0; 1
0.25 0.25 0.25 0.25
b) Theo a) ta có AC CB 0ACCB
tam giác ABC vuông tại C
I là trung điểm của cạnh AB
I3; 1
1) 5x2x2 1 x 1
2 2
1 0
x
2
1
x
1
1
3
2
x
x
x
2
x
Vậy nghiệm của PT: x2
0.25
0.25
0.25
0.25
1) 13 7 x x 2 x 1
2 2
1 0
x
2
1
x
1 3 2 4
x x x
4
x
Vậy nghiệm của PT: x4
3
2
1
2
x
y
Nghiệm của hệ PT: 3 1;
2 2
0.5
0.5
1 3 2 3
x y
Nghiệm của hệ PT: 1; 2
3 3
Vì A Oy nên A 0;y
Ta có CB1; 1 , CA 1;y2
cos os ,
CB CA
CB CA
2
3
y
Vậy A 0; 3
0.25
0.25 0.25 0.25
Vì C Ox nên C x ;0
Ta có BA 4; 2, BCx5;1
2
8
BA BC
BA BC x
x
Vậy C 8;0
1) 4 2x 3 x2 (1)
Đk x2
1) x 1 5 7x2 (1)
Đk x1
Trang 5(1) x 2 2x 3 4
2
x x x
2
86 249 0
x
3
83
x
x
x
3
x
Vậy nghiệm của PT: x3
0.25 0.25 0.25
0.25
(1) x 1 7x 2 5
2
x x x
2
x
2 73 9
x x x
2
x
Vậy nghiệm của PT: x2
2 2
2 2
(2) x2y 4 x2y 0
x y x y
+ Với x2y0thì (1) y2 7 (VN)
+ Với x2y4thì (1) y2 9
3
y
Hệ PT có 2 nghiệm (3; - 2), (- 3; 10)
0.5 0.25
0.25
2 2
2 2
(2) 2x y 2 2x y 0
x y x y
x y
x y
+ Với 2x y 0thì (1)x2 3 (VN) + Với 2x y 2thì (1)x2 1
1
x
Hệ PT có 2 nghiệm (1;0), (- 1; 4)
Gọi H(x; y) là hình chiếu của B trên AC
Ta có BH x( 4;y3), AH x( 2;y1)
và CA(2; 2)
Khi đó BH CA
AH kCA
2( 4) 2( 3) 0
3
x y
x y
5 2
x y
H(5; 2)
Vì B’ đối xứng với B qua AC nên H là
trung điểm của BB’
Do đó B’(6; 1)
0.25
0.5
0.25
Gọi H(x; y) là hình chiếu của A trên BC
Ta có AH x( 1;y1), BH x( 5;y3) và ( 3;3)
BC
Khi đó AH BC
BH k BC
3( 1) 3( 1) 0
2
x y
x y
2 0
x y
H(2; 0)
Vì A’ đối xứng với A qua BC nên H là trung điểm của AA’
Do đó A’(3; 1)
Chú ý: Học sinh làm theo cách khác nhưng đúng, giáo viên căn cứ vào thang điểm của đáp án để
cho điểm hợp lí!