0aW VY ÿSQK Ot TXDQ WUUQJ YI ÿñeQJ NtQK Yj Gk\ FXQJ D 7URQJ PÝW ÿmáQJ WUzQ KDL FXQJ EÏ FK³Q JLóD KDL Gk\ VRQJ VRQJ WKu EµQJ QKDX E 7URQJ PÝW ÿmáQJ WUzQ ÿmáQJ NtQK ÿL TXD ÿLÇP FKtQK JLóD
Trang 1
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
Ä &lj1* Ð1 7°3 +Ð& Î - 10 +Ð& 12 -2013
MÔN TOÁN
I./Ë 7+8<F7
$ 3+ª1 3+ª1 ¤, 6Ô:
1 1aL GXQJ
SQK QJKD 3KmkQJ WUuQK E±F KDL PÝW Q Oj SKmkQJ WUuQK Fy G¥QJ D[ +bx +c = 0(a2 z 0), WURQJ ÿy [ Oj QDEF Oj FiF VÕ FKR WUmßFKD\ FzQ JÑL Oj KË VÕ
&KR SKmkQJ WUuQK E±F KDL D[ E[ F D 2
&Ð1* 7+ì& 1*+,Ê0 7Ø1* 48È7 &Ð1* 7+ì& 1*+,Ê0 7+8 *Ð1
2
b 4ac
0 ' ! SKmkQJ WUuQK Fy QJKLËP SKkQ ELËW
' 0 ' ! SKmkQJ WUuQK Fy QJKLËP SKkQ ELËW
0 ' SKmkQJ WUuQK Fy QJKLËP NpS
b
x x
2a
' 0 ' SKmkQJ WUuQK Fy QJKLËP NpS
b'
x x
a 0
' SKmkQJ WUuQK Y{ QJKLËP ' ' 0 SKmkQJ WUuQK Y{ QJKLËP
2 1aL GXQJ
D 3KmkQJ WUuQK WU QJ SKmkQJ Fy G¥QJ D[ E[ F D QJ SKmkQJ Fy G¥QJ D[ E[ F D 4 )
&iFK JL§L »W W [ YßL W • WD Fy SKmkQJ WUuQK E±F KDL WKHR Q W DW + bt + c = 02 2 -! JL§L SKmkQJ WUuQK WuP W • ! [
E 3KmkQJ WUuQK FKíD Q ã P¯X
- %mßF 7uP ;
- %mßF 4X\ ÿ×QJ Yj NKñ P¯X
- %mßF *L§L 37 YïD WuP ÿmçF
- %mßF ÃW OX±Q&K~ ê ÿÕL FKLÃX YßL ;
F 3KmkQJ WUuQK WtFK Fy G¥QJ $ 3+ª1 %& &iFK JL§L $ 3+ª1 %& œ $ 3+ª1 KR»F % KR»F &
3 1aL GXQJ
SQK Ot 9L ét: 1ÃX SKmkQJ WUuQK D[ E[ F D Fy KDL QJKLËP [ , x thì:± 2 1 2
1 2
1 2
b
a c
P x x
a
-°°
®
°
°¯
&K~ ê Ç NLÇP WUD SKmkQJ WUuQK E±F KDL Fy QJKLËP WD NLÇP WUD PÝW WURQJ KDL FiFK VDX DF WKu 37 Fy KDL QJKLËP SKkQ ELËW
2) 't KR»F ' ¶ t WKu 37 FR KDL QJKLËP 0ÝW VÕ EjL WRiQ iS GéQJ ÿÏQK Ot 9LpWa) x + x =1 2
a
b
, b) x x =1 2
a
c
, c) x12+ x22= (x + x ) ± 2x x ,1 2 2 1 2 d) x13+ x23= (x + x ) ± 3x x (x + x )1 2 3 1 2 1 2 SQK Ot 9L pW ÿ+R± 1ÃX Fy KDL VÕ X Yj Y VDR FKRu v S
uv P
-®
¯
2
S t 4P WKu X Y Oj KDL QJKLËP
FëD SKmkQJ WUuQK [ ± Sx + P = 0.2
&iFK WtQK QK1P QJKLOP FoD SKñïQJ WUuQK E5F KDL D[ E[ F2 D
- 1ÃX D E F WKu SKmkQJ WUuQK Fy QJKLËP Oj [ = 1; x =1 2 c
a .
Trang 2
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
- 1ÃX D ± E F WKu SKmkQJ WUuQK Fy QJKLËP Oj [ = -1; x =1 2 c
a .
4 1aL GXQJ
Ç SKmkQJ WUuQK D[ E[ F D 2
D &y QJKLËP NKL' t 0
E &y QJKLËP SKkQ ELËW NKL' ! 0
F 9{ QJKLËP NKL û
G &y QJKLËP F QJ G©X NKLQJ SKmkQJ Fy G¥QJ D[ E[ F D 0
P 0
' t
-®
!
¯
1aL GXQJ +Ë SKmkQJ WUuQK
-*L§L KË SKmkQJ WUuQK Fk E§Q Yj ÿmD ÿmçF YÅ G¥QJ Fk E§Q 3KmkQJ SKiS WKÃ 3KmkQJ SKiS FÝQJ3KmkQJ SKiS ÿ»W Q SKé
- &KR KË SKmkQJ WUuQK
¯
®
-' ' 'x b y c a
c by ax
(I)
D Ç KË SKmkQJ WUuQK , Fy QJKLËP GX\ QK©W ! ; ;
b
b a
a z
E Ç KË SKmkQJ WUuQK , Fy Y{ VÕ QJKLËP ! ; ; ;
c
c b
b a a
F Ç KË SKmkQJ WUuQK , Y{ QJKLËP ! ; ; ;
c
c b
b a
% 3+ª1 +Î1+ +Ð&:
&iF JyF ÿYL YcL ÿñeQJ WUzQ
*yF ã WkP JyF QÝL WLÃS ÿmáQJ WUzQ JyF W¥R EãL WLD WLÃS WX\ÃQ Yj Gk\ FXQJ JyF Fy ÿÍQK ã ErQ WURQJ ÿmáQJ WUzQ JyF Fy ÿÍQK ã ErQ QJRjL ÿmáQJ WUzQ &iF HP {Q ã 6*
&iF F{QJ WKqF WtQK
- Ý GjL ÿmáQJ WUzQFKX YL & S5 WURQJ ÿyS| 5 Oj EiQ NtQK & Oj ÿÝ GjL ÿmáQJ WUzQ
- Ý GjL FXQJ WUzQ O
180
Rn
S
WURQJ ÿyS| 5 Oj EiQ NtQK O Oj ÿÝ GjL FXQJ WUzQ Q Oj VÕ ÿR FXQJ
- Diên tích hình tròn: S = SR2
- 'LËQ WtFK KuQK TX¥W WUzQ 2
360
R n
S S =
2
lR
WURQJ ÿy O Oj ÿÝ GjL FXQJ WUzQ Q Oj VÕ ÿR FXQJ
3 0aW VY ÿSQK Ot TXDQ WUUQJ YI ÿñeQJ NtQK Yj Gk\ FXQJ
D 7URQJ PÝW ÿmáQJ WUzQ KDL FXQJ EÏ FK³Q JLóD KDL Gk\ VRQJ VRQJ WKu EµQJ QKDX
E 7URQJ PÝW ÿmáQJ WUzQ ÿmáQJ NtQK ÿL TXD ÿLÇP FKtQK JLóD FXQJ WKu ÿL TXD WUXQJ ÿLÇP
FëD Gk\ F QJ FXQJ ©\
c) Trong 1 ÿmáQJ WUzQ ÿmáQJ NtQK ÿL TXD WUXQJ ÿLÇP Gk\ FXQJ NK{QJ SK§L Oj ÿmáQJ NtQK WKu FKLD FXQJ ©\ WKjQK FXQJ EµQJ QKDX
G 7URQJ PÝW ÿmáQJ WUzQ ÿmáQJ NtQK ÿL TXD ÿLÇP FKtQK JLóD FëD PÝW FXQJ WKu YX{QJ JyF YßL Gk\ F QJ FXQJ ©\ Yj QJmçF O¥L
'-X KLOX QK5Q ELGW PaW Wq JLiF QaL WLGS
a 7í JLiF Fy ÿÍQK F QJ FiFK ÿÅX PÝW ÿLÇP FÕ ÿÏQK PÝW NKR§QJ FiFK NK{QJ ÿÙLQJ SKmkQJ Fy G¥QJ D[ E[ F D
b 7í JLiF Fy WÙQJ KDL JyF ÿÕL QKDX EµQJ 0
c 7í JLiF Fy ÿÍQK NÅ QKDX F QJ QKuQ ÿR¥Q WK·QJ QÕL KDL ÿÍQK FzQ O¥L GmßL JyFQJ SKmkQJ Fy G¥QJ D[ E[ F D vkhông ÿÙL
d 7í JLiF Fy JyF QJRjL W¥L ÿÍQK EµQJ JyF WURQJ FëD ÿÍQK ÿÕL GLËQ +uQK KUF NK{QJ JLDQ
0 e) Có 2 nghiêm duong khi P 0
S 0
' t
-°
!
®
° !
¯ 0 f) Có 2 nghiêm âm khi P 0
S 0
' t
-°
!
®
°
¯
J &y QJKLËP WUiL G©X DF
Trang 3
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
D +uQK WUé 4XD\ KuQK FKó QK±W YzQJ quanh F¥QK FÕ ÿÏQK KuQK VLQK UD Oj KuQK WUé
- 'LËQ WtFK [XQJ TXDQK 6xq= 2S5 O WURQJ ÿy 5 Oj EiQ NtQK ÿi\ O Oj ÿÝ GjL ÿmáQJ VLQK
- 'LËQ WtFK WRjQ SK«Q 6 6xq+ 2SÿD\= 2SRl + 2SR2
- 7KÇ WtFK 9 6K SR K WURQJ ÿy 6 Oj GLËQ WtFK ÿi\ K Oj FKLÅX FDR 5 Oj EiQ NtQK ÿi\2 b) Hình nón: Quay tam giác vuông 1 vòng quanh F¥QK góc vuông cÕ ÿÏQK, hình sinh ra là hình nón
- 'LËQ WtFK [XQJ TXDQK 6xq= S5O WURQJ ÿy 5 Oj EiQ NtQK ÿi\ O Oj ÿÝ GjL ÿmáQJ VLQK
- 'LËQ WtFK WRjQ SK«Q 6 6xq+ SÿD\= SRl + SR2
- 7KÇ WtFK 9
3
1
Sh =
3
1SR K WURQJ ÿy 6 Oj GLËQ WtFK ÿi\ K Oj FKLÅX FDR 5 Oj EiQ NtQK ÿi\2
F +uQK QyQ FéW
- 'LËQ WtFK [XQJ TXDQK 6xq= S(R + R O WURQJ ÿy 5 , R Oj EiQ NtQK ÿi\ O Oj ÿÝ GjL ÿmáQJ VLQK1 2 1 2
- 7KÇ WtFK 9
3
1S(R12
+ R22 + R R K WURQJ ÿy K Oj FKLÅX cao, R , R Oj EiQ NtQK ÿi\1 2 1 2
G +uQK F«X 4XD\ QñD KuQK WUzQ WkP 2 EiQ NtQK 5 YzQJ TXDQK ÿmáQJ NtQK FÕ ÿÏQK, hình sinh
UD Oj KuQK F«X
- 'LËQ WtFK P»W F«XGLËQ WtFK [XQJ TXDQK 6 SR =2 d WURQJ ÿy U Oj EiQ NtQK G Oj ÿmáQJ NtQKS 2
- 7KÇ WtFK KuQK F«X 9
3
4SR3
II.%¬, 743
')QJ 5~W JUQ
¹
·
¨
¨
©
§
¸
¸
¹
·
¨
¨
©
§
1
2 1
: 1
1 1
2
x x
x x
x x
x x
a) 5~W JÑQ 3 b/Tính Pkhi x= 5 2 3
Bài 2 &KR ELÇX WKíF3
1 2
1
2 1
1 2
¹
·
¨
¨
©
§
a
a a a
a
a a a a a
a a
6 1
6
WuP JLi WUÏ FëD D"
b) &KíQJ PLQK UµQJ 3 !
3 2
Bài 3 &KR ELÇX WKíF 3 2 1
1
2
a
a a a
a
a a
a) 5~W JÑQ 3 E %LÃW D ! +m\ VR ViQK P YßL P
F 7uP D ÿÇ 3 G 7uP JLi WUÏ QKÓ QK©W FëD 3
Bài 4 &KR ELÇX WKíc:P=
b ab a
b a a
b a b b a a
a b
ab a
a
2 2
2
1 : 1 3
3
¸
¸
¹
·
¨
¨
©
§
a) 5~W JÑQ 3
b) 7uP QKóQJ JLi WUÏ QJX\rQ FëD D ÿÇ 3 Fy JLi WUÏ QJX\rQ
¹
·
¨
¨
©
§
¸
¹
·
¨
©
§
1
2 2
1 :
1 1
1
a
a a
a a
a
a) 5~W JÑQ 3
b) 7uP JLi WUÏ FëD D ÿÇ 3 !
6 1
Trang 4
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
a) 5~W JÑQ $ 3+ª1
b) 6R ViQK $ 3+ª1 YßL 1
A
Bài 7 : &KR ELÇX WKíF A = x x 1 x x 1 :2 x 2 x 1
x 1
D 5~W JÑQ $ 3+ª1
E 7uP [ ÿÇ $ 3+ª1
F 7uP [ QJX\rQ ÿÇ $ 3+ª1 Fy JLi WUÏ QJX\rQ
')QJ &iF EjL WRiQ OLrQ TXDQ ÿGQ SKñïQJ WUuQK E5F KDL PaW 1Q Yj iS GmQJ KO WKqF 9L-et: D3KmkQJ WUuQK E±F KDL Yj KË WKíF 9L-et:
1 *L§L FiF SKmkQJ WUuQK E±F KDL:
a 2x2 ± 5x + 1 = 0 b 4x + 4x + 1 = 02
c -3x2+2x + 8 = 0 d 5x ± 6x ± 1 = 02
e -3x2+ 14x ± 8 = 0 g -7x + 4x ± 3 = 02
2 1
K P QJKLËP FëD FiF SKmkQJ WUuQK E±F KDL VDX
a 5x + 3x ± 2 = 02 b -18x + 7x + 11 = 02
c x + 1001x + 1000 = 02 d ± 7x ± 8x + 15 = 02
3 7uP KDL VÕ ELÃW WÙQJ Yj WtFK FëD FK~QJ
a u + v = 14, uv = 40 b u + v = -7, uv = 12
c u + v = -5, uv = -24 d u + v = 4, uv = 19 E3KmkQJ WUuQK WU QJ SKmkQJ Yj SKmkQJ WUuQK FKíD QJ SKmkQJ Fy G¥QJ D[ E[ F D Q ã P¯X
a x ± 8x ± 9 = 04 2 b x ± 1,16x + 0,16 = 04 2
c x ± 7x ± 144 = 04 2 d 36x ± 13x + 1 = 04 2
e x + x ± 20 = 04 2 g x ± 11x + 18 = 04 2
h 12 8 1
3 1
F;iF ÿÏQK JLi WUÏ FëD P ÿÇ SKmkQJ WUuQK Fy QJKLËP Fy KDL QJKLËP SKkQ ELËW Fy QJKLËP NpSY{QJKLËP
ÕL YßL PÛL SKmkQJ WUuQK VDX Km\ WuP JLi WUÏ FëD P ÿÇ SKmkQJ WUuQK Fy QJKLËP NpS
a mx ± 2(m ± 1)x + m + 2 = 02 b 3x + (m +1)x + 4 = 02
c 5x + 2mx ± 2m + 15 = 02 d mx ± 4(m ± 1)x ± 8 = 02
ÕL YßL PÛL SKmkQJ WUuQK VDX Km\ WuP JLi WUÏ FëD P ÿÇ SKmkQJ WUuQK Fy QJKLËP WtQK
QJKLËP FëD SKmkQJ WUuQK WKHR P
a mx + (2m ± 1)x + m + 2 = 02 b 2x - (4m +3)x + 2m - 1 = 02 2
c x ± 2(m + 3)x + m + 3 = 02 2 d (m + 1)x + 4mx + 4m +1 = 02 ')QJ &iF EjL W5S YI KO SKñïQJ WUuQK E5F QK-W 1Q
D*L+L KO SKñïQJ WUuQK Fï E+Q Yj ÿñD ÿñkF YI G)QJ Fï E+Q
Bài 1: *L§L FiF KË SKmkQJ WUuQK
¯
®
-¯
®
-¯
®
-¯
®
-¯
®
-¯
®
-18 15y 10x
9 6y 4x 6)
; 14 2y 3x
3 5y 2x 5)
; 14 2y 5x
0 2 4y 3x 4)
10 6y 4x
5 3y 2x 3)
; 5 3y 6x
3 2y 4x 2)
; 5 y 2x
4 2y 3x 1)
Bài 2: *L§L FiF KË SKmkQJ WUuQK VDX
Trang 5
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
°
°
¯
°
°
®
-°
°
¯
°°
®
-¯
®
-¯
®
-5 6y 5x
10 3y -6x
8 3y
x
2 -5y 7x 4)
; 7
5x 6y y 3
1 x
2x 4
27 y 5 3
5x -2y 3)
; 12 1 x 3y 3 3y 1 x
54 3 y 4x 4 2y 3 -2x 2)
; 4xy 5
y 5 4x
6xy 3
2y 2 3x 1)
E *L+L KO E9QJ SKñïQJ SKiS ÿ?W 1Q SKm
*L§L FiF KË SKmkQJ WUuQK VDX
2
-°
®
-°
®
°¯
F ;iF ÿSQK JLi WUS FoD WKDP VY ÿK KO Fy QJKLOP WKR+ PmQ ÿLIX NLOQ FKR WUñcF
Bài 1:
D ÏQK P Yj Q ÿÇ KË SKmkQJ WUuQK VDX Fy QJKLËP Oj - 1)
¯
®
-3 2m 3ny x 2 m
n m y 1 n 2mx
E ÏQK D Yj E ELÃW SKmkQJ WUuQK D[ - E[ 2 Fy KDL QJKLËP Oj [ Yj [ -2
Bài 2: ÏQK P ÿÇ ÿmáQJ WK·QJ VDX ÿ×QJ TX\
a) 2x ± y = m ; x = y = 2m ; mx ± (m ± 1)y = 2m ± 1
b) mx + y = m + 1 ;2 (m + 2)x ± (3m + 5)y = m ± 5 ; (2 - m)x ± 2y = - m + 2m ± 2.2
Bài 3: &KR KË SKmkQJ WUuQK
sè) tham lµ (m 4
my x
m 10 4y mx
¯
®
-D *L§L KË SKmkQJ WUuQK NKL P 2
E *L§L Yj ELËQ OX±Q KË WKHR P
F ;iF ÿÏQK FiF JLi WUL QJX\rQ FëD P ÿÇ KË Fy QJKLËP GX\ QK©W [ \ VDR FKR [ ! \ !
Bài 4: &KR KË SKmkQJ WUuQK
¯
®
-1 2y mx
2 my x
D *L§L KË SKmkQJ WUuQK WUên khi m = 2
E 7uP FiF VÕ QJX\rQ P ÿÇ KË Fy QJKLËP GX\ QK©W [ \ Pj [ ! Yj \
F 7uP FiF VÕ QJX\rQ P ÿÇ KË Fy QJKLËP GX\ QK©W [ \ Pj [ \ Oj FiF VÕ QJX\rQ
')QJ &iF EjL W5S YI KjP VY E5F KDL Yj ÿ[ WKS KjP VY \ D[ ( a2 z 0 )
Bài 1 Cho (P) y x2 Yj ÿmáQJ WK·QJ G \ = 2x+m
a) 9Á 3 b) 7uP P ÿÇ 3 WLÃS [~F G Bài 2 9Á ÿ× WKÏ KjP VÕ \
2
1
x2 a) 9LÃW SKmkQJ WUuQK ÿmáQJ WK·QJ ÿL TXD KDL ÿLÇP $ 3+ª1 -2 ) và B 1 ; - 4 )
b) 7uP JLDR ÿLÇP FëD ÿmáQJ WK·QJ YïD WuP ÿmçF YßL ÿ× WKÏ WUrQ
Bài 3: Cho (P)
4
2
x
y và (d): y=x+ m
Trang 6*LD6ñ 7KjQK ñkF www.daythem.edu.vn
b) ;iF ÿÏQK P ÿÇ 3 Yj G F³W QKDX W¥L KDL ÿLÇP SKkQ ELËW $ 3+ª1 Yj %
c)
;iF ÿÏQK SKmkQJ WUuQK ÿmáQJ WK·QJ G VRQJ VRQJ YßL ÿmáQJ WK·QJ G Yj F³W 3 W¥L ÿL¿P Fy
tung ÿÝ EµQJ - 4 Bài 4: Cho (P) 2
4
1
x
y Yj ÿmáQJ WK·QJ G TXD ÿLÇP $ 3+ª1 Yj % WUrQ 3 Fy KRjQK ÿÝ O«P OmçW Oj -2
và 4
a) 9Á ÿ× WKÏ 3 FëD KjP VÕ WUrQ
b) 9LÃW SKmkQJ WUuQK ÿmáQJ WK·QJ G
GLËQ WtFK OßQ QK©W
(*kL ê FXQJ $% FoD 3 WñïQJ qQJ KRjQK ÿa FXQJ $% FoD 3 WñïQJ qQJ KRjQK ÿa WñïQJ qQJ KRjQK ÿa x > ;24@Fy QJKD Oj $ 3+ª1 -2; y A) và B(4; y )B Ÿ tính
B
A y
y ;; )
')QJ *L+L EjL WRiQ E9QJ FiFK O5S SKñïQJ trình:
Bài 1
+DL { W{ NKãL KjQK F QJ PÝW O~F ÿL Wï $ 3+ª1 ÿÃQ % FiFK QKDX NP Ð W{ WKí QK©W PÛL JLáQJ SKmkQJ Fy G¥QJ D[ E[ F D FK¥\ QKDQK KkQ { W{ WKí KDL NP QrQ ÿÃQ % VßP KkQ { W{ WKí KDL JLá 7tQK Y±Q WÕF PÛL [H { W{
Bài 2: 0ÝW QKyP WKç ÿ»W NÃ KR¥FK V§Q [X©W V§Q SKP 7URQJ QJj\ ÿ«X KÑ OjP WKHR ÿ~QJ
NÃ KR¥FK ÿÅ UD QKóQJ QJj\ FzQ O¥L KÑ ÿm OjP YmçW PíF PÛL QJj\ V§Q SKP QrQ KRjQ WKjQK NÃ
KR¥FK VßP QJj\ +ÓL WKHR NÃ KR¥FK PÛL QJj\ F«Q V§Q [X©W EDR QKLrX V§Q SKP
Bài 3:
0ÝW ÿRjQ [H Y±Q W§L Gõ ÿÏQK ÿLÅX PÝW VÕ [H F QJ OR¥L ÿÇ Y±Q FKX\ÇQ W©Q KjQJ /~F V³S QJ SKmkQJ Fy G¥QJ D[ E[ F D NKãLKjQK ÿRjQ [H ÿmçF JLDR WKrP W©Q KjQJ QóD GR ÿy SK§L ÿLÅX WKrP [H F QJ OR¥L WUrQ Yj QJ SKmkQJ Fy G¥QJ D[ E[ F D PÛL [HFKã WKrP W©Q KjQJ 7tQK VÕ [H EDQ ÿ«X ELÃW VÕ [H FëD ÿÝL NK{QJ TXi [H
Bài 4:
0ÝW FD Q{ ÿL [X{L Wï EÃQ $ 3+ª1 ÿÃQ EÃQ % F QJ O~F ÿy PÝW QJmáL ÿL EÝ FÊQJ ÿL Wï EÃQ $ 3+ª1 GÑF QJ SKmkQJ Fy G¥QJ D[ E[ F D WKHR Eá
V{QJYÅ KmßQJ EÃQ % 6DX NKL FK¥\ ÿmçF NP FD Q{ TXD\ FKã O¥L J»S QJmáL ÿL EÝ W¥L PÝW ÿÏD ÿLÇP ' FiFK EÃQ $ 3+ª1 PÝW NKR§QJ NP 7tQK Y±Q WÕF FëD FD Q{ NKL QmßF \rQ O»QJ ELÃW Y±Q WÕF FëD QJmáL ÿL EÝ Yj Y±Q WÕF FëD GzQJ QmßF ÿÅX EµQJ QKDX Yj EµQJ NPK
Bài 5 +DL YzL QmßF F QJ FK§\ YjR PÝW FiL EÇ FKíD NK{QJ Fy QmßF WKu VDX JLá SK~W VÁ ÿ«\ QJ SKmkQJ Fy G¥QJ D[ E[ F D
EÇ 1ÃX FK§\ ULrQJ WKu YzL WKí QK©W FK§\ ÿ«\ EÇ QKDQK KkQ YzL WKí KDL JLá +ÓL QÃX FK§\ ULrQJ WKuPÛL YzL FK§\ ÿ«\ EÇ WURQJ EDR OkX "
Bài 6 0ÝW Fk Vã ÿiQK Fi Gõ ÿÏQK WUXQJ EuQK PÛL WX«Q ÿiQK E³W ÿmçF W©Q Fi QKmQJ ÿm YmçW PíF
ÿmçF W©Q PÛL WX«Q QrQ FK·QJ QKóQJ ÿm KRjQ WKjQK NÃ KR¥FK VßP WX«Q Pj FzQ YmçW PíF
NÃ KR¥FK W©Q 7tQK PíF NÃ KR¥FK ÿm ÿÏQK
Bài 7 0ÝW QJmáL ÿL [H ÿ¥S Wï $ 3+ª1 ÿÃQ % WURQJ PÝW WKáL JLDQ ÿm ÿÏQK KL FzQ FiFK % P QJmáL
ÿy QK±Q WK©\ UµQJ VÁ ÿÃQ % FK±P QñD JLá QÃX JLó QJX\rQ Y±Q WÕF ÿDQJ ÿL QKmQJ QÃX W
QJ Y±Q WÕF
WKrP PK WKu VÁ WßL ÿtFK VßP KkQ QñD JLá 7tQK Y±Q WÕF FëD [H ÿ¥S WUHQ TXmQJ ÿmáQJ ÿm
ÿL O~Fÿ«X
Bài 8 +DL WÙ F{QJ QKkQ OjP FKXQJ WURQJ JLá VÁ KRjQ WKjQK [RQJ F{QJ YLËF ÿm ÿÏQK +Ñ Oàm
FKXQJ YßL QKDX WURQJ JLá WKu WÙ WKí QK©W ÿmçF ÿLÅX ÿL OjP YLËF NKiF WÙ WKí KDL OjP QÕW F{QJ YLËF
FzQ O¥L WURQJ JLá +ÓL WÙ WKí KDL OjP PÝW PuQK WKu VDX EDR OkX VÁ KRjQ WKjQK F{QJ YLËF
')QJ 7q JLiF QaL WLGS
1
&KR ÿmáQJ WUzQ 25 Yj PÝW ÿLÇP 6 QµP ErQ QJRjL ÿmáQJ WUzQ 7ï 6 YÁ KDL WLÃS WX\ÃQ 6$ 3+ª1
Yj 6% YßL ÿmáQJ WUzQ $ 3+ª1 Yj % Oj KDL WLÃS ÿLÇP 9Á ÿmáQJ WK·QJ D ÿL TXD 6 Yj F³W ÿmáQJ WUzQ W¥L KDL ÿLÇP 0 1 0 QµP JLóD 6 Yj 1
a CMR: SO AAB
E *ÑL + Oj JLDR ÿLÇP FëD 62 Yj $ 3+ª1 % , Oj WUXQJ ÿLÇP FëD 01 +DL ÿmáQJ WK·QJ 2, Yj $ 3+ª1 % F³W
Trang 7*LD6ñ 7KjQK ñkF www.daythem.edu.vn
F &KíQJ PLQK UµQJ 2,2( 5 2
2
&KR 25 7ï ÿLÇP 3 QµP QJRjL ÿmáQJ WUzQ N¿ FiF WLÃS WX\ÃQ 3$ 3+ª1 3% $ 3+ª1 % Oj KDL WLÃS ÿLÇP
Yj N¿ ÿmáQJ NtQK $ 3+ª1 & FëD ÿmáQJ WUzQ
D &05 3$ 3+ª1 2% QÝL WLÃS
E &KíQJ PLQK 32 %& &KR 235 WtQK JyF $ 3+ª1 2% Yj GLËQ WtFK KuQK TX¥W WUzQ $ 3+ª1 2% íQJ YßL FXQJ QKÓ $ 3+ª1 %
3
&KR 25 Fy KDL ÿmáQJ NtQK $ 3+ª1 % Yj &' YX{QJ JyF YßL QKDX *ÑL 0 Oj PÝW ÿLÇP W \ ê WKXÝFQJ SKmkQJ Fy G¥QJ D[ E[ F D
FXQJ QKÓ $ 3+ª1 & 1ÕL 0% F³W &' ã 1
D &KíQJ PLQK WLD 0' Oj WLD SKkQ JLiF JyF AMB
E &KíQJ PLQK WDP JLiF %20 Yj %1$ 3+ª1 ÿ×QJ G¥QJ Yj WtFK %0%1 NK{QJ ÿÙL
F &KíQJ PLQK 210$ 3+ª1 QÝL WLÃS
4
&KR WDP JLiF $ 3+ª1 %& YX{QJ W¥L $ 3+ª1 ÿmáQJ FDR $ 3+ª1 + 9Á ÿmáQJ WUzQ WkP 2 ÿmáQJ NtQK $ 3+ª1 + F³W
$ 3+ª1 % Yj $ 3+ª1 & O«Q OmçW ã , Yj
D &KíQJ PLQK $ 3+ª1 ,+ Oj KuQK FKó QK±W
b CKíQJ PLQK , = HB.HC2
F &KíQJ PLQK %,.& QÝL WLÃS
G , Oj WLÃS WX\ÃQ FëD ÿmáQJ WUzQ QJR¥L WLÃS WDP JLiF +.&
5
7ï PÝW ÿLÇP $ 3+ª1 ã QJRjL ÿmáQJ WUzQ 25 YÁ WLÃS WX\ÃQ $ 3+ª1 % Yj FiW WX\ÃQ $ 3+ª1 01 FëD ÿmáQJ WUzQ 25 % WKXÝF FXQJ OßQ 01 *ÑL , Oj WUXQJ ÿLÇP FëD Gây MN
D&KíQJ PLQK UµQJ $ 3+ª1 ,2% Oj Wí JLiF QÝL WLÃS
E&KíQJ PLQK UµQJ $ 3+ª1 % = AM.AN2
F %LÃW $ 3+ª1 % 5 7tQK FKX YL ÿmáQJ WUzQ QJR¥L WLÃS Wí JLiF $ 3+ª1 ,2% WKHR 5
6
&KR WDP JLiF $ 3+ª1 %& YX{QJ W¥L $ 3+ª1 7UrQ F¥QK $ 3+ª1 & O©\ ÿLÇP 0 Yj N¿ ÿmáQJ WUzQ ÿmáQJ NtQK 0&
.¿ %0 F³W ÿmáQJ WUzQ W¥L ÿLÇP ' máQJ WK·QJ '$ 3+ª1 F³W ÿmáQJ WUzQ W¥L 6
a &KíQJ PLQK $ 3+ª1 %&' QÝL WLÃS
b &KíQJ PLQK JyF $ 3+ª1 %' EµQJ JyF $ 3+ª1 &'
F &KíQJ PLQK &$ 3+ª1 Oj WLD SKkQ JLiF FëD JyF 6&%
G %LÃW $ 3+ª1 %D JyF %&$ 3+ª1 EµQJ ÿÝ 7tQK WKÇ WtFK KuQK QyQ ÿmçF W¥R WKjQK NKL TXD\ WDP JLiF YX{QJ %$ 3+ª1 & TXDQK F¥QK JyF YX{QJ $ 3+ª1 & FÕ ÿÏQK
7
&KR WDP JLiF $ 3+ª1 %& Fy ED JyF QKÑQ QÝL WLÃS ÿmáQJ WUzQ WkP 2 máQJ WK·QJ YX{QJ JyF YßL
%& W¥L % F³W 2 W¥L 0 Yj F³W ÿmáQJ WK·QJ $ 3+ª1 & W¥L ' *ÑL 1 Oj ÿLÇP ÿÕL [íQJ FëD 0 TXD %&
$ 3+ª1 % F³W &1 W¥L (
D &KíQJ PLQK UµQJ ED ÿLÇP 0 2 & WK·QJ KjQJ
E &KíQJ PLQK '$ 3+ª1 '& '0'%
F &KíQJ PLQK EÕQ ÿLÇP $ 3+ª1 ' ( 1 WKXÝF PÝW ÿmáQJ WUzQ
G &KR ELÃW $ 3+ª1 % $ 3+ª1 & &KíQJ PLQK UµQJ JyF %1& EµQJ KDL O«Q JyF %'&
8 &KR WDP JLiF $ 3+ª1 %& YX{QJ W¥L $ 3+ª1 $ 3+ª1 % $ 3+ª1 & ÿmáQJ FDR $ 3+ª1 + 7UrQ ÿR¥Q +& O©\ ÿLÇP ' VDR FKR +' +% YÁ &( YX{QJ JyF YßL $ 3+ª1 ' ( WKXÝF $ 3+ª1 '
D &KíQJ PLQK $ 3+ª1 +&( QÝL WLÃS [iF ÿÏQK WkP 2 FëD ÿmáQJ WUzQ QJR¥L WLÃS Wí JLiF $ 3+ª1 +&(
E &KíQJ PLQK &+ Oj WLD SKkQ JLiF FëD JyF $ 3+ª1 &(
9
&KR WDP JLiF $ 3+ª1 %& JyF % Yj JyF & QKÑQ &iF ÿmáQJ WUzQ ÿmáQJ NtQK $ 3+ª1 % $ 3+ª1 & F³W QKDX W¥L ' 0ÝW
ÿmáQJ WK·QJ TXD $ 3+ª1 F³W ÿmáQJ WUzQ ÿmáQJ NtQK $ 3+ª1 % $ 3+ª1 & O«Q OmçW W¥L ( Yj )
a) &KíQJ PLQK % & ' WK·QJ KjQJ
b) &KíQJ PLQK % & ( ) QµP WUrQ PÝW ÿmáQJ WUzQ
c) ;iF ÿÏQK YÏ WUt FëD ÿmáQJ WK·QJ TXD $ 3+ª1 ÿÇ () Fy ÿÝ GjL OßQ QK©W
10 &KR WDP JLiF $ 3+ª1 %& YX{QJ ã $ 3+ª1 Yj PÝW ÿLÇP ' QµP JLóD $ 3+ª1 Yj % máQJ WUzQ ÿmáQJ NtQK %' F³W %& W¥L
( &iF ÿmáQJ WK·QJ &' $ 3+ª1 ( O«Q OmçW F³W ÿmáQJ WUzQ W¥L FiF ÿLÇP WKí KDL ) * &KíQJ PLQK
D 7DP JLiF $ 3+ª1 %& ÿ×QJ G¥QJ YßL WDP JLiF EBD
Trang 8
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
F $ 3+ª1 & VRQJ VRQJ YßL )*
G &iF ÿmáQJ WK·QJ $ 3+ª1 & '( Yj %) ÿ×QJ TX\
11
&KR WDP JLiF $ 3+ª1 %& QÝL WLÃS ÿmáQJ WUzQ WkP 2 0 Oj PÝW ÿLÇP WUrQ FXQJ $ 3+ª1 & NK{QJ FKíD %
N¿ 0+
YX{QJ JyF YßL $ 3+ª1 & 0 YX{QJ JyF YßL %&
a) &KíQJ PLQK Wí JLiF 0+.& Oj Wí JLiF QÝL WLÃS b) &KíQJ PLQK JyF $ 3+ª1 0% JyF +0
c &KíQJ PLQK' $ 3+ª1 0% ÿ×QJ G¥QJ YßL' HMK
12.
&KR ÿmáQJ WUzQ WkP 2 Yj ÿLÇP $ 3+ª1 QµP QJRjL ÿmáQJ WUzQ ÿy 9Á FiF WLÃS WX\ÃQ $ 3+ª1 % $ 3+ª1 &
Yj FiW WX\ÃQ
$ 3+ª1 '( WßL ÿmáQJ WUzQ % Yj & Oj WLÃS ÿLÇP *ÑL + Oj WUXQJ ÿLÇP FëD '(
a)
&KíQJ PLQK $ 3+ª1 % + 2 & F QJ WKXÝF PÝW ÿmáQJ WUzQ ;iF ÿÏQK WkP FëD ÿmáQJ WUzQQJ SKmkQJ Fy G¥QJ D[ E[ F D ÿy
b) &KíQJ PLQK +$ 3+ª1 Oj WLD SKkQ JLiF FëD JyF %+&
c) *ÑL , Oj JLDR ÿLÇP FëD %& Yj '( &05 $ 3+ª1 % = AI.AH2 d) %+ F³W 2 ã &KíQJ PLQK UµQJ $ 3+ª1 ( VRQJ VRQJ &
,,, 0`7 6X H 7+$ 3+ª1 0 +*2
Ä 1
Câu 1 ÿLÇP &KR SKmkQJ WUuQK [ +2 3 x +1 2= 0 (1)
D &KíQJ PLQK UµQJ SKmkQJ WUuQK OX{Q Fy KDL QJKLËP SKkQ ELËW
E *ÑL x , x Oj KDL QJKLËP FëD SKmkQJ WUuQK +m\ WtQK WÙQJ 1 2
1 2
x x
Câu 2 ÿLÇP &KR KjP VÕ \ -2x 2
a) 7uP FiF ÿLÇP WKXÝF ÿ× WKÏ KjP VÕ Fy WXQJ ÿÝ EµQJ -16
b) 7uP FiF ÿLÇP WKXÝF ÿ× WKÏ KjP VÕ Fy KRjQK ÿÝ EµQJ WXQJ ÿÝ
Câu 3 ÿLÇP *L§L EjL WRiQ VDX EµQJ FiFK O±S SKmkQJ WUuQK
0ÝW QKyP KÑF VLQK WKDP JLD ODR ÿÝQJ FKX\ÇQ WK QJ ViFK YÅ WKm YLËQ FëD WUmáQJQJ SKmkQJ Fy G¥QJ D[ E[ F D
ÃQ EXÙL ODR
ÿÝQJ Fy KDL E¥Q EÏ ÕP NK{QJ WKDP JLD ÿmçF Yu Y±\ PÛL E¥Q SK§L FKX\ÇQ WKrP WK QJ QóD QJ SKmkQJ Fy G¥QJ D[ E[ F D PßL KÃW VÕ ViFK F«Q FKX\ÇQ +ÓL VÕ KÑF VLQK FëD QKyP ÿy"
Câu 4 ÿLÇP 7DP JLiF 2$ 3+ª1 % YX{QJ W¥L 2 2% JyF $ 3+ª1 2% 3004XD\ WDP JLiF ÿy PÝW YzQJ TXDQK F¥QK JyF YX{QJ 2$ 3+ª1 WD ÿmçF PÝW KuQK Ju" 7tQK GLËQ WtFK [XQJ TXDQK FëD KuQK
ÿy Câu 5 ÿLÇP &KR WDP JLiF $ 3+ª1 %& YX{QJ ã $ 3+ª1 $ 3+ª1 & ! $ 3+ª1 % 7UrQ F¥QK $ 3+ª1 & O©\ PÝW ÿLÇP 0 Yj YÁ
ÿmáQJ WUzQ ÿmáQJ NtQK 0& ¿ %0 F³W ÿmáQJ WUzQ W¥L ' máQJ WK·QJ '$ 3+ª1 F³W ÿmáQJ WUzQ W¥L 6
&KíQJ PLQK UµQJ
a) $ 3+ª1 %&' Oj PÝW Wí JLiF QÝL WLÃS b) Góc ABD = góc ACD
c) &$ 3+ª1 Oj WLD SKkQ JLiF FëD JyF 6&%
Ä
Câu 1: ÿLÇP
5~W JÑQ ELÇX WKíF $ 3+ª1 3 1 1 27 2 3
Câu 2: ÿLÇP
&KR KË SKmkQJ WUuQK3x 2y 6
mx y 3
w
tw + = w
v
D 7uP FiF JLi WUÏ P ÿÇ KË SKmkQJ WUuQK ÿm FKR Fy QJKLËP GX\ QK©W
E *L§L KË SKmkQJ WUuQK NKL P
Câu 3: ÿLÇP
Trang 9
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
+DL YzL QmßF F QJ FK§\ YjR EÇ WKu JLá ÿ«\ EÇ 1ÃX PÛL YzL FK§\ PÝW PuQK FKR ÿ«\ EÇQJ SKmkQJ Fy G¥QJ D[ E[ F D WKu YzL WKí KDL F«Q QKLÅX KkQ YzL WKí QK©W Oj JLá 7tQK WKáL JLDQ PÛL YzL FK§\ PÝW PuQK ÿ«\ EÇCâu 4: ÿLÇP
&KR WDP JLiF $ 3+ª1 %& YX{QJ W¥L $ 3+ª1 Fy , Oj WUXQJ ÿLÇP FëD $ 3+ª1 & 9Á ,' YX{QJ JyF YßL F¥QK KX\ÅQ
BC, (DÌ %& &KíQJ PLQK $ 3+ª1 % = BD ± CD2 2 2
Câu 5: ÿLÇP
&KR WDP JLiF $ 3+ª1 %& Fy JyF QKÑQ QÝL WLÃS WURQJ ÿmáQJ WUzQ WkP 2 FiF ÿmáQJ Fao AD, BK FëD WDP JLiF J»S QKDX W¥L + *ÑL ( ) WKHR WKí Wõ Oj JLDR ÿLÇP WKíF KDL FëD %2 Yj % NpR GjL YßLÿmáQJ WUzQ 2
D &KíQJ PLQK ()$ 3+ª1 &
E *ÑL , Oj WUXQJ ÿLÇP FëD $ 3+ª1 & &KíQJ PLQK ÿLÇP + , ( WK·QJ KjQJ Yj 2, 1
2BH
Câu 6: ÿLÇP
&KR D E F Oj FiF VÕ GmkQJ Yj D + b + c2 2 2 7uP JLi WUÏ QKÓ QK©W FëD ELÇX WKíF
P = bc ac ab
a + b + c
Ä
Câu1: &KR SKmkQJ WUuQK E±F KDL [ - 22 3 x 1 0Yj JÑL KDL QJKLËP FëD SW Oj [ và x K{QJ JL§L1 2
pt, tính giá tUÏ FëD FiF ELÇX WKíF VDX
a) x + x1 2 b) x x1 2 c) x12+ x22
Câu 2: D 9LÃW F{QJ WKíF WtQK WKÇ WtFK FëD KuQK WUéFy JKL U} FiF Nt KLËX WURQJ F{QJ
WKíF E &KR KuQK FKó QK±W $ 3+ª1 %&' Fy F¥QK $ 3+ª1 % D %& D 7tQK WKÇ WtFK KuQK VLQK UD NKL TXD\3
KuQK FKó QK±W PÝW YzQJ TXDQK F¥QK $ 3+ª1 %
Câu 3: &KR KjP VÕ \ -2x 2
c) 7uP FiF ÿLÇP WKXÝF ÿ× WKÏ KjP VÕ Fy WXQJ ÿÝ EµQJ -16
d) 7uP FiF ÿLÇP WKXÝF ÿ× WKÏ KjP VÕ FiFK ÿÅX KDL WUéF WR¥ ÿÝ
Câu 4 0ÝW WKñD UXÝQJ KuQK WDP JLiF Fy GLËQ WtFK P 7tQK F¥QK ÿi\ FëD WKñD UXÝQJ ÿy
ELÃW
2 UµQJ QÃX W QJ F¥QK ÿi\ WKrP P Yj JL§P FKLÅX FDR WmkQJ íQJ ÿL P WKu GLËQ WtFK FëD Qy NK{QJWKD\ ÿÙL
Câu 5: &KR KuQK YX{QJ $ 3+ª1 %&' ÿLÇP ( WKXÝF F¥QK %& ( % ( & 4XD % NÁ ÿmáQJ WK·QJ YX{QJ JyF YßL '( ÿmáQJ WK·QJ Qj\ F³W FiF ÿmáQJ WK·QJ '( Yj '& WKHR WKí Wõ ã + Yj
a) &05 7í JLiF %+&' Oj Wí JLiF QÝL WLÃS
b) 7tQK VÕ ÿR JyF &+
c) &KíQJ PLQK &.' +.%
Ä 4
Câu 1: ÿLÇP
D 5~W JÑQ ELÇX WKíF $ 3+ª1 5 5
+ +
b/ &KíQJ PLQK ÿ·QJ WKíF a b 2b 1
a b
a- b- a+ b- - = YßL D ñ0; a ñ 0 và a ï b
Câu 2: ÿLÇP
*L§L SKmkQJ WUuQK [ + 3x ± 108 = 02
Câu 3: ÿLÇP
0ÝW FD Q{ FK¥\ WUrQ V{QJ [X{L GzQJ NP Yj QJmçF GzQJ NP WKáL JLDQ F§ ÿL Yj YÅ KÃW JLá +m\ WuP Y±Q WÕF FD Q{ WURQJ QmßF \rQ O»QJ ELÃW UµQJ Y±Q WÕF FëD QmßF FK§\ Oj NPK
Trang 10
*LD6ñ 7KjQK ñkF www.daythem.edu.vn
&KR WDP JLiF ÿÅX $ 3+ª1 %& Fy ÿmáQJ FDR $ 3+ª1 + 0 Oj ÿLÇP E©W Nä WUrQ F¥QK %& 0 không trùng YßL % Yj & *ÑL 3 4 WKHR WKí Wõ Oj FKkQ FiF ÿmáQJ YX{QJ JyF NÁ Wñ 0 ÿÃQ $ 3+ª1 % Yj $ 3+ª1 & 2 Oj WUXQJÿLÇP FëD $ 3+ª1 0 &KíQJ PLQK UµQJ
D &iF ÿLÇP $ 3+ª1 3 0 + 4 F QJ QµP WUrQ PÝW ÿmáQJ WUzQQJ SKmkQJ Fy G¥QJ D[ E[ F D
E 7í JLiF 23+4 Oj KuQK Ju"
F ;iF ÿÏQK YÏ WUt FëD 0 WUrQ F¥QK %& ÿÇ ÿR¥Q 34 Fy ÿÝ GjL QKÓ QK©W
Câu 5: ÿLÇP
&KR D E Oj FiF VÕ GmkQJ &KíQJ PLQK UµQJ
a b
+
Ä
Bài 1 *L§L SKmkQJ WUuQK Yj KË SKmkQJ WUuQK VDX ÿ
a)
¯
®
-5 3
3 2
y x
y x
b) x ± (2 3 5)x 15 1 0
Bài 2 Cho parabol (P): y = 2
4
1
x Yj ÿmáQJ WK·QJ G \ [ - 1
D 9Á 3 Yj G WUrQ F QJ PÝW P»W SK·QJ WÑD ÿÝ ÿQJ SKmkQJ Fy G¥QJ D[ E[ F D
E ;iF ÿÏQK WÑD ÿÝ FiF JLDR ÿLÇP FëD 3 Yj G EµQJ SKpS WtQK ÿ
Bài 3: 7tQK FKX YL KuQK FKó QK±W ELÃW UµQJ FKLÅX GjL KkQ FKLÅX UÝQJ P Yj GLËQ WtFK
Oj Bài 4 &KR ÿmáQJ WUuQ 25 Yj PÝW ÿLÇQ $ 3+ª1 QµP QJRjL ÿmáQJ WUzQ VDR FKR 2$ 3+ª1 5 9Á FiF WLÃS
WX\ÃQ $ 3+ª1 % $ 3+ª1 & YßL 2 % & Oj FiF WLÃS ÿLÇP $ 3+ª1 2 F³W %& W¥L +
D &KíQJ PLQK Wí JLiF $ 3+ª1 %2& QÝL WLÃS
E &KíQJ PLQK $ 3+ª1 2 YX{QJ JyF YßL %& W¥L +
F 7tQK GLËQ WtFK Wí giác ABOC theo R
³&K~F HP {Q WkS WYW´