1. Trang chủ
  2. » Đề thi

BAI TAP TRAC NGHIEM SO PHUC HAY CO LOI GIAI

24 483 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 804,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô đun của số phức - Cho số phức z a bi có điểm biểu diễn là M a;b trên mặt phẳng Oxy.. Phương trình bậc hai với hệ số thực... Đường thẳng qua gốc tọa độ B... Đường thẳng qua gốc tọa đ

Trang 1

Trang 1

CHUYÊN ĐỀ 4: SỐ PHỨC PHẦN I: BÀI TẬP ÁP DỤNG ĐỊNH NGHĨA

- Một biểu thức dạng abi với a, b ,i2  1 được gọi là số phức

- Đối với số phức z a bi, ta nói a là phần thực, b là phần ảo của z

- Điểm M a;b trong hệ tọa độ vuông góc Oxy được gọi là điểm biểu diễn số phức  

z a bi

Mô đun của số phức

- Cho số phức z a bi có điểm biểu diễn là M a;b trên mặt phẳng Oxy Độ dài của vectơ  

OM được gọi là mô-đun của số phức z và kí hiệu là z

Phương trình bậc hai với hệ số thực

Cho phương trình bậc hai 2

ax bx c 0 với a, b, cR và a0 Phương trình này có biệt thức  b24ac, nếu:

Trang 2

Ví dụ 1: Tìm mô-đun của số phức z thỏa mãn   1 i z  2 i 3 i  

z z

 ?

Trang 3

b 22ab 3b 10 0

Trang 4

Có hai số phức thỏa mãn đề bài: z 2 i; z    2 i

Trang 5

A Đường thẳng qua gốc tọa độ B Đường tròn bán kính 1

C Đường tròn tâm I 3; 4   bán kính 2 D Đường tròn tâm I 3; 4   bán kính 3

Trang 6

A Đường thẳng qua gốc tọa độ B Đường tròn bán kính 1

C Đường tròn tâm I 5;0 bán kính 5   D Đường tròn tâm I 5;0 bán kính 3  

A Đường thẳng qua gốc tọa độ B Đường tròn bán kính 1

C Đường tròn tâm I 5;0 bán kính 5   D Đường tròn tâm I 1; 2   bán kính 2

A Đường thẳng qua gốc tọa độ B Đường tròn bán kính 1

C Đường tròn tâm I 5;0 bán kính 5   D Đường tròn tâm I 1; 2   bán kính 2

Trang 7

B Phương trình này vô nghiệm

C Phương trình này có hai nghiệm z 1 3i, z 1 3i

Trang 9

Trang 9

Chọn B

Ví dụ 20: Gọi z1 và z2 là hai nghiệm phức của phương trình   2  

2 1 i z 4 2 i z 5 3i   0 Tính 2 2

b25

Trang 13

Trang 13

2a b 1 3

a 1; b 2 z 1 2i z 52b a 5

Trang 14

Trang 14

Bài tập 16: Cho số phức:  2  

2 1 i 3 1 2iz

Trang 20

Bài tập 37: Gọi z , z1 2 là các nghiệm phức của phương trình z22z 5 0 Tính độ dài đoạn

AB, biết A, B lần lượt là các điểm biểu diễn số phức z , z1 2

Trang 23

 

Ngày đăng: 18/04/2017, 21:36

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w