BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA TOÁN Trần Thị Nụ THIẾT KẾ CÁC HOẠT ĐỘNG DẠY HỌC KHÁI NIỆM HÌNH HỌC THUỘC CHỦ ĐỀ QUAN HỆ SONG SONG TRONG KHÔNG GIAN Ở LỚP 11
Trang 1BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA TOÁN
Trần Thị Nụ
THIẾT KẾ CÁC HOẠT ĐỘNG DẠY HỌC KHÁI NIỆM HÌNH HỌC THUỘC CHỦ ĐỀ QUAN HỆ SONG SONG TRONG KHÔNG GIAN Ở LỚP 11 THEO ĐỊNH HƯỚNG
PHÁT TRIỂN NĂNG LỰC
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC
Trang 2BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA TOÁN
Trần Thị Nụ
THIẾT KẾ CÁC HOẠT ĐỘNG DẠY HỌC KHÁI NIỆM HÌNH HỌC THUỘC CHỦ ĐỀ QUAN HỆ SONG SONG TRONG KHÔNG GIAN Ở LỚP 11 THEO ĐỊNH HƯỚNG
PHÁT TRIỂN NĂNG LỰC
Chuyên nghành: Phương pháp dạy học Toán
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC:
Th S NGUYỄN VĂN HÀ
Hà Nội - 2016
Trang 3Lời cảm ơn
Trong thời gian nghiên cứu và hoàn thành khóa luận, em đã nhận được
sự giúp đỡ nhiệt tình của các thầy cô trong tổ phương pháp dạy học và các bạn sinh viên trong khoa Qua đây, em xin bày tỏ lòng biết ơn sâu sắc tới các
thầy, cô trong tổ phương pháp dạy học và đặc biệt là thầy giáo Nguyễn Văn
Hà-người đã định hướng, chọn đề tài và tận tình chỉ bảo, giúp đỡ em hoàn
thiện khóa luận tốt nghiệp này
Do thời gian và kiến thức có hạn, khóa luận không tránh khỏi có những hạn chế và thiếu sót nhất định Em kính mong nhận được sự đóng góp ý kiến của quý thầy cô và các bạn sinh viên để khóa luận của em được hoàn thiện hơn
Em xin chân thành cảm ơn!
Hà Nội, tháng 5 năm 2016
Sinh viên
Trần Thị Nụ
Trang 4Lời cam đoan
Hà Nội, tháng 5 năm 2016
Sinh viên
Trần Thị Nụ
Trang 5Mục lục
Lời mở đầu 1
1 Lý do chọn đề tài: 1
2 Mục đích nghiên cứu 2
3 Nhiệm vụ nghiên cứu 2
4 Đối tượng và phạm vi nghiên cứu 2
5 Phương pháp nghiên cứu 2
6 Nội dung 3
Chương 1: Cơ sở lí luận và thực tiễn 4
1.1 Năng lực và năng lực Toán học 4
1.1.1 Vấn đề năng lực 4
1.1.2 Năng lực Toán học của học sinh 6
1.2 Định hướng phát triển năng lực của học sinh trong dạy học toán ở trường phổ thông 7
1.2.1 Dạy học theo hướng tiếp cận nội dung và hướng tiếp cận năng lực 7 1.2.2 Phương pháp dạy học môn toán theo định hướng phát triển năng lực học sinh 7
1.3 Dạy học khái niệm toán học ở trường phổ thông 8
1.3.1 Đại cương về định nghĩa khái niệm 8
1.3.2 Vị trí khái niệm và yêu cầu dạy học khái niệm 11
1.3.3 Một số hình thức định nghĩa khái niệm thường gặp ở phổ thông 12 1.3.4 Các quy tắc định nghĩa khái niệm 13
1.3.5 Những con đường tiếp cận khái niệm 14
1.3.6 Hoạt động củng cố khái niệm 17
1.3.7 Dạy học phân chia khái niệm 19
Trang 6Chương 2: Ứng dụng thiết kế hoạt động dạy học khái niệm hình học thuộc chủ đề quan hệ song song trong không gian ở lớp 11 theo định hướng phát
triển năng lực 22
2.1 Phân tích nội dung chủ đề quan hệ song song trong không gian ở trường phổ thông 22
2.1.1 Nội dung chương trình của chủ đề quan hệ song song ở lớp 11 trường phổ thông 22
2.1.2 Nhiệm vụ dạy học nội dung chủ đề quan hệ song song ở lớp 11 23
2.2 Ứng dụng thiết kế hoạt động dạy học khái niệm hình học thuộc chủ đề quan hệ song song ở lớp 11 theo định hướng phát triển năng lực 23
2.2.1 Tính chất thừa nhận cách xác định mặt phẳng 24
2.2.2 Khái niệm hai đường thẳng song song 25
2.2.3 Đường thẳng song song với mặt phẳng 30
2.2.4 Hai mặt phẳng song song 33
2.2.5 Khái niệm phép chiếu song song 36
Kết luận 40
Tài liệu tham khảo 42
Trang 7Lời mở đầu
1 Lý do chọn đề tài:
Tiếp tục đẩy mạnh toàn diện công cuộc đổi mới, thực hiện công nghiệp hóa, hiện đại hóa gắn với phát triển tri thức, tích cực chủ động hội nhập quốc tế sâu rộng hơn để đến năm 2020 nước ta trở thành một nước công nghiệp theo hướng hiện đại đặt ra cho giáo dục, đào tạo nước ta những yêu cầu, thách thức mới Một trong những điểm nổi bật của việc đổi mới chương trình giáo dục phổ thông sau năm 2015 là xây dựng và phát triển chương trình theo định hướng phát triển năng lực cho học sinh Điều này đòi hỏi phải có định hướng phát triển, có tầm nhìn chiến lược, ổn định lâu dài cùng những phương pháp, hình thức, tổ chức, quản lí giáo dục và đào tạo cho phù hợp
Để thực hiên nhiệm vụ đó thì sự nghiệp giáo dục cần được đổi mới Cùng với những thay đổi về nội dung, cần có những đổi mới căn bản về tư duy giáo dục và phương pháp dạy học, trong đó phương pháp dạy học môn toán là một yếu tố quan trọng Bởi vì Toán học có liên quan chặt chẽ với thực
tế và có ứng rộng rãi trong nhiều lĩnh vực khác nhau của khoa học, công nghệ, sản xuất và đời sống xã hội hiện đại, nó thúc đẩy mạnh mẽ các quá trình
tự động hóa sản xuất, trở thành công cụ thiết yếu cho mọi ngành khoa học và được coi là chìa khóa của sự phát triển và thực tiễn đòi hỏi con người có năng lực giải quyết vấn đề hơn là lý thuyết sáo rỗng
Bên cạnh đó, thực tiễn Toán học cho thấy hình học không gian nói chung
và khái niệm quan hệ song song trong hình học không gian nói riêng là một khái niệm mới đối với học sinh phổ thông Nó đòi hỏi sự tưởng tượng ra hình thật , nhận biết đúng quan hệ thật từ hình vẽ biểu diễn của hình không gian Đây là một điều khó khăn với học sinh, rất nhiều học sinh còn bộc lộ yếu
Trang 8kém, hạn chế năng lực Do vậy việc rèn luyện và phát triển năng lực cho học sinh nói chung và học sinh phổ thông nói riêng là vấn đề cấp bách
Vì những lí do trên, tôi chọn đề tài nghiên cứu là: “ Thiết kế các hoạt động dạy học khái niệm thuộc chủ đề quan hệ song song trong không gian
cho học sinh lớp 11 theo định hướng phát triển năng lực học sinh.”
3 Nhiệm vụ nghiên cứu
- Nghiên cứu về lí luận:
+ Năng lực và năng lực toán học của học sinh
+ Phương pháp dạy học theo định hướng phát triển năng lưc cho học sinh
+ Dạy học khái niệm Toán học và nội dung dạy học khái niệm trong chủ
đề quan hệ song song ở lớp 11 trường THPT
- Thiết kế hoạt động dạy học khái niệm hình học thuộc chủ đề quan hệ song song ở lớp 11 trường THPT theo hướng tiếp cận năng lực
4 Đối tượng và phạm vi nghiên cứu
Các khái niệm toán học thuộc chủ đề phép biến hình ở lớp 11 trường THPT
5 Phương pháp nghiên cứu
Nghiên cứu lí luận các tài liệu về năng lực của học sinh, về phương pháp dạy học khái niệm môn toán
Trang 9Tổng kết kinh nghiệm tham khảo các giáo án, bài giảng theo phương pháp dạy học theo định hướng phát triển năng lực học sinh
Nghiên cứu nội dung chương trình, sách giáo khoa môn Toán thuộc chủ
đề quan hệ song song ở lớp 11 trường THPT
6 Nội dung
Chương I: Cơ sở lý luận và thực tiễn
1.1 Năng lực và năng lực toán học
1.2 Định hướng tiếp cận năng lực học sinh trong dạy học môn toán ở trường phổ thông
1.3 Dạy học khái niệm toán học ở trường phổ thông
Chương II: Ứng dụng thiết kế hoạt động dạy học khái niệm hình học thuộc chủ đề quan hệ song song theo hướng phát triển năng lực học sinh
2.1 Quan hệ song song ở lớp 11 trong trường phổ thông
2.2 Thiết kế các hoạt động dạy học khái niệm trong chủ đề quan hệ song song ở lớp 11 trường THPT theo hướng tiếp cận năng lực
Trang 10Chương 1: Cơ sở lí luận và thực tiễn
1.1 Năng lực và năng lực Toán học
1.1.1 Vấn đề năng lực
Theo quan điểm của những nhà tâm lý học năng lực là tổng hợp các đặc điểm, thuộc tính tâm lý của cá nhân phù hợp với yêu cầu, đặc trưng của một hoạt động, nhất định nhằm đảm bảo cho hoạt động đó đạt hiệu quả cao
Các năng lực hình thành trên cơ sở của các tư chất tự nhiên của cá nhân mới đóng vai trò quan trọng, năng lực của con người không phải hoàn toàn do
tự nhiên mà có, phần lớn do công tác, do tập luyện mà có
Tâm lý học chia năng lực thành các dạng khác nhau như năng lực chung và năng lực chuyên môn
+ Năng lực chung là năng lực cần thiết cho nhiều ngành hoạt động khác nhau như năng lực phán xét tư duy lao động, năng lực khái quát hoá, năng lực lát tập, năng lực tưởng tượng
+ Năng lực chuyên môn là năng lực đặc trưng trong lĩnh vực nhất định của xã hội như năng lực tổ chức, năng lực âm nhạc, năng lực kinh doanh, hội hoạ, năng lực toán học
Năng lực chung và năng lực chuyên môn có quan hệ qua lại hữu cơ với nhau, năng lực chung là cơ sở của năng lực chuyên môn, nếu chúng càng phát triển thì càng dễ thành đạt được năng lực chuyên môn Ngược lại sự phát triển của năng lực chuyên môn trong những điều kiện nhất định lại có ảnh hưởng đối với sự phát triển của năng lực chung Trong thực tế mọi hoạt động có kết quả và hiệu quả cao thì mỗi người đều phải có năng lực chung phát triển ở trình độ cần thiết và có một vài năng lực chuyên môn tương ứng với lĩnh vực công việc của mình
Trang 11Năng lực còn được hiểu theo một cách khác, năng lực là tính chất tâm sinh lý của con người chi phối quá trình tiếp thu kiến thức, kỹ năng và kỹ xảo tối thiểu là cái mà người đó có thể dùng khi hoạt động
Trong điều kiện bên ngoài như nhau những người khác nhau có thể tiếp thu các kiến thức kỹ năng và kỹ xảo đó với nhịp độ khác nhau có người tiếp thu nhanh, có người phải mất nhiều thời gian và sức lực mới tiếp thu được, người này có thể đạt được trình độ điêu luyện cao còn người khác chỉ đạt được trình độ trung bình nhất định tuy đã hết sức cố gắng Thực tế cuộc sống
có một số hình thức hoạt động như nghệ thuật, khoa học, thể thao Những hình thức mà chỉ những người có một số năng lực nhất đinh mới có thể đạt kết quả
Để nắm được cơ bản các dấu hiệu khi nghiên cứu bản chất của năng lực
ta cần phải xem xét trên một số khía cạnh sau:
- Năng lực là sự khác biệt tâm lý của cá nhân người này khác người kia, nếu một sự việc thể hiện rõ tính chất mà ai cũng như ai thì không thể nói về năng lực
- Năng lực chỉ là những khác biệt có liên quan đến hiệu quả việc thực hiện một hoạt động nào đó chứ không phải bất kỳ những sự khác nhau cá biệt chung nào
- Năng lực con người bao giờ cũng có mầm mống bẩm sinh tuỳ thuộc vào sự tổ chức của hệ thống thần kinh trung ương, nhưng nó chỉ được phát triển trong quá trình hoạt động phát triển của con người, trong xã hội có bao nhiêu hình thức hoạt động của con người thì cũng có bấy nhiêu loại năng lực,
có người có năng lực về quản lý kinh tế, có người có năng lực về Toán học,
có người có năng lực về kỹ thuật, có người có năng lực về thể thao
- Cần phân biệt năng lực với trí thức, kỹ năng, kỹ xảo: Trí thức là
Trang 12sống của mình Kỹ năng là sự vận dụng bước đầu những kiến thức thu lượm vào thực tế để tiến hành một hoạt động nào đó Kỹ xảo là những kỹ năng được lặp đi lặp lại nhiều lần đến mức thuần thục cho phép con người không phải tập trung nhiều ý thức và việc mình đang làm Còn năng lực là một tổ hợp phẩm chất tương đối ổn định, cơ bản của cá nhân, cho phép nó thực hiện
có kết quả một hoạt động Như vậy năng lực chỉ làm cho việc tiếp thu các
kiến thức kỹ năng, kỹ xảo trở nên dễ dàng hơn
1.1.2 Năng lực Toán học của học sinh
Theo V.A.Krutetxki thì khái niệm năng lực toán học được hiểu dưới hai bình diện sau:
Năng lực nghiên cứu toán học là năng lực sáng tạo, các năng lực hoạt động toán học tạo ra được các kết quả, thành tựu mới, khách quan và quý giá
Năng lực toán học của học sinh là năng lực học tập giáo trình phổ thông, lĩnh hội nhanh chóng và có kết quả cao các kiến thức, kỹ năng, kỹ xảo tương ứng
- Năng lực toán học của học sinh:
Từ khái niệm về năng lực ta có thể đi đến khái niệm về năng lực toán học của học sinh: “Năng lực toán học là những đặc điểm tâm lí đáp ứng được yêu cầu hoạt động học toán và tạo điều kiện lĩnh hội các kiến thức, kĩ năng trong lĩnh vực toán học tương đối nhanh chóng, dễ dàng, sâu sắc trong những điều kiện như nhau”
- Cấu trúc về năng lực toán học của học sinh:
+ Năng lực tính toán, giải toán
+ Năng lực tư duy toán học
+ Năng lực giao tiếp toán học
+ Năng lực vận dụng toán học vào thực tiễn
+ Năng lực giải quyết vấn đề
Trang 13+ Năng lực sáng tạo toán học
1.2 Định hướng phát triển năng lực của học sinh trong dạy học toán ở trường phổ thông
1.2.1 Dạy học theo hướng tiếp cận nội dung và hướng tiếp cận năng lực
Tiếp cận nội dung là cách nêu ra một danh mục đề tài, chủ đề của một
lĩnh vực/môn học nào đó Tức là tập trung xác định và trả lời câu hỏi: Chúng
ta muốn người học cần biết cái gì? Cách tiếp cận này người giáo viên chủ yếu
dựa vào yêu cầu nội dung học vấn của một khoa học bộ môn để thiết kế nội dung dạy học Vì vậy nội dung dạy học thường mang tính "hàn lâm", nặng về
lý thuyết và ít chú trọng đến vận dụng vào thực tiễn cuộc sống, nhất là khi người thiết kế ít chú đến tiềm năng, các giai đoạn phát triển, nhu cầu, hứng thú và điều kiện của người học
Tiếp cận năng lực là cách tiếp cận nêu rõ kết quả - những khả năng
hoặc kĩ năng mà người học mong muốn đạt được vào cuối mỗi giai đoạn học tập trong nhà trường ở một môn học cụ thể Nói cách khác, cách tiếp cận này
nhằm trả lời câu hỏi: Chúng ta muốn người học biết và có thể làm được
những gì? Theo cách tiếp cận này thì người giáo viên phải thiết kế nội dung dạy học đảm bảo tinh giản, cơ bản, hiện đại, giảm tính hàn lâm, tăng tính thực hành và vận dụng kiến thức và kĩ năng vào thực tiễn cuộc sống Định hướng trên cũng hạn chế được tính hàn lâm, xa rời cuộc sống
1.2.2 Phương pháp dạy học môn toán theo định hướng phát triển năng lực học sinh
Phương pháp dạy học theo định hướng tiếp cận nội dung chủ yếu yêu
cầu học sinh trả lời câu hỏi: Biết cái gì (know-what) Nghĩa là yêu cầu học sinh chỉ cần ghi nhớ tri thức và hiểu tri thức, chưa chú ý tới yêu cầu vận dụng
tri thức đó
Trang 14Phương pháp dạy học theo định hướng phát triển năng lực luôn đặt ra
câu hỏi: Biết làm gì từ những điều đã biết Nói cách khác, nói đến năng lực là phải nói đến khả năng thực hiện, là phải biết làm (know-how), chứ không chỉ biết và hiểu (know-what) Như vậy, tiếp cận năng lực chủ trương giúp
người học không chỉ biết học thuộc, ghi nhớ mà còn phải biết làm thông qua các hoạt động cụ thể, sử dụng những tri thức học được để giải quyết các tình huống do cuộc sống đặt ra Nói cách khác, tiếp cận năng lực là dạy cho học
sinh không chỉ biết và hiểu kiến thức mà phải biết làm gì từ những điều đã
biết về kiến thức đó.
Như vậy, việc dạy học toán theo định hướng phát triển năng lực học sinh là phù hợp với quan điểm “dạy học thông qua hoạt động và bằng hoạt động” [1], đồng thời chú ý gắn hoạt động học với thực tiễn đời sống Vì vậy,
năng lực học sinh được hiểu như sau: Dạy cho học sinh cách suy nghĩ tìm ra khái niệm; đồng thời chú trọng vào các hoạt động vận dụng kiến thức đó để giải quyết nhiều tình huống đặt ra của thực tiễn
1.3 Dạy học khái niệm toán học ở trường phổ thông
1.3.1 Đại cương về định nghĩa khái niệm
a) Khái niệm
Khái niệm là một hình thức tư duy phản ánh tư tưởng chung, đặc trưng bản chất của lớp đối tượng hoặc quan hệ giữa các đối tượng
Như vậy có hai loại khái niệm:
- Khái niệm về lớp đối tượng: Chẳng hạn như khái niệm: “Hình chóp”,
“Hình chóp đều”, …
+ Hình chóp: “Trong mặt phẳng (P) cho đa giác A1A2A3…An và điểm S không thuộc mặt phẳng (P) Hình tạo bởi n miền tam giác SA1A2A3…An gọi
là hình chóp SA1A2A3…An”
Trang 15+ Hình chóp đều: Một hình chóp được gọi là hình chóp đều nếu đáy của
nó là một đa giác đều và các cạnh bên bằng nhau
- Khái niệm về quan hệ đối tượng: Chẳng hạn như khái niệm: “Phương trình tương đương”,…
+ Phương trình tương đương: Hai phương trình cùng ẩn được gọi là tương đương nếu chúng có cùng tập nghiệm
Nội hàm và ngoại diên của khái niệm
Ngoại diên của khái niệm: Tập hợp các đối tượng hoặc lớp đối tượng phản ánh trong định nghĩa khái niệm
Nội hàm của khái niệm: Tập hợp các thuộc tính chung của lớp đối tượng tương đương hoặc quan hệ đối tượng
Ví dụ 1: Xét khái niệm “Hình vuông là hình chữ nhật có hai cạnh kề bằng nhau”
Ta thấy rằng ngoại diên của khái niệm trên là tập hợp tất cả các hình vuông, nội hàm của khái niệm trên là “hai cạnh kề bằng nhau”
Giữa nội hàm và ngoại diên có mối quan hệ mang tính quy luật, nội hàm càng được mở rộng thì ngoại diên càng bị thu hẹp và ngược lại Thật vậy nếu ta mở rộng nội hàm của khái niệm hình bình hành, chẳng hạn bổ sung thêm đặc điểm “có một góc vuông” thì ta sẽ được lớp các hình chữ nhật là một bộ phận thực sự của lớp các hình bình hành
Định nghĩa khái niệm
Định nghĩa một khái niệm là một thao tác logic nhằm phân biệt lớp đối tượng xác định khái niệm này với các đối tượng khác, thường bằng cách vạch
ra nội hàm của khái niệm đó
Trang 16Các định nghĩa thường có cấu trúc sau:
Từ mới (biểu thị khái
niệm mới)
(Những) từ chỉ miền đối
tượng đã biết (loại)
Tân từ (diễn tả khác biệt
về chúng)
Ví dụ: “Hình vuông là hình chữ nhật có hai cạnh bên liên tiếp bằng nhau”
Trong định nghĩa trên, từ mới là “hình vuông”, loại hay miền đối tượng
là “hình chữ nhật”, sự khác biệt về chúng là “hai cạnh liên tiếp bằng nhau”
Miền đối tượng (loại) và các thuộc tính về chúng tạo thành đặc trưng của khái niệm Đặc trưng của khái niệm là điều kiện cần và đủ để xác định khái niệm đó Nói chung, có nhiều cách nêu đặc trưng của cùng một khái niệm, tức là có thể định nghĩa cùng một khái niệm theo nhiều cách khác nhau Chẳng hạn, hình vuông ngoài định nghĩa nêu trong ví dụ trên, còn có thể định nghĩa theo một cách khác như “Hình vuông là hình thoi có một góc vuông”
Khi xét một đối tượng xem có thuộc một ngoại diên của một khái niệm nào đó hay không, người ta thường quan tâm những thuộc tính của đối tượng đó: Những thuộc tính nào nằm trong nội hàm của khái niệm đang xét thì được coi là thuộc tính bản chất, còn những thuộc tính nào không thuộc nội hàm của khái niệm đó thì được gọi là thuộc tính không bản chất đối với khái niệm đang xét
Khái niệm không định nghĩa
Định nghĩa khái niệm mới thường dựa vào một hay nhiều khái niệm đã biết Ví dụ về định nghĩa khái niệm hình vuông ta cần định nghĩa hình chữ nhật, để định nghĩa hình chữ nhật ta cần định nghĩa hình bình hành, để định nghĩa hình bình hành ta cần định nghĩa tứ giác,… Tuy nhiên, quá trình này không thể kéo dài vô hạn, tức là phải có khái niệm được thừa nhận làm điểm xuất phát, gọi là những hái niệm nguyên thủy trong Toán học
Trang 17Ở trường phổ thông, chúng ta thấy có một số khái niệm cũng không được định nghĩa vì lí do sư phạm, mặc dù chúng có thể được định nghĩa trong Toán học
Đối với những khái niệm không định nghĩa ở trường phổ thông, cần mô
tả giải thích thông qua những ví dụ cụ thể để học sinh hình dung được những khái niệm này, hiểu được chúng một cách trực giác
1.3.2 Vị trí khái niệm và yêu cầu dạy học khái niệm
a) Vị trí dạy học khái niệm
Trong vệc dạy học toán, cũng như việc dạy học bất cứ một khoa học nào ở trường phổ thông, điều quan trọng bậc nhất là hình thành một cách vững chắc cho học sinh một hệ thống khái niệm Việc hình thành một hệ thống khái niệm Toán học là nền tảng của toàn bộ kiến thức Toán, là tiền đề hình thành khả năng vận dụng hiệu quả các kiến thức đã học, có tác dụng lớn đến việc phát triển trí tuệ, đồng thời góp phần giáo dục thế giới quan cho học sinh qua việc nhận thức đúng đắn quá trình phát sinh và phát triển của các khái niệm Toán học
b) Yêu cầu của dạy học khái niệm
Nắm vững các đặc trưng cho một khái niệm
Biết nhận dạng khái niệm, tức là biết phát hiện xem một đối tượng cho trước có thuộc phạm vi một khái niệm nào đó hay không, đồng thời biết thể hiện khái niệm
Biết phát biểu rõ ràng, chính xác định nghĩa của một khái niệm
Biết vận dụng khái niệm trong những tình huống cụ thể trong hoạt động giải toán và ứng dụng vào thực tiễn
Biết phân loại khái niệm và nắm được mối quan hệ của một khái niệm với những khái niệm khác trong một hệ thống khái niệm
Trang 181.3.3 Một số hình thức định nghĩa khái niệm thường gặp ở phổ thông
a) Định nghĩa theo phương pháp loại- chủng
- Nội dung: Định nghĩa theo phương pháp loại - chủng là một hình thức định nghĩa nêu lên khái niệm loại và đặc tính của chúng (Vạch rõ nội dung của khái niệm, nêu rõ dấu hiệu đặc trưng của đối tượng được phản ánh vào trong khái niệm)
- Cấu trúc: Khái niệm được định nghĩa = Khái niệm loại + Dấu hiệu đặc trưng của chúng
- Ví dụ: Hình vuông là hình chữ nhật có hai cạnh kề bằng nhau
Trong đó: Hình vuông: Là khái niệm được định nghĩa
Hình chữ nhật: Là khái niệm loại
Hai cạnh kề bằng nhau: Dấu hiệu đặc trưng của chúng
b) Định nghĩa bằng quy ước
- Nội dung: Định nghĩa bằng quy ước là hình thức định nghĩa gán cho đối tượng cần định nghĩa một tên gọi hay một đối tượng nào đó đã biết
- Ví dụ: a0 = 1 (a 0)
c) Định nghĩa bằng phương pháp tiên đề
- Nội dung: Định nghĩa bằng phương pháp tiên đề là hình thức định nghĩa gián tiếp các khái niệm cơ bản thông qua các tiên đề
- Ví dụ: ABC = A’B’C’ nếu: , , , AB= A’B’, AC= A’C’, BC= B’C’
Trang 191.3.4 Các quy tắc định nghĩa khái niệm
a) Quy tắc 1: Định nghĩa phải tương xứng
Định nghĩa theo quy tắc này nghĩa là phạm vi của khái niệm định nghĩa
và khái niệm được định nghĩa phải bằng nhau
Định nghĩa không tương xứng là định nghĩa mà phạm vi của khái niệm quá hẹp hay qua rộng so với khái niệm được định nghĩa
Ví dụ:
- Số vô tỉ là số thập phân vô hạn
Trong đó: Số vô tỉ là khái niệm được định nghĩa
Số thập phân vô hạn là khái niệm định nghĩa
Phạm vi của khái niệm được định nghĩa nhỏ hơn khái niệm định nghĩa Vậy định nghĩa khái niệm trên không tương xứng
- Đẳng thức là hai biểu thức bằng nhau, nối với nhau bởi dấu “=” Trong đó: Đẳng thức là khái niệm được định nghĩa
Hai biểu thức bằng nhau được nối với nhau bởi dấu “=”
Phạm vi của khái niệm được định nghĩa lớn hơn khái niệm định nghĩa Vậy định nghĩa khái niệm trên không tương xứng
- Phương trình là đẳng thức chứa ít nhất một chữ và không phải hằng
đẳng thức
Trong đó: Phương trình là khái niệm được định nghĩa
Đẳng thức chứa ít nhất một chữ và không phải hằng đẳng
thức là khái niệm định nghĩa
Phạm vi của khái niệm được định nghĩa vừa rộng, vừa hẹp hơn khái niệm định nghĩa Vậy định nghĩa khái niệm trên không tương xứng
b) Quy tắc 2: Định nghĩa không được vòng quanh
Định nghĩa theo quy tắc này có nghĩa là định nghĩa khái niệm mới phải
Trang 20Ví dụ: Số vô tỉ là số thực không hữu tỷ
Trong đó: Số vô tỷ là khái niệm được định nghĩa
Số thực là khái niệm định nghĩa chưa biết
Số hữu tỷ là khái niệm định nghĩa đã biết
Vậy định nghĩa khái niệm trên đã vi phạm quy tắc 2
c) Quy tắc 3: Định nghĩa phải tối thiểu
Định nghĩa theo quy tắc này có nghĩa là trong nội dung khái niệm định nghĩa không chứa những thuộc tính mà có thể suy ra được những thuộc tính còn lại
Ví dụ: Hình bình hành là tứ giác phẳng có các cạnh đối diện song song
và bằng nhau
Định nghĩa trên đã vi phạm quy tắc 3, vì tính chất tứ giác “có các
cạnh đối diện song song” đã bao gồm tính chất “tứ giác phẳng” và có các
cạnh đối diện “bằng nhau”
d) Quuy tắc 4: Định nghĩa không dung lối phủ định nếu loại không được phân chia thành hai tập hơp triệt để (tức là khái niệm loại không bao gồm khai khái niệm âu thuẫn)
Ngoài ra: Định nghĩa phải có giá trị, nhưng không được đa trị
Định nghĩa đưa ra không được chứa đựng mâu thuẫn hoặc không mâu thuẫn với các định nghĩa khác
1.3.5 Những con đường tiếp cận khái niệm
Con đường tiếp cận khái niệm được hiểu là quá trình hoạt động và tư duy dẫn tới một sự hiểu biết về khái niệm đó nhờ định nghĩa tường minh nhờ
mô tả, nhờ trực giác, ở mức độ nhận biết một đối tượng hoặc một tình huống
có thuộc khái niệm đó hay không
Trong dạy học, người ta phân biệt ba con đường tiếp cận khái niệm Đó là:
Trang 21 Con đường quy nạp
Con đường suy diễn
Con đường kiến thiết
a) Tiếp cận khái niệm theo con đường quy nạp
- Nội dung: Xuất phát từ các trường hợp riêng lẻ, mô hình vẽ, vật thật,
… Giáo viên dẫn dắt học sinh phân tích, so sánh, khái quát hóa, … Tìm ra dấu hiệu đặc trưng của khái niệm và thể hiện ra các trường hợp cụ thể đó, từ đó đi đến định nghĩa tường minh hay hiểu biết trực giác của khái niệm
- Ưu- Nhược điểm:
Ưu điểm: Rèn luyện được thao tác tư duy, phân tích, so sánh, tổng hợp Phát huy được tính tích cực, chủ động, của học sinh
Nhược điểm: Tốn nhiều thời gian
b) Tiếp cận khái niệm theo con đường suy diễn
+ Bước 1: Xuất phát từ một khái niệm đã biết, thêm vào nội hàm khái
Trang 22+ Bước 2: Phát biểu một định nghĩa bằng cách nêu tên khái niệm mới
và định nghĩa nó nhờ một khái niệm tổng quát hóa hơn cùng với những đặc điểm để hạn chế một bộ phận trong khái niệm tổng quát đó
+ Bước 3: Đưa ra một số ví dụ đơn giản để minh họa cho khái niệm vừa được định nghĩa
- Ưu- Nhược điểm
Ưu điểm: Tiết kiệm thời gian và thuận lợi cho việc tập dượt cho học sinh tự học những khái niệm Toán học thông qua sách và tài liệu, hoặc nghe những báo cáo trên lĩnh vực Toán học
Nhược điểm: Hạn chế về mặt khuyến khích học sinh phát triển những năng lực trí tuệ chung như phân tích, tổng hợp, so sánh, trìu tượng hóa và khái quát hóa
- Điều kiện sử dụng:
Khi có thể gọi cho học sinh quan tâm tới một khái niệm làm điểm xuất phát và một đặc điểm có thể bổ sung vào nội hàm của khái niệm đó để định nghĩa một khái niệm khác hẹp hơn
c) Tiếp cận khái niệm theo con đường kiến thiết
- Nội dung: Con đường này mang cả những yếu tố quy nạp lẫn suy
diễn Yếu tố suy diễn thể hiện ở chỗ xuất phát từ những yêu cầu để xây dựng một hay nhiều đối tượng đại diện cho khái niệm cấu hình thành Yếu tố quy nạp thể hiện ở chỗ khái quát hóa quá trình xây dựng những đối tượng đại diện riêng lẻ đi đến đặc điểm tổng quát đặc trưng cho khái niệm cần định nghĩa
Trang 23+ Bước 2: Khái quát hóa quá trình xây dựng những đối tượng đại diện,
đi tới đặc điểm đặc trưng cho khái niệm cần hình thành
+ Bước 3: Phát biểu định nghĩa
- Ưu- Nhược điểm:
Ưu điểm: Thuận lợi cho việc khơi dậy hoạt động tự giác, tích cực của học sinh và rèn luyện khả năng giải quyết vấn đề trong quá trình tiếp cận khái niệm
Nhược điểm: Tốn nhiều thời gian
1.3.6 Hoạt động củng cố khái niệm
Quá trình tiếp cận khái niệm chưa kết thúc khi phát biểu được định nghĩa khái niệm đó Một khâu rất quan trọng là củng cố khái niệm, khâu này thường được thực hiện bằng các hoạt động:
Nhận dạng và thể hiện khái niệm
Hoạt động ngôn ngữ
Khái quát hóa, đặc biệt hóa, và hệ thống hóa những khái niệm đã học
a) Nhận dạng và thể hiện khái niệm
Nhận dạng và thể hiện khái niệm là hai dạng hoạt động theo chiều
hướng trái ngược nhau, có tác dụng củng cố khái niệm, tạo tiền đề cho việc
vận dụng khái niệm Nhận dạng một khái niệm là phát hiện xem một đối tượng cho trước có thỏa mãn định nghĩa đó hay không Thể hiện một khái
Trang 24Khi tập dượt cho học sinh nhận dạng và thể hiện một khái niệm cần lưu ý:
Thứ nhất, cần sử dụng cả những đối tượng ngoại diên lẫn những đối
tượng không thuộc ngoại diên khái niệm đó
Thứ hai, đối với những đối tượng thuộc ngoại diên của khái niệm đang
xét thì cần đưa ra cả những trường hợp đặc biệt, trong đó một đối tượng mang những đặc tính nổi bật nhưng không phải là thuộc tính bản chất đối với khái niệm đang xét vừa giúp học sinh hiểu biết sâu sắc về đặc trưng của khái niệm lại vừa rèn luyện cho các em khả năng trìu tượng hóa thể hiện ở chỗ biết phân biệt và tách đặc điểm bản chất khỏi những đặc điểm không bản chất
Thứ ba, đối với những đối tượng không thuộc ngoại diên của đối tượng
đang xét, trong trường hợp đặc trưng của khái niệm có cấu trúc hội, các phản
ví dụ thường được xây dựng sao cho chỉ trừ một thành phần trong cấu trúc hội, còn các thuộc tính thành phần khác đề được thỏa mãn
Thứ tư, trường hợp tính đặc trưng của khái niệm có cấu trúc hội của hai
điều kiện, cần làm rõ cấu trúc này và hướng dẫn học sinh vận dụng thuật giải
để nhận dạng khái niệm đó
b) Hoạt động ngôn ngữ
Cho học sinh thực hiện những hoạt động ngôn ngữ dưới đây sẽ vừa có tác dụng củng cố khái niệm lại vừa góp phần phát triển ngôn ngữ cho học sinh:
Phát biểu lại định nghĩa bằng lời lẽ của mình và biết cách thay đổi cách phát biểu, diễn đạt định nghĩa dưới những dạng ngôn ngữ khác nhau
Phân tích, nêu bật những ý quan trọng chứa đựng trong định nghĩa một cách tường minh hay ẩn tàng
c) Khái quát hóa, đặc biệt và hệ thống hóa
Khái quát hóa tức là mở rộng khái niệm