Đây là ĐỀ THI THỬ THPT QUỐC GIA MÔN TOÁN - TRẮC NGHIỆM – CÓ LỜI GIẢI CHI TIẾT (ĐÃ ĐƯỢC THẨM ĐỊNH KĨ) – BÁM SÁT ĐỀ THI CỦA BỘ - FILE WORD. Toàn bộ hệ thống đề bao gồm 300 đề (mỗi đề có giá 7000đ). Khác biệt với các đề thi thử chia sẻ trên mạng. Các đề của Yank Kerry đều có lời giải chi tiết cho từng câu, có bình luận, hướng dẫn sử dụng máy tính bỏ túi CASIO để giải nhanh. Hãy theo dõi và download đủ cả bộ 200 đề nhé. Các thầy /cô chỉ cần download và in đề cho hs giải, sau đó in lời giải (có thể thu nhỏ để tiết kiệm giấy) và phát cho học sinh sẽ tiết kiệm tới 70% thời gian chữa đề. Các bạn học sinh download đề tự giải và sau đó xem lời giải để rút kinh nghiệm, nâng cao kiến thức. NẾU CẦN MUA TOÀN BỘ 300 ĐỀ + RẤT NHIỀU TÀI LIỆU ĐẶC BIỆT ÔN THI THPT QUỐC GIA VUI LÒNG LIÊN HỆ - yankkerry@gmail.com. Thanks
Trang 1Đề số 037
ĐỀ THI MINH HỌA KỲ THI THPT QUỐC GIA NĂM 2017
Môn: TOÁN
Thời gian làm bài: 90 phút
Câu 1: Đường cong hình bên là đồ thị của hàm số nào:
A y x= 4+ +x2 1
B y= − +x2 2x+1 y x= 2+4
C y x= 2+4
D 4 2
5
y= − − +x x
Câu 2: Cho hàm số 3 2
y= − +x − Các mệnh để sau mệnh đề nào sai:
A Hàm số đồng biến ( )0; 2
B Hàm số nghịch biến trên (3;+∞)
C Hàm số nghịch biến trên khoảng (−∞;0)
D Hàm đạt cực đại tại x=0;y= −5
Câu 3: Cho bảng biến thiên sau :
x −∞ 2 +∞
y' − −
y 3 +∞
−∞ 3
Kết luận nào sau đây là đúng:
A Hàm số chỉ có một cực trị x 2
B Đồ thị hàm số có hai tiệm cận
C Hàm số nghịch biến trên ¡
D Hàm số có giá trị nhỏ nhất là 3
Câu 4: Cho hàm số y x= a với a là số nguyên, khi đó miền xác định của hàm số là
A ¡ B ¡ \ 0{ } C (0;+∞) D [0;+∞)
Câu 5: Chọn mệnh đề sai trong các mệnh đề sau:
A x>0thì log2x2 =2log2x B khi 0< <a 1 và b < c thì b c
a >a
C Với a b< thì loga b<logb a<1 D Điều kiện để x có nghĩa là 2 x≥0
Câu 6: Cho ∫ f x dx F x( ) = ( ) +C Khi đó với a≠0, ta có ∫ f ax b dx( + ) bằng:
A F ax b( + +) C B aF ax b( + +) C C 1F ax b( ) C
a + + D 21 F ax b( ) C
Câu 7: Cho Môđun của số phức w=2z i− là:
Câu 8: Diện tích xung quanh hình trụ bằng:
A Một nửa tích của chu vi đáy với độ dài đường cao của nó
Trang 2B Tích của chu vi đáy với độ dài đường cao của nó
C Một nửa tích của chu vi đáy với độ dài đường sinh của nó
D Tích của nửa chu vi đáy với độ dài đường sinh của nó
Câu 9: Cho mặt phẳng ( )P : 2x y− + + =5z 5 0 Xét các mệnh đề:
(I), (P) có vectơ pháp tuyến nr=(2; 1;5− )
(I), (P) đi qua điểm A(1; 2; 1− )
Khẳng định nào sau đây là đúng:
A (I) đúng, (II) sai B (I) sai, (II) đúng
C cả (I) và (II) đều đúng D cả (I) và (II) đều sai
Câu 10: Cho mặt cầu ( )S x: 2+y2+ −z2 2x 4+ y− + =6z 10 0, tâm và bán kính của mặt cầu là:
Câu 11: Hàm số 4 2
Câu 12: Giá trị cực đại, cực tiểu của hàm số 3 2
y x= − x − x+ là:
A 35 và 3 B 30 và 5 C 40 và -1 D 20 và 7
Câu 13: Giá trị nhỏ nhất của hàm số y= −2x4−5x2+12 trên [− −2; 1] là:
Câu 14: Cho hàm số y x 21( )C
x
+
=
Câu 15: Phương trình
x+
Câu 16: : Giá trị x thỏa mãn log 3(x− <1) 2 là:
Câu 17: Đạo hàm của hàm số y= 4 x3−2x là:
A
3 3 3 4
'
x y
−
=
3 3 4
2 '
y
−
=
−
C
2 3 3 4
'
x y
−
=
3 3 3 4
'
2
x y
−
=
−
Câu 18: Phương trình 4log25 x+log 5 3x = có nghiệm là
A x=2,x= 2 B x=3,x= 3 C x=4;x=2 D x=5;x= 5
Câu 19: Tập xác định của hàm số ( 2 ) 2
y= x − x+
Trang 3A 3 B 4 C 9
Câu 21: 2
0
1 sin 2 x
dx
π
− +
2
Câu 22: Giá trị của a để ( )
1
1
2
a
Câu 23: Chọn mệnh đề sai trong các mệnh đề sau:
A Cho x,y hai số phức thì số phức x y+ có số phức liên hợp x y+
B Cho x,y hai số phức thì số phức x y− có số phức liên hợp x y−
C Cho x,y hai số phức thì số phức xy có số phức liên hợp xy
D Số phức z a bi= + thì 2 ( )2 ( 2 2)
2
z + z = a +b
Câu 24: Gọi A là điểm biểu diễn của số phức z= +2 5i và B là điểm biểu diễn của số phức
' 2 5
z = − + i
A Hai điểm A và B đối xứng với nhau qua trục hoành.
B Hai điểm A và B đối xứng với nhau trục tung.
C Hai điểm A và B đối xứng với nhau qua gốc tọa độ O.
D Hai điểm A và B đối xứng với nhau qua đường thẳng y x
Câu 25: Nghiệm của phương trình 2
A ,i i− B 1 , 1+ − −i i C 1 , 1− − − +i i D Vô nghiệm
Câu 26: Thể tích tứ diện đều cạnh 2a là:
A 3
3
2
3
2
Câu 27: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hình chiếu của S lên
(ABCD) là trung điểm AD SC tạo với đáy một góc 300 Thể tích khối chóp S.ABCD là
A 15 3
3
15
3
15
12 a D Đáp án khác
Câu 28: Cho hình chữ nhật ABCD có AB=2 , AD 3aa = Gọi V V lần lượt là thể tích của 1, 2
khối trụ được sinh ra khi quay quanh AB, AD Tỉ số 1
2
V
V là:
A 3
1
Câu 29: Khoảng cách giữa hai mặt phẳng ( )P : 2x+4y+6z− =4 0 và x+2y+3z=0 là:
A 5 14
6 3
5 14
14 D Đáp án khác
Câu 30: Cho ba điểm A(3; 4;0 ,) (B 1;5;3 ,) (C 2; 3;1− ) Mặt phẳng đi qua A và vuông góc với
BC có phương trình là :
Trang 4A x+8y−2z−35 0= B x y+ +2z− =7 0
C 2x y z− + − =2 0 D x−8y−2z+29 0=
Câu 31: Cho A(1;3; 4 ,− ) (B −1; 2; 2) Phương trình mặt phẳng trung trực của đoạn AB là :
A 4x+2y−12z− =17 0 B 4x−2y−12z− =17 0
C 4x−2y+12z+17 0= D 4x+2y−12z+17 0=
Câu 32: Gọi M(x; y) là giao điểm của hai đồ thị y x= 2+ +x 6 và 3
2
x y
x
+
=
K = x+ y có giá trị phần nguyên là:
Câu 33: Giá trị của k để đường thẳng y kx k= − −1 cắt đồ thị hàm số y x= −3 3x2+1 tại 3 điểm phân biệt A, B, C (với hoành độ của ba điểm thỏa mãn x A <x B <x C) sao cho tam giác AOC cân tại gốc tọa độ O là:
A k=0 B k= −1 C k=2 D k=1
Câu 34: Một chất điểm chuyển động theo quy luật 1 4 3 2
2 11
t
chất điểm có vận tốc bằng 0 tại thời điểm gần nhất tính từ thời điểm ban đầu là
Câu 35: Hệ thức đúng trong các hệ thức sau là:
2
a
log
a
b
ab
b
= −
÷
Câu 36: Cho hàm số ( ) ln 1
1
f x
x
= + Hệ thức giữa y và y’ không phụ thuộc x là :
A ' 2 y 1y − = B y' e+ y =0 C ' 2 0y y − = D y' 4e− y =0
Câu 37: Hàm số f x( ) x2 3x 101
x
=
A
2
2
x
2
2
x
y= − + x−
C
2
2
x
2
2
x
y= + x+ x−
Câu 38: Thể tích khối tròn xoay hình giới hạn bởi các đường: y= − +x2 2 , y xx = quay quanh
Ox có kết quả là:
A
4
π
B
5
π
C
6
π
D
7 π
Câu 39: Tọa độ điểm biểu diễn số phức z thỏa mãn z =2 2 và z là số thuần ảo là2
A ( )1; 2 B ( )2;1 C (2; 2− ) D (−1;1)
Câu 40: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật , AB a AD= , =2a Cạnh bên SA vuông góc với đáy ABCD Cạnh bên SC tạo với đáy ABCD một góc α và
Trang 5tan
5
S.ABMN là
A 5 2 3
3
5 2
3
5
18a D Đáp án khác
Câu 41: Cho hai mặt phẳng (P) và (Q) vuông góc với nhau theo giao tuyến ∆ Trên đường ∆ lấy hai điểm A, B với AB = a Trong mặt phẳng (P) lấy điểm C và trong mặt phẳng (Q) lấy điểm D sao cho AC, BD cùng vuông góc với ∆ và AC = BD = AB Bán kính mặt cầu ngoại tiếp với tứ diện ABCD là
3
3
2
a
Câu 42: Giá trị của m để hai mặt phẳng sau cắt nhau là: ( )P : 3x+4y z+ =0 và
2
m
m
+
A 16
7
7
m≠ −
D m∀ ∈¡
Câu 43: Trong không gian hệ trục Oxyz, cho hai điểm M(0; 1; 2− ) và N(−1;1;3) Mặt phẳng (P) đi qua M, N sao cho khoảng cách từ K(0;0; 2) đến (P) đạt giá trị lớn nhất (P) có vectơ
pháp tuyến là
Câu 44: Đường thẳng y= − +x m luôn cắt đồ thị 2x 1
1
y x
−
= + tại hai điểm P và Q Để độ dài đoạn PQ ngắn nhất, giá trị của m là:
A m= −1 B m=1 C m= −2 D m=2
Câu 45: Một người gửi ngân hàng với hình thức lãi lép theo lãi suất 12% / năm Cứ mỗi
tháng người đó gửi vào ngân hàng 10 triệu đồng Số tiền người đó nhận được sau 2 năm (lấy gần đúng 2 chữ thập phân) là
A 272, 43 triệu B 292, 34 triệu C 279, 54 triệu D 240 triệu
Câu 46: Một vật chuyển động nhanh dần đều với gia tốc a 2m / s Biết tại thời điểm t 2s
thì vật có vận tốc bằng 36km / h Quãng đường vật đó di chuyển từ điểm ban đầu đến khi đạt vận tốc bằng 72km / h là
Câu 47: Cho các z z khác không, thỏa mãn 1, 2 2 2
z −z z +z = Gọi A, B là các điểm biểu diễn tương ứng của z z Khi đó tam giác OAB là tam giác1, 2
Câu 48: Cho hình lăng trụ ABC.A' B' C' có đáy ABC là tam giác đều cạnh a , B'A B'C
B'B, góc giữa cạnh bên BB' và (ABC) bằng 600 Khoảng cách giữa hai đường thẳng AC, BB' là
2
a
C 3
4
a
D 2a
Trang 6Câu 49: Một khối cầu có bán kính 5dm, người ta cắt bỏ 2 phần bằng 2 mặt phẳng song song
và cách tâm 3dm Thể tích phần còn lại của khối cầu là:
A 132π lít B 41π lít C 100
3 π lít D 43π lít
Câu 50: Trong không gian hệ trục tọa độ Oxyz, hai điểm A(1; 2;2 ,) (B 5; 4; 4) và mặt phẳng ( )P : 2x y z+ − + =6 0 Tọa độ điểm M nằm trên (P) sao cho MA2+MB2 nhỏ nhất là:
Trang 7HƯỚNG DẪN GIẢI
Câu 1: Từ hình dáng đồ thị ta loại được đáp án B và D.Tiếp đó thấy đồ thị hàm số qua điểm
(0;1) nên chọn đáp án A
Câu 2: Cách 1: Có ' 3x2 6x ' 0 0
2
x
x
=
Hàm số đồng biến trên (0;2) và nghịch biến trên (−∞;0 , 2;) ( +∞)
Vậy đáp án A, B, C đúng
Cách 2: Dùng MODE 7 nhập hàm số vào với khởi tạo START=-10 , END = 10, STEP =
Dựa vào giá trị của y để biết các khoảng đồng biến, nghịch biến
Câu 3: Từ bảng biến thiên ta thấy hàm số có TCĐ x = 2 và TCN y = 3.
Câu 4: Nhớ: xα với a không nguyên thì điều kiện tồn tại là x>0
xα với a nguyên dương thì TXĐ là ¡
xα với a nguyên âm hoặc a=0 thì TXĐ là ¡ \ 0{ }
Câu 5: Đáp án C sai vì với a b< thì logb a< <1 loga b
Câu 6: Có F x'( ) = f x( ) ⇒F ax b'( + =) a f ax b ( + )
Câu 7: Có w=2z i− = − ⇒8 5i w = 82+52 = 89
Câu 8: Có S xq =2πrh
Câu 9: Ta có mặt phẳng ( )P ax by cz d: + + + =0 có vectơ pháp tuyến nr=(a b c; ; )
Vậy khẳng định (I) đúng Thay điểm A vào phương trình (P) thấy thỏa mãn nên chọn đáp án C
Câu 10: Có ( ) ( ) (2 ) (2 )2
Câu 11: Cách 1: ' 4 3 4 ' 0 0
1
x
x
=
' 0
1
x y
x
− < <
⇒ > ⇔ >
Cách 2: Nhập hàm số vào MODE 7 với khởi tạo START 10, END 10, STEP 1 và từ các giá trị của y suy ra các khoảng đồng biến nghịch biến
1
x
x
=
Câu 13: Dùng MODE 7 khảo sát hàm số với khởi tạo START = -2, END = -1, STEP = 0,1
thấy giá trị nhỏ nhất là -40 khi x = -2
Câu 14: Cách 1: Dùng MODE 7 khảo sát hàm số với khởi tạo START = -10, END = 10,
STEP = 1 thấy hàm số có 4 giá trị nguyên là f ( )− =2 0, f ( )0 = −2, f ( )2 =4, f ( )4 =2
1
y
x
− số điểm có tọa độ nguyên là số giá trị x thỏa mãn x – 1 là ước của
3 Ta có ước của 3 là 3, 1± ± nên có 4 điểm
Trang 8Câu 15
x
+
Cách khác: Dùng CALC thử lần lượt các đáp án vào phương trình
Câu 16: Cách 1: Nhập log 3(X − −1) 2 vào máy tính.
CALC với x = 5 ra kết quả 0,523 > 0 không thỏa mãn nên loại đáp án C, D
CACL với x = 3,5 ra kết quả -0,33 < 0 thỏa mãn nên loại đáp án A
4
x
x x
− >
− < ⇔ − < = ⇔ <
Câu 17: Áp dụng ( ( ) ) ( )1( )
' '
,
n
n n
f x
f x
n f − x
Ngoài ra có thể lấy x = 2, tính d/dx của y tại x =2 được kết quả 0,884 Thay x = 2 vào các đáp
án, nếu cũng ra 0,884 thì chọn
Câu 18: Cách 1: Dùng CALC thử lần lượt các đáp án vào phương trình bài cho.
5
1
log
x
x
5
5
1
2
=
Cách 2:Nhập hàm số và CALC x = 2 thấy báo MATH ERROR nên loại đáp án B, C, D
Câu 20: Xét phương trình 2 1 3 1
2
x
x
=
+ = − + ⇔ = − Diện tích hình phẳng là:
1 2 2
9
2
−
∫
Câu 21: Bấm máy ta được đáp án A
Câu 22: Đặt ( ) 2
1 ln
x
x dx dv
x x v
1
2
a a
∫
2
a
⇒ =
Các khác dùng casio nhập:
1
1
2
A
CALC
Chọn đáp án B.
Câu 23: Ta có z a bi= + thì z2+z2 =2a2 D sai
Câu 24: Ta có: A( ) (2;5 ,B −2;5) Dễ thấy A và B đối xứng nhau qua trục tung
Trang 9Câu 25: 2 ( )2 2 1
1
= − +
Câu 26: Thể tích tứ diện đều cạnh a có công thức nhanh 3 2
12
a
V =
Câu 27: Ta có: S ABCD =a2,(SC ABCD,( ) ) =(SC HC, ) =SCH =30
3
Câu 28: Ta có: 1 2
1
3
V = πAD AB và 2 2 1
2
V AD
V AB
π
Câu 29: Ta thấy (P)//(Q) nên lấy điểm O(0;0;0) ( )∈ Q
28
+ +
Câu 30: Gọi (P) là mặt phẳng cần tìm ( )P ⊥BC⇒nuuur uuur( )P =BC= − −(1; 8; 2)
Mà (P) qua A(3; 4;0) nên pt P( ) (: x− −3) (8 y− −4) 2z=0
Câu 31 Phương trình mặt phẳng trung trực của đoạn AB qua trung điểm 0; ; 15
2
I −
có vec-tơ pháp tuyến là uuurAB(− −2; 1;6) là
2
Câu 32:
Xét
3
2
3 6
x
x x
− + − + = <=> ≈ +
Vậy đáp án là A
Câu 33:
Cách 1:
Phương trình hoành độ giao điểm của d và (C) là:
2
2
1
x x kx k
x
=
<=> − − − =
Theo bài ra: x A <x B <x C =>x B =1
OA=OCx A2+x C2 = y A2+y C2 <=>(x A−x C)(x A+x C) (y= A−y C)(yA+y C)(*)
Trang 10Thay
1 1 2
A C
y kx k
y kx k
x x
+ =
vào(*) ta tính được k=1
Vậy đáp án là D
Cách 2:
x − x − + + =kx k
Thay k=0=>
1
B
x
=
= + => = −
=>loại vì OA≠OC
Tương tự với k= -1;2;1, khi nào thấy OA=OC, ta sẽ được đáp án
Câu 34:
Ta có:
3
( ) 0
2( )
v t S t t t
t TM
v t
=
= <=> = −
Vậy đáp án là A
Câu 35:
Cách nhanh nhất đối với loại bài này là tùy chọn gái trị của a và b
Ta thay 1 giá trị bất kì nào đó dương vào a và b
Càng lẻ càng tốt vì khi a,b lẻ ta sẽ tránh được các trường hợp đặc biệt
Ví dụ a=3,5;b=8
=>Dùng casio thay a,b vào và ta nhận được đáp án C
Vậy đáp án là C
Câu 36:
1
1
x
−
+ Thay vào các đáp án
A sai
1
y
e
x
=
+ => B đúng
C sai
D sai
Câu 37:
− +
Câu 38:
1
x
x
=
− + = <=> − + = <=> = Thể tích khôi tròn xoay cần tìm là:
1
V =π∫ − +x x −x dx
Trang 11Dùng casio để tính tích phân ta được kết quả
5
V =π Vậy đáp án là D
Câu 39: Cách 1: gọi z=x+yi( ;x y R∈ )=> ta có hệ sau :
2 2 8
2 2
2 0
2
2
x x
x y
x y
y
x y
x y xy z
y
=
= −
Nhìn vào đáp án => ta được đáp án C:
Cách 2:
Nhìn từ đáp án nhìn nên:
Ta có:| z | 2 2= =>Loại A,B,D Vậy
A :| z | 5
B z
D z
=
=
=
Vì
A :| z | 5
B z
D z
=
=
=
Câu 40:
Cách 1:
Ta có:
B
C
Trang 12.
2
C SMN
C SAB
SABMN S ABC S ABCD
SA SA
SA AC
α
Cách 2:
Đặt hệ trục tọa độ Oxyz
A(0;0;0),B(0;a;0),C(2a;a;0);D(2a;0;0);S(0;0; 2 a)
=>M(a;a;0)
N(4 2a; a;0
6 SA SB SCuur uur uuur= 18 a
Câu 41:
Ta có:
BD ABC
AC ABD
⊥
Dễ thấy tâm đường tròn ngoại tiếp của ABC là trung điểm BC
Trang 13=>H là trung điểm của DC
Từ trung điểm của DB vẽ đường thẳng song song với BC=> cắt DC tại chính điểm H
=>H là tâm mặt cầu ngoại tiếp tứ diện ABCD
Vậy đáp án là D
Câu 42:
Để (P) cắt (C) thì:
6
2 2
m m
m m
m m m
+ <=>
Khi giải đến m≠1,và ở trên có m khác 1 cái gì đó nữa, ta nhìn vào đáp án=>loại được ngay A,B,D=>đáp án là C
Câu 43
Gọi E là hình chiếu của K xuống MN là E
Ta có:
(K;(P))
KE KF≥ =d
=>d(K;(P))max =KE
Cách 1:
Tìm E=> KEuuur
Cách 2:
Trang 140 ( 1; 2;1)
( ; ; )
P
MN
n A B C
= −
=
uuuur
uur
=>Thử vào từng đáp án=> ta được đáp án A
Vậy đáp án là A
Câu 44:
Cách 1:
Để PQ ngắn nhất thì PQ chứa I(-1;2) (I có tọa độ là giao của 2 tiệm cận)
=>2=-(-1)+mm=1
Cách 2:
Phương trình hoành độ giao điểm:
2
2
2
1
(m 3) x m 1 0(*)
P Q
x
x m
x
x
x x
−
− + =
+
<=> − + − + + =
Thay vi-et của phương trình (*) vào (**) ,rồi thay m bằng các đáp án để tìm PQ nhỏ nhất, ta được m=1
Vậy đáp án là B
Câu 45:
12%/năm =1%/tháng=r
2 năm=24 tháng=n
Ta có:
n n
r
r
Vậy đáp án là A
Câu 46: 36km/h=10m/s;72km/h=20m/s
Ta có:
2
v=∫adt= +t C
Khi vận tốc là 10m/s:
=>v(2)=2.2+C=10c=6
Khi vận tốc là 20m/2 thì 20=2t+6t=7
Quãng đường vật đi được từ thời điểm ban đầu đến khi vận tốc đạt 72km/h là:
7
0
v=∫ t+ = m
Câu 47:
Trang 153 2 2 2 3 3
z +z = z +z z −z z +z = <=>z = −z
Ta có
OA=|z |1
OB=|z |2
AB=|z -1 z |2
2
2
2
2
(1);(2)
z
z z
z z z
AB OA OB
OA OB AB
= −
=> = −
<=> =
<=> = => =
<=> − = −
<=> =
<=> = =
Vậy đáp án là A
Câu 48:
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC
=>B’I vuông góc với (ABC)(do B’B=B’A=B’C)
Gọi H là trung điểm AC
Ta có:
'
AC B I
AC BB H
AC BH
⊥
B’
B
A
C
C’
A’
I
H K
Trang 16Từ H kẻ HK⊥BB’(K thuộc BB’)
=>d(AC;BB’)=HK
Vậy đáp án là C
Câu 49:
Ta có:
Thể tích cần tìm là:
S(x) là diện tích 1 mặt cắt
Câu 50:
Ta thấy: A và B nằm cùng phía so với (P)
Thử bằng casio ta thấy luôn loại đáp án A,B vì M không thuộc (P)
Dùng tiếp casio để tínhMA2+MB2với đáp án C và D
Đáp án nào nhỏ hơn thì đúng