1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Ôn luyện theo cấu trúc đề thi môn Toán Phần 2 Ôn thi tốt nghiệp THPT TS.Vũ Thế Hựu, Nguyễn Vĩnh Cận

30 322 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 9,38 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Giai he I bkng phLrong phap the... MOT SO HE PHl/dNG TRINH DAI SO KHAC.

Trang 1

I DA

5, c

6 h

(x) = Oc^x =

- 5 + 0

0 +

+

g(x) = 4x2

- 0 +

^_ h(x)

g(x) + 0

+ 0

X

e '3

u (4;

+oo)

f(n) =

0 vdi

X =

1,

X = -

2

, x = 4

X

j =

- , X2

= 2

fix) >

0 (f(x) cun

g da

u vd

i 2) vdi x < - hoac x

> 2 Va

I 2_

2;

+c o).

Bieu die

n ta

p

nghiem tren tru

e so' (pha

»

« f

p nghie

m T = (-3

-V Tn

h CS

n

Trang 2

19. Giai he bat phifofng trinh va bieu dien tap nghiem tren true so :

x' + x - 6 > 0 (1)

x ' - 5 x + 4 < 0 (2) - 3

(I)

( 2 ) i ( i ) i

Tap nghiem cua he (I) : T = T i n T2 = [2; 4) ^

20 Trong moi trirdng hop, t i m cac gia t r i tham so m de :

a) PhtfOng trinh : (3m + l)x^ - (3m + l)x + m + 4 = 0 (1) c6 hai nghiem

m2 = -— CO gia t r i diiong (trai dau vdi -3) vdi -15 < m < - —

3 3

b) Neu m = 4 phirong trinh (2) c6 dang : 5x + 7 = 0 c6 mot nghiem

f m ^ 4 PhUOng trinh (2) v6 nghiem neu \

Trang 3

= 0 <=>

i

= 1,

n t

hi ph

ai c

6

3m-2

p nghie

m cu

a (1) t

g ho

p diid

i day, ha

y tim cac gi

a t

ri cu

a tha

h : (m

- l)x

^ 2mx +

m +

5 =

0 (1)

b) phiron

g trin

h : 4x^ - (3m + l)x

- m

- 2 = 0

; 2)

CH

I DA

N

a) Ne

u m = 1, phtTon

g trin

h (1) c

6 nghie

m du

y nha

t x = 3

g (0

; 1)

Neu m ^ 1,

phirong trin

h (1) l

a phiion

g trin

h ba

c hai A

g trin

h

fix) = (m

- l)x

^ 2mx +

rin

h (2) c

u m

lay

cdc

gia tr

i tho

a man cac die

u kie

n sa

u :

A = (3m + + 16(m

+ 2) >

0

af (-1) = 4[4 + (3m + 1) -

m 2] >

0

af (2) = 4[16 - 2(3m

+ 1) - m

- 2] >

0

, S 3m

+ l -

-1 < — = <

9m' + 2m + 3

3 >

0

2m + 3 > 0

23.

Tim cac gi

a t

ri cu

a tha

m s

o m

de phiron

g trin

h

(m

- 2)x

^ 2mx + 2m

- 3 = 0 (1)

Trang 4

• Neu 2 - m < 0 o m > 2 thi (1) c6 hai nghiem thoa man xi < 2 < X2

• Neu 2 - m = 0 <=> m = 2 t h i (1) c6 cac nghiem 1 = x i < X2 = 2

• Neu 2 - m > 0 o m < 2 t a xet them biet thufc

C H I D A N

Tam thu-c ve trai (1) la : fix) = x^ - (m + l)x + 2(m - 1) = 0

o X = m - 1 hoac x = 2

• Neu m - 1 < 2 o m < 3 thi (1) c6 tap nghiem Tj = [m - 1; 2]

• Neu m - 1 > 2 m > 3 t h i nghiem cua (1) la : Ti = [2; m - 1]

• Neu m = 3 thi Ti = 121

Xet tam thufc ve trai cua bat phtTcfng trinh (2) :

g(x) = x^ - (m + 2)x + 3(m - 1) c6 cac nghiem x = m - l v a x = 3

• Neu m < 4 tap nghiem cua (2) la : T2 = (-00; m - 1] u [3; +co)

• Neu m > 4 tap nghiem cua (2) la : T2 = (-co; 3] u [m - 1; +00)

• Neu m = 4 : T2 = {3}

Tap nghiem T = T i n T2 cua he (I) nhif sau :

+ Neu m < 3 t h i (I) c6 nghiem chung duy nhat x = m - 1

Trang 5

T PH UC IN

G TR IN

H

CHlfA

D AU G IA T

RI TU YE

T DO

I

KIEN TH

L fC

1 Phx:ifofn

g t ri nh chtfa

d au gia t

ri tu y^

t do

i

La phucfn

g trin

u gi

a

tri tuyet do'i

i gia

i phiron

g trinh

l

a diT a

tre

n din

h nghi

a

a ne

u a > 0

-a neu

diTOng

Dac bie

t : | A(x) | = | B(x) i

o (A(x)f = (B(x)f'

2 Ba

t phu:cifn

g t ri nh chtfa d au gia t

ri tu y$

t do

i

Cac phtron

g trin

-g(x) hoS

c fix) >

h cha

t cij

a gi

a tr

1

3 -a

h : (1) 7 2x = 4 - X + a

CH

I DA

N

a) The

o din

X >

-4

-(x + 4) vdi

X <

-4

(1) « (A)

(B)

Jlx + 4)-2x = 7

X

>

-4

-(x + 4) - 2x =

7

X <

u Th

g Hi^

u Nguyln VFnh CJn

Trang 6

-(A) o - x + 4 = 7 _ r - 3 x - 4 = 7 <=>x = -3; (B) < = > v 6 nghiem

Vay phuong trinh (1) c6 nghiem duy nhat x = - 3

b) De CO bieu thufc khong chufa gia t r i tuyet doi ttrcrng duong ta lap bang sau

Trang 7

Phifdng trin

h (1) c

Vs _ -

1 +

X -0 0

-4 -2

-2{x^ +

6x + 8 ) 0 2(x^ +

Gx +

8 2(x^ + 6x + g 2(x^ +

x^

1 0 -

^ + 12x + 1

5 =

30 -x 2- 12 x- 17

=3

0 (c)

(d) (e)

Ng hi

em

(c) o _^

17 =

30

T Cr cac phiron

X

= 1

x

3

c) x2-x = 3 x-1

CH

I DA

N

11 b)

X =

1 va

X = —

<2 (1) b

) i'2x+*l

| >

3' (2)

CH

I DA

N

a) (1)

< ;>

-2 < 3

x - 1 < 2 <=>

-1 <

3x < 3

« — < X

N

(1) o-(3x-3)

<(

x2-2x-3)

<3x-

x' 5x <

0 0

< X <

5

< => 2

< X <

u u Nguyin

VT

n h CJ

n

Trang 8

§5 PHlIOfNG TRINH, BAT PHlJOfNG TRINH CHlfA CAN THtJC

KIEN THCfC

PhiTofng phap chung de giai phtTOng t r i n h c6 bieu thufc chufa a n nam

diTdi dau can la nang l e n luy thCra bieu thufc cua phifcfng t r i n h v d i cac dieu k i e n d i k e m de c6 diroc phucfng t r i n h khong con chufa a n trong dau can Cung c6 the dSt a n phu de d a n den cac phifcfng t r i n h , he

phuong t r i n h don gian va de giai h o n M o t v a i dang phifOng t r i n h

chufa can thiJc dan gian la :

B a t phu!ofng t r i n h chufa c a n thiJc

Dang CO b a n cua bat phiTOng t r i n h chura can bac hai

f (x) > 0 g(x) < 0 g(x) > 0 •

de giam dan cac dau can thufc, dan dan dtTa t d i bat phifong t r i n h , he

bat phufong t r i n h khong chuTa cSn thufc Cung c6 the dat cac a n phu

hoSc bien luan cac ve cua bat phuong t r i n h de t i m nghiem

Trang 9

9 =

0

b) (2)o V3

x +

= 3

+ V x

-3c^

9

x

-3

>0 x>

If o

x^ llx + 28 = 0 <^

-x =

4

x = 7'

- 3

x +

3 +

V x'

N

a) Nha

n xet: 6x

^ - 12

x +

7 = 6(x - 1)^ +

Dat t = Vex '

-12x +

7 vd

i t

> 0, t

a c

6 :

x^ 2x =

-va phiran

g trin

h (1) da

n de

n

t' + t

t = -

1 (loai)

t =

7

6x' 12x +

7 = t'

b) Nha

n xe

t : x^ - 3x +

G

Dat t = x

^

3x +

3, ta

CO :

(2)

Vt + V tT 3

= 9 +1' -

et

0<

t<

3 ot

=

1

(2

)o Vx

'

3x + 3 = lc:>

2 + V4 -

x = x' - 6x +

11 (11 )

CH

I DA

N

Ve pha

i (1 )

la : x^ - 6x +

11

= (

x 3)^ +

= l

.V x

l')[(

2) + (4-x)]

x-=2

40

GH

TS V

U Th§

' Hu

u Nguyen VTn

-h Ca

n

Trang 11

> m

<=

>m-x

>0o

x =

m

x^

-m'=

(m-x)'

Ket luan :

Vdi m > 0, phuon

g trin

h (1) luo

n c

6 mo

t nghie

m x = m

h ta thay dieu kie

n xa

c din

h m

> 0

2>

m-0

x' 2mx +

1 = (m

- 2)2

(2)

o Vx

^ 2mx + 1

trin

Neu

m, ne

u m

> 2

phiTofng tr

m s

o m phifcfng

trin

h c

6 nghiem

V3

+ X + V6

- X - V

(3 +

x)(6 x)

= m

(1)

CH

I DA

N

Cdch 1 :

DKX

- x) +

=> (

u + v)^ -

2(u

+ v) +

m (loa

i u + v

= 1

- Vl 0- 2m )

^ ju

^ + = 9

Ta thay

u +

v =

Vu^ + + 2u

-u +

V =

l.u + l.v < V(l' + l')(u' +v') -

3V2

Vay3

<u + v

<3V2 ^3<

6V2 —

9 < m : Ydi Ket luan < 3

phiTcfng trin

h (1) c

6 nghiem

Cdch 2 :

t cu

a t tre

V6

x V3

+ X ^

3 = 0 =^ ,— , — —, = o

X =

Min t(x) = min-|t(-3); t

- ; t(6)^

= min{3

; 3^2

; 3} =

42 ^ TS V

Q ThS ' H^

u Nguygn VTn

-h C?

n

Trang 12

15u' + 4u' - 32u + 40 = 0

Hoc va 6n luy?n theo CTBT m6n ToSn THPT S 4 3

Trang 13

<=> i

V =

2u

8-ru = -

^ X =

(u + 2)(15u' -

26u + 20 ) =

0

b) DK XD : -

2 <

X

< 2 D

at u

= V 2

+ x , v

= V 2

- x t

a c

6 h

e :

(I) + =

4

3u 6v + 4 uv = 3v

- 2vf

3u -6

v = 4 v' -4 uv

+ u

'(

*)

u 2

-v =

0

u 2

-v =

3

(D

o + =

4

u 2

-v =

3

(A ) (B)

He (A

) C O

gh ie

m v^

= —

o 2 -x = — =>x =

He (B ) v

6 n gh ie

m

Va

y phucfn

g t rin

h (2 )

c6 ng hie

>/^7T

- V

x + 1

= 4

(1)

(Trich de thi tuyen

sinh DH khoi D

- 2005)

b) V2 x

- l +x '- 3x + l = 0 (2)

(Trich de thi tuyen

sinh DH khoi D

- 2006)

CH

I DA

mh phiTofng

ha

i v

e

(1) 2Vx +

2 + 2Vx + 1

17 +

x + 8Vx +

X =

3

Cdch 2 : N

ha

n x

et x

+ 2 + 2V

x +

1 = (1 +

+ 1

-4 [V

b) (2 )<

» V2 x- 1

= x^

> 0

2x -1 =: (-x ' + 3x -

-x

^ +

3x -1

> 0

x' -6x=

' + l lx '- 8x + 2

= 0

44 S5

TS V

u Thg ' Hu

u Nguygn VTn

-h Ca

n

Trang 14

3 - V 5 3 + V5

< X <

c:>x = l v x = 2 - V 2

2 2 ( x - l ) ' ( x ' - 4 x + 2) = 0

41. T i m m de phifofng t r i n h sau c6 h a i nghiem thiTc phan biet

N h a n xet phu'cfng t r i n h (*) c6 he so cua x^ va he so tu do t r a i dau nen

(*) t r a i dau, suy r a (*) phai c6 m o t nghiem thuoc nUa khoang

Dieu nay xay ra k h i m thoa m a n cac dieu k i e n sau :

t r e n t a c6 the viet n h u sau :

(A) va he ( B ) : T = (-oo; - 2 ] u [14; +oo)

43. Giai cac bat phiJOng t r i n h :

i) V l 1 - X - Vx - 1 < 2 (1) b) Vx + 3 - V7 - X > V2x - 8

Trang 15

I DA

x

<2 + Vx-l«

ll-x

<[

2 +Vx-

4

o

-12x + 20<

4

(x

- 1)

C

:>2

< X <

x-8

>0

o 4

<x

<7

'4 <

X < 7

X

+ 3

> (7

- x) +

(2x

8) +

2V7-xV2

cua (2) l

at phiron

g trin

h : V3x^ + 5x

+ 7

- VSx

^ + 5x + 2 > 1 (1)

CH ID

AN

o — x > c 1 hoa - x < > 0 + 2 5x ^ + : 3x DK Da

t

t = 3x^ + 5x

+ 2

(1) tr

d thanh : V

t +

5 >/t >

t + 5

>l+t

+ 2V

t

4 < X <

7

-x' + llx-30<

- 2 < 0

3

-2

< X < —

3

46 ^

TS V

u The '

Hifii

Nguygn Vin

h CS

n

Trang 16

45. Giai bat phuong t r i n h : ^^^^^^^ + V^T^ > 4=^ ( D

He (A) CO nghiem : x < 5, he (B) c6 nghiem 10 - ^/34 < x < 5

Tap nghiem cua (1) la : x > 10 - V34

46. Giai bat phifofng t r i n h :

Ta CO X = 0 la mot nghiem cua (2)

Xet X > 0, chia hai ve cho \fx t h i diroc : V x + + J x + — - 4 > 3

4

HQC V§ 6n luy§n theo CTDT mfln Jo&n THPT El 47

Trang 17

1 H$ phi^ofng

tr in

h b ac n ha

t h

ai an , b

6 dang:

aj X

+ b iy

^C j

(1)

a2

X + b 2y = C 2

(2)

(I)

Ki hie

u D =

b2

Ci

b,

C2 b2

ai C:

a2 C2

= ai b2

- a2 bi

goi l

a din

- C2

bi

- ai C2

- a2

Ci

Quy tdc Crame.

Giai h

e phifcfn

g trin

h ba

c nhat

t (xo

; yo) xa

D., _ y = yo

Cho h

e phiion

g trinh:

(I)

- Ne

u D

= D

x = Dy

= 0 he

(I)

c6 v6 so nghiem

x + biy

b) Gidi

he phiiang trinh bac

nhat hai

an bdng phuang phdp

do thi

ai X

+ bj

y =

c, (1)

[a aX +

\y

= C 2

(2)

Tren cung mo

h (1) v

a duTcfn

g thang

(d2) c

6 phtfcfn

g trin

h (2)

a gia

o die

m (di) v

- Ne

u (di) v

6 nghie

m du

y nhat

6 nghiem

e (I) c

6 v

6 s

o nghiem

Toa do moi die

m cu

a (di) (ha

y (d2)

) l

a mo

t nghiem

h sau:

a) (I) 2x - 3y = -

4

3x +

y =

5 b)

(II)

+ 5

y -3

48

S TS V

u Thg ' Hi;u

- Nguye

n Vin

h CS

n

Trang 18

b) Dieu k i e n xac dinh ox ^ 2 DSt X =

9 m + 3 -5m^ - 3m + 2 •

Hoc 6n luy§n theo CTDT mfln Jo&n THPT 0 49

Trang 19

a) (I ) x +

3x 2y +

z = 6 (3)

CHI DA

N a) DKXD

: x ^ -2, y

^ -1 D

M X =

29

x + 2

Y =

y + 1 thi (I

a tin

h difd

c X = — , Y = —

b) (II ) J2

i -2 dem con

g va

o phiTcfn

g trin

h (2) La

) h (2' g trin n phiTOn c nha p tu Lai tie

) cu

a (II)

i vdf

i -8 , con

^1

2

3 10^

10 -8 -8 -24;

u The ' HiA

i - Nguye

n Vin

h C5

n

Trang 20

Giai he (I) bkng phLrong phap the

b) He phiiong trinh dot xiing loqi I

La he phufdng t r m h co dang <

lg(x,y) = 0 (2) Trong do f(x, y) va g(x, y) la cac bleu thufc doi xufng doi v6i cac bien x, y

Cdch giai: Dat an so phu S = x + y, P = xy

Dieu kien can va du de he c6 nghiem la - 4P > 0

rf(x,y) = 0 (1)

c) He phiiong trinh doi xiing loai H: (II)

Cdch giai: Di/a viec giai he (II) ve giai he: (F)

Trong do m6i phuong t r i n h cua he la mot dSng thiJc cua cac da thufc dang cap cung bac

Cdch giai: Giai he ( I I I ) v d i x = 0 hoSc vdi y = 0

Vdi x ;t 0 dat y = kx hoSc v6x y 0 dat x = ky r o i khuf an de doi ve

giai phirong t r i n h mot an

1 3 - 5 y \ + 3y' - m = 0 o 52y^ - 130y + 169 - 9m = 0 (2')

Biet thufc cua (2'): A' = 65^ - 52(169 - 9m) = 468m - 4563

Trang 21

39 5

9 = — p y m ke 6 nghie ) c 0, (2' ' = , A — m = Neu => x

i (2') c

6 ha

i nghie

m

yi 2

e (I)

51.

Gia

i h

e phiTOn

g trin

h

CH

I DA

N

xy +

X

+ y = 1

1

xV + xy

^ =

30

(Trich de thi vdo

DHGTVT 2000)

-Dat

X

+ y = S, x

y =

P, t

a c6: fS + P = 1

a nghie

m cu

a phtron

g trinh: - IIX + 3

y =

6 hoac

X

+ y = 6

; 2), (1; 5), (5

3x = x^ +

2

(Trich de thi tuyen

sinh DH khoi B

- 2003)

CH

I DA

N

TCr ca

c phifdn

g trin

h cu

a (I) su

y r

a x > 0, y > 0

'3xV = y' +

2

^ 3y'

x = x^ +

2

(I)«

3xV

= y' +

2

(x y)(3xy +

x + y) =

-3x

V = y^ +

2

3xy

+ X

+ y = 0

(A) (B)

y =

X

TCr die

u kie

n x > 0, y > 0 Su

y ra: 3x

6 nghie

m du

y nha

t x = y = 1

52

a TS Vi

j Thg ' H

U u Ng

-u ye

n Vin

h CS

n

Trang 22

53 Giai v a b i e n l u a n theo t h a m so a he phtfcfng t r i n h (I)

Trang 23

1-—

xy v6

n gh ie

m

X

+ y = 0

y = -V2

X =

V2

-; y = V2

x = l , y -

1

x =

-l, y = -l '

a) (I ) b)

(I I) x^

-y

^=

7 (1 )

xy (x -y ) =

2 (2 )

55 Gi

ai he p hi/

dn

g tr in h:

3x '+

2x

y + y^

= 11 (1)

x' + 2 xy + 3 y' = 17 (2)

CH

I DA

N

a) Ve t ra

i cu

a (1 ) v

a (2 ) h

e ( I) la cac da thufc da ng c ap bac

g vdf

i x = 0 hoac y = 0 h

e ( I) v6 n gh ie

m

x'(

3 + 2

k +

') = l

l (1'

Ch ia ve vdfi ve (1") va (2') th

l + 2

k + 3 k' ) = 17 ( 2')

3k ' + 2

k +

1 1

7 4k2 - 3k

- 1

0 =

0 ^

k = -

- hoa

c k = 2

t

a dtfo

c y = — x, p hif on

g t ri nh (1) tr

d t ha

1 1

<=

> X

Th ay

k =

2 t

a s

e t im dtTcfc x = ±

1, y = ±

y h

e ( I) c

6 4 n gh ie

m l a:

3 ' -4V3 5V

( 2 )

b) Nh an x et

Sn

g x = 0 k ho ng n gh ie

m dii ng h

e ( II )

x t

hi he ( II ) t rd

ha

nh

x' (l -t

=' ) =

7 (1' )

x' t(

t) =

2 (2 ')

1

(I

D

1 _ f 3

n

^ =

- =:

> 2 t' - 5

t +

2 =

=> t = 2 hoac t = -

2

La

m tu on

g tii

cau a) ta dtroc h

e ( II ) c

6 h

ai ng hi em l

a ( -1

; 2) v

-a (

2; 1)

56 Ch

o h

e phucfn

g tr in

h vdi

t ha

m s

o m

x' y', + m (x + y ) =

X

- y + m (1)

x^ +

' + x

y =

3 (2 )

V(Ji gi

a t

ri na

o c ua

m t

hi he ( I) c

6 d un

g 2 n gh ie

m

(I)

54 EJ

TS V

u Th

e H

u u Nguyen

Vinh C$n

Trang 24

[3x' + 3ax + a ' - 3 = 0(2') PhucJng trinh (2') v6 nghiem neu A = 9a^ - 12(a^ - 3) < 0

o a < -2V3 hoac a > 2>/3

MOT SO HE PHl/dNG TRINH DAI SO KHAC

Trang 25

(A)o (B)<=>

+ y = 0

xy =

X

+ y =

3

xy =

CH

I DA

^ = 2x + 9 (1)

x^ + 2xy = 6

x +

6 (2)

(Trich de thi tuyen

sinh DH khoi B

- 2008)

(D

o (x^ + xy)^

= 2

x +

9

xy = 3x + 3 x'

12x^

+ 48

x + 64) =

0 o x(x + 4)

^ =

Vi x = 0 khong

nghiem dung (2'

Vay

he (I) c

6 nghie

m du

y nha

t -4;

17 4

j

a) (I)

59.

Giai h

e phtfon

g trinh: '

xy +

X +

1 = 7y (1)

xY

+ x

y +

1 = 13y2 (2)

(Trich de thi tuyen

sinh DH khoi B

- 2009)

x(x +

y + 1) -

3 =

0 (1)

b) (II) (x + y )^

-4 + l = 0 (2)

(Trich de thi tuyen

sinh DH khoi D

- 2009)

CH

I DA

N

a) Vd

i y = 0 khong

nghiem dung h

e (I), d

7 y y

X —h -

y y x^

+ ^ = 1

+-3

56 Ea

15 V

u Thg '

H\ju - Nguyi

n Vin

h CS

n

Trang 26

Dat a n phu x + — = u, — = v ta diroc:

• y y

u + V = 7

u ^ - v = 13

u + V = 7 + u - 20 = 0

1 la cac nghiem cua he (I),

b) Dieu k i e n xac dinh x ;t 0, he ( I I ) c6 the viet t h a n h x(x + y) + X = 3

x^(x + y)^ +X ' = 5

Dat u = x(x + y) t a ducJc he

u + X = 3 u^ + x^ = 5 o

u + X = 3 (u + x)^ - 2xu = 5 0 -

(Trich de thi tuyen sink DH khoi A - 2011)

C H I D A N

TCr phi/0ng t r i n h (2) cua he (I) ta c6:

(2)c^ xyix^ + y^) + 2 = x^ + y^ + 2xy o (x^ + y^ - 2)(xy - 1) = 0

TCr do he (I) tiicfng dirong v d i hcfp cua hai he phiTcfng t r i n h

+ Thay 2 = x^ + y^ vao (1) ta diTcfcSxV - 4xy^ + 3y^ - (x^ + y^)(x + y) = 0

2y^ - 5xy2 + 4 x V - x^ = 0 (*)

H Q C vk 6n luy$n theo CTDT m6n Toan THPT 57

Trang 27

i X

=

0, y = 0

t y = k

x t

hi d\iac

x^(2k^ 5k^ + 4k

- 1) =

0

=> k = — hoSc k

= 1 2

- Vd

i k = 1 ta tim difcfc ca

c nghie

m cu

a h

e (B) trung vdi ca

c nghie

m cu

a

he (A)

XTA- 1

1 ^ ^ 2V10 ^

2 •5

lj 2V lO Viol

;-f 2VI O

(I) x=

3x'-9x + 2

^-2 =

y 3

+ 3y'-9

y (1)

2 2

1 - +y x x+

y=

— (2)

(Trich de thi tuyen

sinh DH khoi A

- 2012)

CH

I DA

N Xet phuon

g trin

h (1) cu

a h

e t

a c6:

(D o (x -

If

12(x 1) = (y +

if

12(y + 1)

(x 1)^ - 12(x - 1) = (y +

- 12(

y + 1)

(DoCD {

\

X -

1 + — y

^ 2

A2

= 1 (2-)

TCf (2') su

y ra: -

1 3 a — — v l< x- < hay — <

m s

o fTt) = t^

- 12

t tre

n doa

n

f (t) = 3t^ -

12 <

0 Vt

e

[-2; 2]

Vay ha

m s

o fit) = t^

- 12

t nghic

h bie

n tr

en

ta th

ay

3 3

2' 2

Vi vay

a c6:

(x

- If -

12(

x- l) = (y + 1)'

- 12{

y +

)ox-

a h

e (D ta difoc

= 1

0 y = -

— ho&

c y = - — 2 2 •

58 TS V

u Th

g Hu

u Nguyin Vin

-h C$

n

Ngày đăng: 09/02/2017, 11:02

🧩 Sản phẩm bạn có thể quan tâm

w