Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau của một đường tròn thì bằng nhau.. Trong một đường tròn, những góc nội tiếp cùng chắn một dây cung thì bằng nhau.. Mọi gó
Trang 1GIáO áN ĐIệN Tử
Mụn: Hỡnh học 9
NGƯỜI THỰC HIỆN
Giáo viên: Đoàn Quốc Việt Trường THCS Nhân Hoà
PHềNG GIÁO DỤC HUYỆN VĨNH BẢO - TRƯỜNG THCS NHÂN HOÀ
Trang 2Qui định
* Phần phải ghi vào vở :
- Các đề mục.
- Khi nào có biểu tượng xuất hiện
Trang 3Bµi tËp 1: Cho h×nh vÏ:
Hai d©y AB vµ CD c¾t
nhau t¹i E
TÝnh ABD ; BDC ; BEC
KiÓm tra bµi cò
O
B
C
E m
n
Trang 4a Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng
nhau của một đường tròn thì bằng nhau
b Trong một đường tròn, những góc nội tiếp cùng chắn một dây
cung thì bằng nhau
c Mọi góc nội tiếp chắn nửa đường tròn đều là góc vuông
Bài tập 2: Điền Đ , hay sai S vào ô trống ở cuối mỗi câu sau:
Đ
S
Đ
d Trong một đường tròn nếu 2 cung bằng nhau thì 2 dây
căng cung sẽ song song
Kiểm tra bài cũ
e Trong một đường tròn, số đo của một góc nội tiếp bằng nửa số
đo của cung bị chắn
S
Đ
Trang 5Bài tập 3: Cho hình vẽ, điền vào chỗ chấm để được
khẳng định đúng
AOB là góc ……… chắn cung ………
ACB là góc ……… chắn cung ………
……… là góc tạo bởi tia tiếp tuyến và dây cung chắn cung ………
AOB = ………
………= ………=
AOB = 2 x ………= 2 x ………
O
C
B
A
m
x
Kiểm tra bài cũ
ở tâm nội tiếp
AmB AmB
AmB Sđ AmB
ACB BAx Sđ AmB1
2
BAx
(5)
(6) (7)
Trang 6Trong hình vẽ:
và
có đặc điểm gì ?
DEB DFB
Số đo của góc E và số đo của góc
có quan hệ gì với số đo của các cung
và ?
DFB
AmC BnD
O
E
C B
F m
n
Trang 71 Góc có đỉnh ở bên trong đường tròn
là góc có đỉnh ở bên trong đường tròn.
BEC
Ta qui ước rằng mỗi góc có đỉnh
ở bên trong đường tròn chắn hai cung, một cung nằm bên trong góc và cung kia nằm
bên trong góc đối đỉnh của nó
chắn và
O
B
C
E m
n
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
Trang 81 Góc có đỉnh ở bên trong đường tròn
là góc có đỉnh ở bên trong
đường tròn.
BEC
chắn và
O
B
C
E m
n
A, B, C, D ∈ (O)
AB cắt CD tại E nằm bên trong (O)
GT
KL BEC = + SđAmD
BnC
Sđ
2
Định lý: (Sgk/81)
Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
Chứng minh: (về nhà hoàn thành)
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
Trang 9C D
m
n
Vận dụng định lý chứng minh AOB = Sđ AnB
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
Trang 10Bài tập 4: Cho (O) và 2 dây AB và AC Gọi M, N lần lượt là điểm chính giữa của cung AB và cung AC
Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H Kết luận nào sau đây đúng?
C : ∆ AEH cân tại A
D : Một kết luận khác
A : ∆ AEH cân tại E
B : AEH cân tại H
O
B
N
A
E
H
Trang 112 Góc có đỉnh ở ngoài đường tròn
BEC
có 2 cạnh
cắt đường tròn
BEC
có 1 cạnh là tiếp tuyến tại C và cạnh kia là cát tuyến
BEC
có 2 cạnh là 2 tiếp tuyến tại B và C,
O A
B
D
E
C
O B
n
m
2 cung bị chắn là 2 cung
nhỏ AD và BC. 2 cung bị chắn là 2
cung nhỏ AC và CB
2 cung bị chắn là 2 cung nhỏ BC và BC
O A
B
E
C
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
Trang 12O A
B
D
E
C
O A
B
E
C
O B
n
m
Bài tập 5:
a, Cho hình 33: Bằng đo đạc hãy so sánh số đo và số đo của hai
cung bị chắn AD và CB ?
BEC
b, Cho hình 34: Bằng đo đạc hãy so sánh số đo và số đo của hai
cung bị chắn AC và CB ?
BEC
c, Cho hình 35: Bằng đo đạc hãy so sánh số đo và số đo của hai
cung bị chắn BnC và BmC ?
BEC
Trang 13Định lý: (Sgk/81)
Số đo của góc có đỉnh ở bên ngoài đường tròn bằng
nửa hiệu số đo hai cung bị chắn.
O A
B
D
E
AB cắt CD tại E nằm bên ngoài (O)
GT
KL BEC = Sđ BnC - Sđ AmD
2
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
2 Góc có đỉnh ở ngoài đường tròn
Chứng minh: (về nhà hoàn thành)
Trang 14Bài tập 6: Cho (O) và 2 dây AB, AC
AC, AM cắt BC tại S.
Khoanh tròn chữ cái đứng
A
M
?
S
?
C : ASC = MCA
B : ASC < MCA
A : ASC < MCA
Trang 15Bài tập 7: Cho hình vẽ: Biết Sđ AB = 120o ; Sđ CD
= 60o
H y ghép mỗi ô ở cột trái với mỗi ô ở cột ã
H y ghép mỗi ô ở cột trái với mỗi ô ở cột ã
phải để đạt được kết luận đúng
1, = 40AMB 0
2, = 30AMB 0
3, = 60AMB 0
4, = 50AMB 0
a, = 180ANB 0
b, = 60ANB 0
c, = 50ANB 0
d, = 90ANB 0
O
C A
m
x
B
M D
N
Trang 16Củng cố:
- Khái niệm về góc có đỉnh ở bên trong và bên
ngoài đường tròn
- Định lý về số đo của góc có đỉnh ở bên trong đư ờng tròn và góc có đỉnh ở bên ngoài đường tròn.
- Các loại góc với đường tròn gồm: góc ở tâm, góc nội tiếp, góc giữa một tia tiếp tuyến và 1 dây
cung, góc có đỉnh ở bên trong…
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.
Trang 17Hướng dẫn
Hệ thống lại các góc với đường tròn, nhận biết từng loạigóc
Nắm vững và biết áp dụng các định lý về số đo của mỗi góc trong đường tròn
Bài tập về nhà: 36, 37, 38/ 82+83 (Sgk)
Học sinh khá, giỏi làm bài tập 29, 32 trang 78(SBT)
Tiết 44: Đ5 Góc có đỉnh ở bên trong đường tròn
Góc có đỉnh ở bên ngoài đường tròn.