SÁNG KIẾN KINH NGHIỆM
ĐỀ TÀI:
"GI H SINH N ỆN K N NG GI I H NG
NH H NG NH "
Trang 2
I N :
- -
m
k
Trong
Trang 3
h
- n
-
-
II S N:
chung
,
sinh
III S H I N:
Trang 4B
: AB, A B A B nêu n
, khi
-
IV N I NG A
Trang 5
9
4 ,
0 3 1
0 4 9
3
1 )
1 3 ( 1
2
0 1 3
2
x x
x x
x
x x
0 ) ( )
( )
x g x f
x g x
g x
Trang 60 0
7 2
2
1 )
1 )(
2 1 ( ) 1 2 (
0 1 2 )
1 )(
2 1 ( 1
2
2
x x
x x
x x
x x
x
: 1 x
p
f(x) g(x) : ) ( ) ( 0 ) ( 0 ) ( ) ( ) ( 2 x g x f x f x g x g x f 3: 2x2 6x 1 x 2 (1)
2 2
2
) 2 ( 1 6 2
0 1 6 2
0 2 )
1
(
x x
x
x x x
0 3 2
2
7 3 2
7 3
2
2
x x
Vx x
x
3 1
2
7 3 2
7 3
2
x
Vx x
x
3 2
7
3
f(x) g(x) :
) ( ) (
0 ) (
0 ) (
0 ) ( )
(
)
(
2
x g x f
x g
x g
x f x
g
x
f
Trang 74: bpt:
3
7 3 3
) 16 (
2 2
2
) 2 10 ( ) 16 ( 2
0 2 10
0 2 10
0 16 2
10 ) 16 ( 2 7
3 )
16 (
2
x x
x x
x x
x x
x x
34 10 5
1 1
1 6
1 )
1 ( 1 6 2
0 1
x x
x x
x
x x
x x
x pt
x
Pt 2x2x 2 x2(x 1 )(x 2 ) 4x2 2 x2(x2x 2 ) x( 2x 1 )
2 2
2
2
) 1 2 ( ) 2 (
0 0
9 8
2
x
x x
Trang 84 4 8 4
2 2 2
2 2
1 2
8 9
k ab a b!
a,b 0 a,b 0 ab a b.
: 3 3 3
3 2 2
2 )(
1 (
3 2 2 1
3
3 3
x
x x
x
2
3
; 2
Trang 9a
?
! 0 ) 3 2 )(
2 )(
1 ( 3 2 ) 2 1
( 2 )(
1 (
3
3
2x 3 x x 3 x 3 x x 3 x x x
pt sau:
0 1
1 1 ) 1 1
( 1 3 2 1 1
a t
) ( 3 )
33
3 3 3
c b a b a
c b
3 1
7
x x
x x
Trang 102 3 1 4 ( ) 2 3 1
4
0 2 3 1
4
x x
x
x x
y x
2 3
) 2 ( 3 3 1 4
) 2 ( 4 5
2 2
2 3 3 1
x x
x x
1 ) 2 2 3 )(
3 1
4
(
1 1 4 2 3
2
x x
x x
Trang 111 4
) 1 1
( 4 )
1 1 (
1
2 2
2 2
x x
x x x
x x
0
2 2
1 0
3
0 2 3 2
Vx x
x x
x x
:
g
Trang 12
c
: :
1 3 2x2mx x
(*) 0 4 ) 2 ( 1 2 x m x x pt P
0 2 8 4 2 ; 0 2 8 4 2 2 2 2 1 m m m x m m m x (*) 1
2 8 4 ) 4 ( 4 8 4 4 1 2 2 2 2 m m m m m m m m x m 2
B
1: F(n f(x) 0, t n f(x)
) 0 t r t x.
af(x) b f(x) c 0
Trang 1311 6
109 3
0 25 3 5
3 5
5 6 5
6 5
0
6 5
0
m
m m
m
m[ f(x) g(x ] 2n f(x).g(x) n[f(x) g(x)] p 0
Trang 14t f(x) g(x)
) 6
b) ( 1 ) t [ 3 ; 3 2 ]
f(t) t2 2t 9 t [ 3 ; 3 2 ] f (t)
] 2 3
; 3 [ , 2 6 9 ) 2 3 ( ) ( )
; 3 [
t
Trang 15m ; 3 ]
2
9 2 6
9 126
441
7 1
2 2
x x
x x
7 1
2
x x
Trang 16TH 2: g(x) 0 g k (x) n
x g
x f t
) (
) (
1 5
x x
2 0
2 5
2 2
t
t t
3 5 4
1 1
1 2
x
Trang 17
1 1
x
m t t t
1 3
Trang 18
i l
a.f(x) g(x). f(x) h(x) 0 t f (x)
: at2g(x)th(x) 0
8: 2 ( 1 x) x2 2x 1 x2 2x 1 t x2 2x 1 t: t2 2 ( 1 x)t 4x 0
2
) 1 ( ' x t 2 ,t 2x. *t 2 x2 2x 1 2 x2 2x 5 0 x 1 6 * 0 1 2 3 0 2 1 2 2 2 2 x x x x x x x t
x 1 6 :
Trang 19
9: 2 2
2 1
1 x x
1
1
x 2 2
1 x a
x 1 x cost,t [ 0 ; ]
2
1 sin 0 1 sin sin
2 cos
2 cos
1 cos 2
(
t t a x
u u(x) acost,t [ 0 ; ]
u(x) [ 0 ;a] ].
2
; 0 [ , sin )
( 2
t t a x u
Trang 20: x3 ( 1 x2)3 x 2 ( 1 x2)
x 1
x cost,t [ 0 ; ]
t t t
t t
t t
t t
t sin 2 cos sin (sin cos )( 1 sin cos ) 2 sin cos
0 2 3 2 2
1 2 ) 2
1
1
2 2
) 1 2 2 )(
cos 4
1 ) 4 cos(
2
x t
t u
2 1 2
1 1
2
1
x x
x x
x u
2 1 ) 2 1
(
2 1
x x
x
Trang 21
2 2
2 1 ) ( 9
4 3
4 1 1
x
x x x
x x x x
x x
2 3
0 0
3 2
0 3
)
(
2 2
2 2
2 3 3
t t
2 2 1
1
x
x VN
x x x
x
x x
x 1 x t
Trang 22
(*)
x 2 1 x2 x 1 x 1
sin2 cos2 1
sin , 0;2 2 t t x x 0 ; 1)
0 ) 3 sin 2 ( sin 1 )( sin 1 ( ) sin 1 (( 3 cos sin cos sin 3 2 1 t t t t t t t t 0 1 0 ) 8 sin 6 sin 4 ( sin 1 sin 1 ) sin 2 3 ( sin 1 3 1 1 sin 2 x x t t t x t t t x t ,
VI KẾ NGHI N
Trang 23
sinh
-
10 tôi
sinh ,
thêm m Riêng
t p Ngoài ra,
và C ;
II KẾ N
môn T
Trang 24
Tr
VIII KIẾN NGH
tôi :
-
-
u k