1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giao trinh bai tap đề + đáp án giữa kì 2013 2014 (dự thính) mã 1499

9 254 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 200,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

D Các câu khác sai.. D các câu khác sai.. D Các câu khác sai... CHỦ NHIỆM BỘ MÔN PGS... CHỦ NHIỆM BỘ MÔN PGS.. Nguyễn Đình Huy... Khẳng định nào sau đây đúng?. B Các câu khác sai.. CHỦ N

Trang 1

ĐẠI HỌC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 2 trang)

ĐỀ THI GIỮA KỲ DỰ THÍNH HKII 2013-2014

Môn thi: Giải tích 1

Thời gian làm bài: 45 phút.

Đề 1499 Câu 1. Cho f (x) = arctan x + x − 1 Tìm f−1(x)0

tại x0= −1



A 1

2.



B 2

C 3

D Các câu khác sai

Câu 2. Cho hàm f (x) = (1 − ex)3 Tìm hàm ngược của f (x)

A f−1(x) = ln(1 −√3

B f−1(x) =√3

1 − ln y 

C f−1(x) = 1 −√3

D Các câu khác sai

Câu 3.

Tính giới hạn dãy số lim

n→+∞

n

s

22n+1+ 3n

2n−1− ln(n) 

D +∞

Câu 4. Giá trị lớn nhất của hàm số f (x) = xx1 trên miền xác định là

D Các câu khác sai

Câu 5.

Tìm m để f (x) =

( 2x + m, nếu x ≥ 0,

e1x, nếu x < 0. liên tục tại x0= 0.



B m = −1

D Các câu khác sai

Câu 6. Tìm số tiệm cận của hàm số y = ln(ex− 1)

D 3

Câu 7. Cho hàm số f (x) = xe− 1

x Khẳng định nào sau đây đúng?



B f (x) không có tiệm cận đứng



D Các câu khác sai

Câu 8. Tìm tất cả số thực m sao cho đồ thị hàm số f (x) = xemxđạt điểm uốn tại x0= 1

D các câu khác sai

Câu 9. Tìm a, b để (0; 1) là điểm cực trị của hàm số f (x) = x4− 4x3+ ax + b

D Các câu khác sai

Câu 10. Cho f (x) = (x2+ 1) sin x Tính f(5)(0)

D 20

Câu 11. Tìm giá trị nhỏ nhất của hàm số f (x) =p(x − 1)3 2(x − 4) trên đoạn [0, 5] là

B −√3

C √3

D Các câu khác sai

Câu 12. Tính giới hạn hàm số lim

x→0(cos 2x)sin2 x1



D e−2

Câu 13. Khai triển Maclaurint hàm số f (x) =√1 − 4x đến cấp 2

B f (x) = 1 − 2x − 2x2+ o(x2)



D f (x) = 1 + 4x −32x2+ o(x2)

Câu 14.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t2− 3t,

y = ln t Tính f00(x) tại t = 1



C 2

D Các câu khác sai

Câu 15. Khai triển taylor hàm số f (x) =√x tại x0= 2



A f (x) = 1 + 1

2x −

1

9x

B f (x) =√

2 +

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2 

C f (x) =√

2 −

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2 

D Các câu khác sai

Trang 2

Câu 16. Tìm a, b ∈ R sao cho f (x) = ln(1 − 2x) + e − 1 tương đương với a.x khi x → 0.



D a = −4

3, b = 3

Câu 17.

Cho hàm số f (x) =

(

e2x− x, nếu x ≥ 0

ax + b nếu x < 0. Tìm a, b để f (x) có đạo hàm tại x0= 0.



D a = 0, b = 0

Câu 18. Tìm miền xác định của hàm số f (x) = arccos(ln x) là

D Các câu khác sai

Câu 19.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t3+ 3t + 1,

y = arcsin 2t Tính f0(1)



C 2

D 3

2

Câu 20. Số cực trị của hàm số f (x) = x ln x là

D 3

CHỦ NHIỆM BỘ MÔN

PGS TS Nguyễn Đình Huy

Trang 2/2- Đề 1499

Trang 3

Đề 1499 ĐÁP ÁN

Câu 1. 

A

Câu 2. 

A

Câu 3. 

C

Câu 4. 

A

Câu 5. 

A

Câu 6. 

C

Câu 7. 

C

Câu 8. 

B

Câu 9. 

D

Câu 10. 

C

Câu 11. 

B

Câu 12. 

D

Câu 13. 

B

Câu 14. 

B

Câu 15. 

B

Câu 16. 

D

Câu 17. 

A

Câu 18. 

C

Câu 19. 

C

Câu 20. 

B

Trang 4

ĐẠI HỌC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 2 trang)

ĐỀ THI GIỮA KỲ DỰ THÍNH HKII 2013-2014

Môn thi: Giải tích 1

Thời gian làm bài: 45 phút.

Đề 1500

Câu 1. Cho hàm f (x) = (1 − ex)3 Tìm hàm ngược của f (x)

B f−1(x) = ln(1 −√3

C f−1(x) =√3

1 − ln y 

D f−1(x) = 1 −√3

ln x

Câu 2. Cho hàm số f (x) = xe− 1

x Khẳng định nào sau đây đúng?



B f (x) không có tiệm cận xiên



D f (x) không có tiệm cận ngang

Câu 3. Cho f (x) = (x2+ 1) sin x Tính f(5)(0)

D −19

Câu 4.

Tìm m để f (x) =

( 2x + m, nếu x ≥ 0,

e1x, nếu x < 0. liên tục tại x0= 0.



D @m.

Câu 5. Tìm giá trị nhỏ nhất của hàm số f (x) =p(x − 1)3 2(x − 4) trên đoạn [0, 5] là

C −√3

D √3

4

Câu 6. Cho f (x) = arctan x + x − 1 Tìm f−1(x)0

tại x0= −1



B 1

2.



C 2

D 3

2

Câu 7. Giá trị lớn nhất của hàm số f (x) = xx1 trên miền xác định là

D 0

Câu 8. Tính giới hạn hàm số lim

x→0(cos 2x)sin2 x1



D e2

Câu 9. Tìm miền xác định của hàm số f (x) = arccos(ln x) là

D [1e, e]

Câu 10.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t3+ 3t + 1,

y = arcsin 2t Tính f0(1)



A 3

D 2

3

Câu 11. Tìm a, b ∈ R sao cho f (x) = ln(1 − 2x) + e2x− 1 tương đương với a.xbkhi x → 0



A a = −4

D a = 2, b = 3

Câu 12. Số cực trị của hàm số f (x) = x ln x là

D 2

Câu 13.

Cho hàm số f (x) =

(

e2x− x, nếu x ≥ 0

ax + b nếu x < 0. Tìm a, b để f (x) có đạo hàm tại x0= 0.



D a = 0, b = 1

Câu 14. Tìm tất cả số thực m sao cho đồ thị hàm số f (x) = xemxđạt điểm uốn tại x0= 1

D m = 0 ∨ m = −2

Câu 15.

Tính giới hạn dãy số lim

n→+∞

n

s

22n+1+ 3n

2n−1− ln(n) 

D 2

Câu 16.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t2− 3t,

y = ln t Tính f00(x) tại t = 1



D 2

3

Trang 1/2- Đề 1500

Trang 5

Câu 17. Tìm số tiệm cận của hàm số y = ln(e − 1)

D 2

Câu 18. Khai triển taylor hàm số f (x) =√x tại x0= 2



B f (x) = 1 + 1

2x −

1

9x

2+ o(x2)



C f (x) =√

2 +

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2 

D f (x) =√

2 −

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2

Câu 19. Tìm a, b để (0; 1) là điểm cực trị của hàm số f (x) = x4− 4x3+ ax + b

D a = 3, b = 0

Câu 20. Khai triển Maclaurint hàm số f (x) =√1 − 4x đến cấp 2

B f (x) = 1 + 2x + 2x2+ o(x2)



D f (x) = 1 − 4x +12x + o(x2)

CHỦ NHIỆM BỘ MÔN

PGS TS Nguyễn Đình Huy

Trang 6

Đề 1500 ĐÁP ÁN

Câu 1. 

B

Câu 2. 

D

Câu 3. 

D

Câu 4. 

B

Câu 5. 

C

Câu 6. 

B

Câu 7. 

B

Câu 8. 

A

Câu 9. 

D

Câu 10. 

D

Câu 11. 

A

Câu 12. 

C

Câu 13. 

B

Câu 14. 

C

Câu 15. 

D

Câu 16. 

C

Câu 17. 

D

Câu 18. 

C

Câu 19. 

A

Câu 20. 

C

Trang 1/2- Đề 1500

Trang 7

ĐẠI HỌC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 2 trang)

ĐỀ THI GIỮA KỲ DỰ THÍNH HKII 2013-2014

Môn thi: Giải tích 1

Thời gian làm bài: 45 phút.

Đề 1501

Câu 1.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t3+ 3t + 1,

y = arcsin 2t Tính f0(1)



B 3

D 2

3

Câu 2. Khai triển taylor hàm số f (x) =√x tại x0= 2



A f (x) = 1 + 1

2x −

1

9x

B Các câu khác sai



C f (x) =√

2 +

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2 

D f (x) =√

2 −

√ 2

4 (x − 2) −

√ 2

32(x − 2)

2+ o(x − 2)2

Câu 3. Số cực trị của hàm số f (x) = x ln x là

D 2

Câu 4. Tìm giá trị nhỏ nhất của hàm số f (x) =p(x − 1)3 2(x − 4) trên đoạn [0, 5] là

C −√3

D √3

4

Câu 5.

Cho hàm số y = f (x) được cho bởi tham số

(

x = t2− 3t,

y = ln t Tính f00(x) tại t = 1



D 2

3

Câu 6. Tính giới hạn hàm số lim

x→0(cos 2x)sin2 x1



D e2

Câu 7. Tìm a, b để (0; 1) là điểm cực trị của hàm số f (x) = x4− 4x3+ ax + b

D a = 3, b = 0

Câu 8. Tìm tất cả số thực m sao cho đồ thị hàm số f (x) = xemxđạt điểm uốn tại x0= 1

D m = 0 ∨ m = −2

Câu 9. Cho f (x) = (x2+ 1) sin x Tính f(5)(0)

D −19

Câu 10. Giá trị lớn nhất của hàm số f (x) = xx1 trên miền xác định là

D 0

Câu 11. Cho f (x) = arctan x + x − 1 Tìm f−1(x)0tại x0= −1



A 1

2.



C 2

D 3

2

Câu 12. Tìm a, b ∈ R sao cho f (x) = ln(1 − 2x) + e2x− 1 tương đương với a.xb

khi x → 0



B a = −4

D a = 2, b = 3

Câu 13.

Cho hàm số f (x) =

(

e2x− x, nếu x ≥ 0

ax + b nếu x < 0. Tìm a, b để f (x) có đạo hàm tại x0= 0.



D a = 0, b = 1

Câu 14. Khai triển Maclaurint hàm số f (x) =√1 − 4x đến cấp 2

B f (x) = 1 + 4x −3

2x2+ o(x2)



D f (x) = 1 − 4x +12x + o(x2)

Câu 15.

Tính giới hạn dãy số lim

n→+∞

n

s

22n+1+ 3n

2n−1− ln(n) 

D 2

Trang 8

Câu 16. Cho hàm f (x) = (1 − ex) Tìm hàm ngược của f (x).

A f−1(x) = ln(1 −√3

C f−1(x) =√3

1 − ln y 

D f−1(x) = 1 −√3

ln x

Câu 17. Tìm miền xác định của hàm số f (x) = arccos(ln x) là

D [1e, e]

Câu 18.

Tìm m để f (x) =

( 2x + m, nếu x ≥ 0,

e1x, nếu x < 0. liên tục tại x0= 0.



D @m.

Câu 19. Tìm số tiệm cận của hàm số y = ln(ex− 1)

D 2

Câu 20. Cho hàm số f (x) = xe− 1

x Khẳng định nào sau đây đúng?



B Các câu khác sai



D f (x) không có tiệm cận ngang

CHỦ NHIỆM BỘ MÔN

PGS TS Nguyễn Đình Huy

Trang 2/2- Đề 1501

Trang 9

Đề 1501 ĐÁP ÁN

Câu 1. 

D

Câu 2. 

C

Câu 3. 

C

Câu 4. 

C

Câu 5. 

C

Câu 6. 

B

Câu 7. 

B

Câu 8. 

C

Câu 9. 

D

Câu 10. 

A

Câu 11. 

A

Câu 12. 

B

Câu 13. 

A

Câu 14. 

C

Câu 15. 

D

Câu 16. 

A

Câu 17. 

D

Câu 18. 

A

Câu 19. 

D

Câu 20. 

D

Ngày đăng: 09/12/2016, 07:56

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm