APPENDIX 1ABBREVIATIONS AND USEFUL DATA APPENDIX 1A Abbreviations Used in This Manual AACC American Association of Cereal Chemists ACS American Chemical Society AED atomic emission detec
Trang 1APPENDIX 1
ABBREVIATIONS AND USEFUL DATA
APPENDIX 1A
Abbreviations Used in This Manual
AACC American Association of Cereal
Chemists
ACS American Chemical Society
AED atomic emission detection
AEDA aroma extract dilution analysis
AMC 7-amido-4-methylcoumarin
ANS anilinonapththalene sulfonate
AOAC Association of Official Analytical
Chemists
AOCS American Oil Chemists’ Society
AOM active oxygen method
AOS allene oxide synthase
BCA bicinchoninic acid
BET Brunauer-Emmet-Teller (equation)
BGG bovine gamma globulin
BHA butylated hydroxyanisole
BHC branched hydrocarbons
BHT butylated hydroxytoluene
Brij 35 polyoxyethylene 23-lauren ether
°Brix measure of sugar content as
determined by refractometer with a Brix scale
BSA bovine serum albumin
BV biological value
CAPT compensated attached proton test
CD conjugated diene; circular dichroism
CDTA
trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid
CETAB cetyltrimethylammonium bromide
Chl a and b chlorophyll a and b
CI chemical ionization
CID collision-induced dissociation
CIE Commission Internationale de
l’Éclairage (International Commission for
Illumination)
CI/MS chemical ionization/mass
spectrometry
CLA conjugated linoleic acids
CLSM confocal laser-scanning microscopy
CMC critical micelle concentration
COSY correlation spectroscopy
DAD diode array detector DCI direct exposure chemical ionization DCM dichloromethane
DEI direct exposure electron impact Deoxy Mb deoxymyoglobin
DH degree of hydrolysis DHP dihydroxy pigment DMF dimethylformamide DMSO dimethylsulfoxide DNPH 2,4-dinitrophenylhydrazine DOPA 3,4-dihydroxyphenylalanine dpd delphinidin
DPO diphenol oxidase DQF-COSY double quantum filtered
correlation spectroscopy
DSA drop shape analysis DSC differential scanning calorimetry DTNB 5,5′-dithiobis(2-nitrobenzoic acid)
DTT dithiothreitol DVT drop volume tensiometer
EC Enzyme Commission EDTA ethylenediaminetetraacetic acid
EI electron impact EI/MS electron impact/mass spectrometry ELSD evaporative light-scattering detector
EM expressible moisture EPA (U.S.) Environmental Protection
Agency
ERH equilibrium relative humidity ESI electrospray ionization FAB/MS fast atom bombardment mass
spectrometry
FAME fatty acid methyl ester
FC Folin-Ciocalteau FDA (U.S.) Food and Drug Administration FFA free fatty acids
FID free induction decay; flame ionization
detection
FOX ferrous oxidation/xylenol orange
method
FP fecal protein FPD flame photometric detection FPLC fast protein liquid chromatography FTIR Fourier-transform infrared
(spectrometry)
Current Protocols in Food Acid Chemistry (2003) A.1A.1-A.1A.3
Abbreviations and Useful Data
Trang 2g gravity (in expressions of relative
centrifugal force)
GAB Guggenheim-Anderson-DeBoer
(equation)
GC gas chromatography GC/FID gas-liquid chromatography with
flame ionization detection
GC/MS gas-liquid chromatography with
mass selective detection
GC/O gas chromatography/olfactometry GLC gas-liquid chromatography GOPOD glucose oxidase/peroxidase
(reagent)
HBS hydroxybenzenesulfonamide HDPE high-density polyethylene HEC hydroxyethylcellulose
IS internal standard ISO International Standard Organization IUB International Union of Biochemistry IUBMB International Union of
Biochemistry and Molecular Biology
IUPAC International Union of Pure and
LC-APCI-MS liquid chromatography/
atmospheric pressure chemical ionizationmass spectrometry
LED light-emitting diode LOX lipoxygenase LSIMS liquid secondary ion mass
spectrometry
LVE linear viscoelastic region
MA malonaldehyde; malondialdehyde MALDI matrix-assisted laser
desorption/ionization
MALDI-TOF MS matrix-assisted laser
desorption/ionization time-of-flight massspectrometer
MCAC metal-chelate affinity
chromatography
MCC microcrystalline cellulose MDGC multidimensional gas chromato-
MOPS 3 -(N-morpholino)propane sulfonic
OU odor units Oxy Mb oxymyoglobin PBS phosphate-buffered saline PDA photodiode array PDCAAS protein digestibility–corrected
amino acid score
PDMS polydimethylsiloxane
PE pectinesterase PEG polyethylene glycol PER protein efficiency ratio PGase polygalacturonase pgd pelargonidin
pI isoelectric point
PIPES piperazine-N,Nsulfonic acid)
′-bis(2-ethane-PL pectic lyase PMSF phenylmethylsulfonyl fluoride
Abbreviations
Used in This
Manual
Trang 3RAS retronasal aroma stimulator
RDA recommended dietary allowance
RF radio frequency
RFI relative fluorescence intensity
RI retention index
RNU relative nitrogen utilization
ROESY rotational nuclear Overhäuser
RVP relative vapor pressure
S sieman (unit of conductance)
SD standard deviation
SDE simultaneous distillation extraction
SDS sodium dodecyl sulfate
SFC solid fat content
SFI solid fat index
SHAM salicylhydroxamic acid
SIM selected ion monitoring
SNIF-NMR site-specific natural isotope
fractionation measured by nuclear magnetic
resonance spectroscopy
SP-HPLC straight-phase
high-perform-ance liquid chromatography
SPME solid-phase microextraction
SV saponification value
TA titratable acidity TBA thiobarbituric acid TBARS thiobarbituric acid-reactive
substances
TBS Tris-buffered saline TCA trichloracetic acid
TD true digestibility TEA triethylamine TFA trifluoroacetic acid THF tetrahydrofuran TLC thin-layer chromatography
TLCK N α-p-tosyl-L-lysine chloromethylketone
TMCS trimethylchlorosilane imidazole TMG tetramethylguanidine
TMP 1,1,3,3-tetramethoxypropane TMS trimethylsilyl
TNBS trinitrobenzenesulfonic acid TOCSY total correlation spectroscopy TPA texture profile analysis
TPCK N-tosyl-L-phenylalaninechloromethyl ketone
TRF theoretical relative response factor Tris tris(hydroxymethyl)aminomethane Tris ⋅Cl Tris hydrochloride
TTS time-temperature superposition
U unit (of enzyme activity) UHP ultra high purity USDA United States Department of
Agriculture
UV ultraviolet WHC water holding capacity
WUA water uptake ability
A.1A.3
Abbreviations and Useful Data
Trang 4APPENDIX 2
LABORATORY STOCK SOLUTIONS,
EQUIPMENT, AND GUIDELINES
APPENDIX 2A
Common Buffers and Stock Solutions
This section describes the preparation of buffers and reagents used in the manipulation
of nucleic acids.
For preparation of acid and base stock solutions, see Tables A.2A.1 and A.2A.2 as well
as individual recipes.
GENERAL GUIDELINES
When preparing solutions, use deionized, distilled water and (for most applications)
reagents of the highest grade available Sterilization is recommended for most
applica-tions and is generally accomplished by autoclaving Materials with components that are
volatile, altered or damaged by heat, or whose pH or concentration are critical should be
sterilized by filtration through a 0.22- µm filter In many cases such components are added
from concentrated stocks after the solution has been autoclaved Where specialized
sterilization methods are required, this is indicated in the individual recipes.
CAUTION: It is important to follow laboratory safety guidelines and heed manufacturers’
precautions when working with hazardous chemicals; consult institutional safety officers
and appropriate references for further details.
STORAGE
Most simple stock solutions can be stored indefinitely at room temperature if reasonable
care is exercised to keep them sterile; where more rigorous conditions are required, this
is indicated in the individual recipes.
Table A.2A.1 Molarities and Specific Gravities of Concentrated Acids and Basesa
weight
% by weight
Molarity (approx.)
1 M solution (ml/liter)
Specific gravity
108.882.1
1.541.70
Trang 5Table A.2A.2 pKa Values and Molecular Weights for Some Common Biological Buffers
range
Mol wt.(g/mol)
Citric acidb C6H7O7− (H2Cit−) 4.74 (pKa2) —
Citric acidb C6H6O7− (HCit2−) 5.40 (pKa3) —
bAvailable as a variety of salts, e.g., ammonium, lithium, sodium.
Current Protocols in Food Analytical Chemistry
A.2A.2
Trang 6SELECTION OF BUFFERS
Table A.2A.2 reports pKa values for some common buffers Note that polybasic buffers,
such as phosphoric acid and citric acid, have more than one useful pKa value When
choosing a buffer, select a buffer material with a pKa close to the desired working pH (at
the desired concentration and temperature for use) In general, effective buffers have a
range of approximately 2 pH units centered about the pKa value Ideally the dissociation
constant—and therefore the pH—should not shift with a change in concentration or
temperature If the shift is small, as for MES and HEPES, then a concentrated stock
solution can be prepared and diluted without adjustment to the pH Buffers containing
phosphate or citrate, however, show a significant shift in pH with concentration change,
and Tris buffers show a large change in pH with temperature For convenience,
concen-trated stock solutions of these buffers can still be used, provided that a pH adjustment is
made after any temperature and concentration adjustments All adjustments to pH should
be made using the appropriate base—usually NaOH or KOH, depending on the
corre-sponding free counterion Tetramethylammonium hydroxide can be used to prepare
buffers without a mineral cation Many common buffers are supplied both as a free acid
or base and as the corresponding salt By mixing precalculated amounts of each, a series
of buffers with varying pH values can conveniently be prepared.
Citrate-phosphate buffer (McIlvaine’s buffer)
Solution A: 19.21 g/liter citric acid (0.1 M final)
Solution B: 53.65 g/liter Na2HPO4⋅7H2O or 71.7 g/liter Na2HPO4⋅12H2O
Referring to Table A.2A.3 for desired pH, mix the indicated volumes of solutions
A and B, then dilute with water to 100 ml Filter sterilize, if necessary, using a 0.2
µm filter and store up to 1 month 4°C.
DTT (dithiothreitol), 1 M
Dissolve 1.55 g DTT in 10 ml water and filter sterilize Store in aliquots at −20°C.
Do not autoclave to sterilize.
EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0)
Dissolve 186.1 g disodium EDTA dihydrate in 700 ml water Adjust pH to 8.0 with
10 M NaOH ( ∼50 ml; add slowly) Add water to 1 liter and filter sterilize.
Begin titrating before the sample is completely dissolved EDTA, even in the disodium salt
form, is difficult to dissolve at this concentration unless the pH is increased to between 7
and 8 Heating the solution may also help to dissolve EDTA.
Trang 7Potassium acetate buffer, 0.1 M
Solution A: 11.55 ml glacial acetic acid per liter (0.2 M) in water.
Solution B: 19.6 g potassium acetate (KC2H3O2) per liter (0.2 M) in water.
Referring to Table A.2A.4 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 100 ml Filter sterilize if necessary Store up to 3 months at room temperature.
This may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium acetate
in the same volume Acetate buffers show concentration-dependent pH changes, so check the
pH by diluting an aliquot of concentrate to the final concentration.
To prepare buffers with pH intermediate between the points listed in Table A.2A.4, prepare closest higher pH, then titrate with solution A.
Table A.2A.3 Preparation of Citrate-Phosphate Buffers
Desired pH Solution A (ml) Solution B (ml)
aAdapted with permission from Fasman (1989).
Current Protocols in Food Analytical Chemistry
A.2A.4
Common Buffers
and Stock
Solutions
Trang 8Potassium phosphate buffer, 0.1 M
Solution A: 27.2 g KH2PO4 per liter (0.2 M final) in water.
Solution B: 34.8 g K2HPO4 per liter (0.2 M final) in water.
Referring to Table A.2A.5 for desired pH, mix the indicated volumes of solutions
A and B, then dilute with water to 200 ml Filter sterilize if necessary Store up to
3 months at room temperature.
This buffer may be made as a 5- or 10-fold concentrate simply by scaling up the amount of
potassium phosphate in the same final volume Phosphate buffers show
concentration-de-pendent changes in pH, so check the pH of the concentrate by diluting an aliquot to the final
concentration.
To prepare buffers with pH intermediate between the points listed in Table A.2A.5, prepare
closest higher pH, then titrate with solution A.
Table A.2A.4 Preparation of 0.1 M Sodium
and Potassium Acetate Buffersa
DesiredpH
Solution A(ml)
Solution B(ml)
aAdapted by permission from CRC (1975).
Table A.2A.5 Preparation of 0.1 M Sodium and Potassium Phosphate Buffersa
Desired
pH
Solution A(ml)
Solution B(ml)
DesiredpH
Solution A(ml)
Solution B(ml)
Trang 9SDS, 20% (w/v)
Dissolve 20 g SDS (sodium dodecyl sulfate or sodium lauryl sulfate) in water to 100
ml total volume with stirring Filter sterilize using a 0.45- µm filter.
It may be necessary to heat the solution slightly to fully dissolve the powder.
Sodium acetate, 3 M
Dissolve 408 g sodium acetate trihydrate (NaC2H3O2⋅3H2O) in 800 ml H2O Adjust pH to 4.8, 5.0, or 5.2 (as desired) with 3 M acetic acid (see Table A.2A.1) Add H2O to 1 liter
Filter sterilize
Sodium acetate buffer, 0.1 M
Solution A: 11.55 ml glacial acetic acid per liter (0.2 M) in water.
Solution B: 27.2 g sodium acetate (NaC2H3O2⋅3H2O) per liter (0.2 M) in water Referring to Table A.2A.4 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 100 ml Filter sterilize if necessary Store up to 3 months at room temperature.
This may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium acetate
in the same volume Acetate buffers show concentration-dependent pH changes, so check the
pH by diluting an aliquot of concentrate to the final concentration.
To prepare buffers with pH intermediate between the points listed in Table A.2A.4, prepare closest higher pH, then titrate with solution A.
Sodium phosphate buffer, 0.1 M
Solution A: 27.6 g NaH2PO4⋅H2O per liter (0.2 M final) in water.
Solution B: 53.65 g Na2HPO4⋅7H2O per liter (0.2 M) in water.
Referring to Table A.2A.5 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 200 ml Filter sterilize if necessary Store up to 3 months at room temperature.
This buffer may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium phosphate in the same final volume Phosphate buffers show concentration-dependent changes in pH, so check the pH by diluting an aliquot of the concentrate to the final concentration.
To prepare buffers with pH intermediate between the points listed in Table A.2A.5, prepare closest higher pH, then titrate with solution A.
Tris ⋅Cl, 1 M
Dissolve 121 g Tris base in 800 ml H2O Adjust to desired pH with concentrated HCl Adjust volume to 1 liter with H2O
Filter sterilize if necessary Store up to 6 months at 4 °C or room temperature
Approximately 70 ml HCl is needed to achieve a pH 7.4 solution, and ∼42 ml for a solution that is pH 8.0.
IMPORTANT NOTE: The pH of Tris buffers changes significantly with temperature, decreasing approximately 0.028 pH units per 1°C Tris-buffered solutions should be adjusted
to the desired pH at the temperature at which they will be used Because the pK a of Tris is 8.08, Tris should not be used as a buffer below pH ∼7.2 or above pH ∼9.0.
Always use high-quality Tris (lower-quality Tris can be recognized by its yellow appearance when dissolved).
Current Protocols in Food Analytical Chemistry
A.2A.6
Common Buffers
and Stock
Solutions
Trang 10LITERATURE CITED
Chemical Rubber Company, 1975 CRC Handbook of Biochemistry and Molecular Biology, Physical and
Chemical Data, 3d ed., Vol 1 CRC Press, Boca Raton, Fla
Fasman, G.D (ed.) 1989 Practical Handbook of Biochemistry and Molecular Biology CRC Press, Boca
Raton, Fla
Mohan, C (ed.), 1997 Buffers: A Guide for the Preparation and Use of Buffers in Biological Systems,
Calbiochem, San Diego, Calif
Laboratory Stock Solutions, Equipment, and Guidelines
Trang 11APPENDIX 2B
Laboratory Safety
Persons carrying out the protocols in the
laboratory may encounter various hazardous or
potentially hazardous materials including:
ra-dioactive substances; toxic chemicals and
car-cinogenic, mutagenic, or teratogenic reagents;
and pathogenic and infectious biological
agents Most governments regulate the use of
these materials; it is essential that they be used
in strict accordance with local and national
regulations Cautionary notes are included in
many instances throughout the manual, and
some specific guidelines for working safely
with chemicals are provided below (and
refer-ences therein) However, we emphasize that
users must proceed with the prudence and
pre-cautions associated with good laboratory
prac-tice, under the supervision of personnel
respon-sible for implementing laboratory safety
pro-grams at their institutions and in compliance
with designated guidelines of federal, state, and
local officials
HAZARDOUS CHEMICALS
It is not possible in the space available to list
all the precautions to be taken when handling
hazardous chemicals Many texts have been
written about laboratory safety; see Literature
Cited for a selected list of examples Obviously,
all national and local laws should be obeyed as
well as all institutional regulations Controlled
substances are regulated by the Drug
Enforce-ment Administration By law, Material Safety
Data Sheets must be readily available All
labo-ratories should have a Chemical Hygiene Plan
[29CFR Part 1910.1450] and institutional safety
officers should be consulted as to its
implemen-tation Help is (or should be) available from your
institutional Safety Office Use it
Chemicals should be stored properly For
example, flammable chemicals (e.g., ethanol,
methanol, acetone, methyl ethyl ketone,
petro-leum distillates, toluene, benzene, and other
materials labeled flammable) should be stored
in approved flammable storage cabinets, and
flammable chemicals requiring refrigeration
should be stored in explosion-proof
refrigera-tors Oxidizers should be segregated from other
chemicals, and corrosive acids (e.g., sulfuric,
hydrochloric, nitric, perchloric, and
hydroflu-oric acids) should also be stored in a separate
cabinet, well-removed from the flammable
or-ganics
Facilities should be appropriate for the
han-dling of hazardous chemicals In particular,
hazardous chemicals should only be handled inchemical fume hoods, not in laminar flow cabi-nets The functioning of these fume hoodsshould be periodically checked Laboratoriesshould also be equipped with safety showersand eye-washing facilities Again, this equip-ment should be tested periodically to make surethat it functions correctly Other safety equip-ment may be required depending on the nature
of the materials being handled In addition,researchers should be trained in the properprocedures for handling hazardous chemicals
as well as other areas of laboratory operations,e.g., handling of compressed gases, use of cryo-genic liquids, operation of high voltage powersupplies, etc
Before starting work, have a plan for dealingwith spills or accidents; coming up with a goodplan on the spur of the moment is difficult Forexample, have the appropriate decontaminat-ing or neutralizing agents prepared and close athand Small spills can probably be cleaned up
by the researcher In the case of larger spills,the area should be evacuated and help soughtfrom those experienced and equipped for deal-ing with spills, e.g., your institutional safetydepartment
Protective equipment should include, at aminimum, eye protection, a lab coat, andgloves Sandals, open-toed shoes, and shortsshould not be worn In certain circumstancesother items of protective equipment may benecessary, e.g., a face shield Different types ofgloves exhibit different chemical resistanceproperties; listings of these properties are avail-able (Forsberg and Keith, 1989) Glovesshould, however, be regarded as the last line ofdefense and should be changed if they becomecontaminated, because many types of chemi-cals pass relatively freely through rubber Ifpossible, handling procedures should be de-signed so that gloves do not become contami-nated All common-sense precautions should
be observed, e.g., do not pipet by mouth, keepunauthorized persons away from hazardouschemicals, prohibit eating and drinking in thelab, etc
Order hazardous chemicals only in ties that are likely to be used in a reasonabletime Buying large quantities at a lower unitcost is no bargain if someone (perhaps you) has
quanti-to pay quanti-to dispose of surplus quantities tute alcohol-filled thermometers for mercury-
Substi-Contributed by George Lunn
Current Protocols in Food Analytical Chemistry (2001) A.2B.1-A.2B.2
Copyright © 2001 by John Wiley & Sons, Inc.
A.2B.1
Laboratory Stock Solutions, Equipment, and Guidelines
Trang 12filled thermometers The latter are a hazardouschemical spill waiting to happen.
Although any number of chemicals monly used in laboratories are toxic if usedimproperly, the toxic properties of a number ofreagents require special attention Many chemi-cals are considered carcinogenic, corrosive,flammable, lachrymatory, mutagenic, oxidiz-ing, teratogenic, or toxic Chemicals labeledcarcinogenic range from those accepted by ex-pert review groups as causing cancer in humans
com-to those for which only minimal evidence ofcarcinogenicity exists Oxidizers may reactviolently with oxidizable material, e.g., hydro-carbons, wood, and cellulose Before using anychemical, thoroughly investigate all of its char-acteristics Material Safety Data Sheets arereadily available; they list some hazards butvary widely in quality A number of texts de-scribing hazardous properties are listed in Fur-ther Reading In particular, Sax’s DangerousProperties of Industrial Materials, 8th ed (Le-wis, 1992) and Bretherick’s Handbook of Re-active Chemical Hazards, 4th ed (Bretherick,1990) give comprehensive listings of knownhazardous properties However, these texts listonly the known properties Many chemicalshave been tested only partially or not at all
Prudence dictates, therefore, that unless there
is good reason for believing otherwise, allchemicals should be regarded as volatile,highly toxic, flammable human carcinogensand should be handled with care
Waste should always be disposed of in cordance with all applicable regulations Wasteshould be segregated according to institutionalrequirements, for example, into solid, aqueous,nonchlorinated organic, and chlorinated or-ganic material A collection (Lunn and San-sone, 1994) of techniques for the disposal ofchemicals in laboratories has been publishedrecently Incorporation of these procedures intolaboratory protocols can help to minimizewaste disposal problems
ac-LITERATURE CITED
Bretherick, L 1990 Bretherick’s Handbook of active Chemical Hazards, 4th ed Butterworths,London
Re-Forsberg, K and Keith, L.H 1989 Chemical tective Clothing Performance Index Book JohnWiley & Sons, New York
Pro-Lewis, R.J., Sr 1992 Sax’s Dangerous Properties ofIndustrial Materials, 8th ed Van Nostrand-Rein-hold, New York
Lunn, G and Sansone, E.B 1994 Destruction ofHazardous Chemicals in the Laboratory, 2nd ed
John Wiley & Sons, New York
KEY REFERENCES
General safety
Freeman, N.T and Whitehead, J 1982 Introduction
to Safety in the Chemical Laboratory AcademicPress, New York
Furr, A.K (ed.) 1990 CRC Handbook of tory Safety, 3rd ed CRC Press, Boca Raton, Fla.Fuscaldo, A.A., Erlick, B.J., and Hindman, B (eds.)
Labora-1980 Laboratory Safety, Theory and Practice.Academic Press, New York
Miller, B.M (ed.) 1986 Laboratory Safety, ples and Practices American Society for Micro-biology, Washington, D.C
Princi-Occupational Health and Safety 1993 NationalSafety Council, Chicago
Pal, S.B (ed.) 1985 Handbook of LaboratoryHealth and Safety Measures Kluwer AcademicPublishers, Hingham, Mass
Young, J.A (ed.) 1987 Improving Safety in theChemical Laboratory: A Practical Guide JohnWiley & Sons, New York
Laboratory safety for hazardous chemicals
American Chemical Society, Committee on cal Safety 1990 Safety in Academic ChemistryLaboratories, 5th ed American Chemical Soci-ety, Washington, D.C
Chemi-Forsberg and Keith, 1989 See above
National Research Council, Committee on ous Substances in the Laboratory 1981 PrudentPractices for Handling Hazardous Chemicals inLaboratories National Academy Press, Wash-ington, D.C
Hazard-Properties and disposal procedures for hazardous chemicals
Aldrich Chemical Co 2001 Aldrich Catalog book of Fine Chemicals Aldrich Chemical Co.,Milwaukee, Wis
Hand-Bretherick, L (ed.) 1986 Hazards in the ChemicalLaboratory, 4th ed Royal Society of Chemistry,London
Bretherick, 1990 See above
Budavari, S (ed.) 1996 The Merck Index, 12th ed.Merck & Co., Rahway, N.J
Lewis, 1992 See above
Lunn, and Sansone, 1994 See above
Contributed by George LunnBaltimore, Maryland
Laboratory Safety
Trang 13APPENDIX 2C
Standard Laboratory Equipment
Special equipment is itemized in the materials list of each protocol Listed below are
standard pieces of equipment in the modern food science laboratory—i.e., items used
extensively in this manual and thus not usually included in the individual materials lists.
See SUPPLIERS APPENDIX for contact information for commercial vendors of laboratory
Biohazard disposal containers and bags
Blender (e.g., Waring Blendor)
Bottles, glass and plastic
Bunsen burners
Centrifuges, low-speed (6,000 rpm) and
speed (20,000 rpm) refrigerated centrifuges,
ultracentrifuge (20,000 to 80,000 rpm), and
microcentrifuge that holds standard 0.5- and
1.5-ml microcentrifuge tubes
NOTE: Centrifuge speeds are provided as g or
as rpm (with example rotor models)
throughout the manual.
Cold room (4°C) or cold box
Computer (PC or Macintosh) and printer
Conical centrifuge tubes, 15- and 25-ml plastic
Cuvettes, plastic disposable, glass, and quartz
Darkroom and developing tank, or X-Omat
automatic X-ray film developer (Kodak)
Desiccators (including vacuum desiccators)
and desiccant
Dry ice
Filtration apparatus, for collecting acid
precipitates on nitrocellulose filters or
Gel electrophoresis equipment, horizontal
full-size and minigel apparatus, vertical
full-size and minigel apparatus for
polyacrylamide protein gels, and specialized
equipment for two-dimensional protein gels
Grinder (e.g., coffee grinder)
Heat-sealable plastic bags and apparatus
Heating blocks, thermostat-controlled metal
heating block that holds test tubes and/or
microcentrifuge tubes
Hoods, chemical and microbiological
Hot plates, with or without magnetic stirrer
Gloves, plastic and latex, disposable and
asbestos
Graduated cylinders
Ice buckets Ice maker Immersion oil for microscopy Kimwipes, or equivalent lint-free tissues
Lab coats Laboratory glass ware Light box, for viewing gels and autoradiograms
Liquid nitrogen and Dewar flask Magnetic stirrers (with heater is useful)
Markers, including indelible markers and china-marking pencils
Microcentrifuge, Eppendorf-type, maximum speed 12,000 to 14,000 rpm
Microcentrifuge tubes, 1.5-ml and 0.5-ml
Microscope, standard optical model (optionally with epifluorescence or phase-contrast illumination)
Microscope slides and coverslips Microwave oven, to melt agar and agarose
Mortar and pestle Muffle furnace Ovens, drying, vacuum, and microwave
Paper cutter, large size, for 46 × 57-cm Whatman paper sheets
Paper towels Parafilm Pasteur pipets and bulbs
pH meter and pH standard solutions
pH paper Pipet bulbs, or battery-operated pipetting devices—e.g., Pipet-Aid (Drummond Scientific)
Pipets, Pasteur and graduated, glass and plastic, serological (1- to 25-ml)
Pipettors, adjustable delivery, volume ranges 0.5 to 10 µl, 10 to 200 µl, and 200 to
1000 µl
Plastic wrap, UV transparent (e.g., Saran Wrap)
Polaroid camera Power supplies, 300-V for polyacrylamide gels; 2000- to 3000-V for some applications
Racks, for test tubes and microcentrifuge tubes
Radiation shield, Lucite or Plexiglas
Radioactive waste containers, for liquid and solid waste
Razor blades
Current Protocols in Food Analytical Chemistry (2001) A.2C.1-A.2C.2
Copyright © 2001 by John Wiley & Sons, Inc.
Supplement 2
A.2C.1
Laboratory Stock Solutions, Equipment, and Guidelines
Trang 14Refrigerator, 4°C
Ring stands and rings Rotator, end-over-end Rubber bands Rubber policemen Rubber stoppers Safety glasses Scalpels and blades Scintillation counter Scissors
Shakers, orbital and platform Spectrophotometer, UV and visible Speedvac evaporator (Savant) Stir-bars, assorted sizes
Tape, masking and electrician’s Thermometers
Timer
UV transilluminator Vacuum aspirator Vacuum line Volumetric flasks Vortex mixers Wash bottles, plastic and glass Water baths, variable temperature up to 80°C
Water purification equipment, e.g., Milli-Q
system (Millipore) or equivalent
X-ray film cassettes and intensifying screens
Standard
Laboratory
Equipment
Trang 15Almost a century ago, the first mass
spec-trometers were used to prove the existence of
isotopes of the elements During the first half
of the 20th century, physicists and physical
chemists used mass spectrometers to help
char-acterize new elements and the fission products
of radioactive elements as they were created or
discovered Other applications included the
analysis of isotopic enrichment of elements and
their inorganic derivatives As this era of mass
spectrometry reached maturity, by the 1940s,
the analysis of organic molecules emerged as a
new application of mass spectrometry
Begin-ning in 1945, organic mass spectrometers using
electron impact (EI) ionization became
com-mercially available and were used primarily by
the petroleum industry Toward the late 1950s,
organic mass spectrometers began to be used
for the analysis of a wider variety of organic
molecules, and gradually became a
fundamen-tal analytical tool for the characterization of
synthetic organic compounds
During the 1960s, high-resolution,
double-focusing magnetic sector instruments became
available from multiple manufacturers and
were widely used in organic chemistry for exact
mass measurements and elemental
composi-tion analysis EI was used for generating
struc-turally significant fragment ions for compoundidentification, and rules for structure elucida-tion using mass spectrometry were developed(for a thorough review of EI and ion fragmen-tation pathways, see McLafferty and Turecek,1993) Biomedical and food chemistry appli-cations of mass spectrometry were developedduring this time Chemical ionization (CI),which was developed by researchers in thepetroleum industry (Field, 1990), was quicklyadopted as a softer ionization alternative to EI,useful in reducing fragmentation so that mo-lecular weights could be confirmed more easily
CI became another standard ionization nique for mass spectrometry (see FigureA.3A.1 for a guide to the selection of ionizationtechniques in mass spectrometry)
tech-GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)
With the introduction of computerized datasystems for data acquisition, reduction, andstorage during the 1960s, the efficiency of massspectrometric analysis grew rapidly and con-tinues to grow to this day The use of computersfor data reduction and analysis helped gas chro-matography/mass spectrometry (GC/MS) be-come a practical and powerful tool for qualita-
Supplement 2
Contributed by Richard B van Breemen
Current Protocols in Food Analytical Chemistry (2001) A.3A.1-A.3A.7
Copyright © 2001 by John Wiley & Sons, Inc.
Figure A.3A.1 Flow chart illustrating the selection of a suitable ionization technique for the mass
spectrometric analysis of a sample Abbreviations: APCI, atmospheric pressure chemical ionization;
CI, chemical ionization; EI, electron impact; FAB, fast atom bombardment; MALDI, matrix-assisted
laser desorption/ionization
A.3A.1
Commonly Used Techniques
Trang 16tive and quantitative analysis of compounds inmixtures Both EI and CI were immediatelyuseful for GC/MS, since both of these ioniza-tion methods require that the analytes be in thegas phase When capillary GC was incorpo-rated into GC/MS, this technique reached ma-turity The advantages of GC/MS includespeed, selectivity, and sensitivity Typically,GC/MS may be used to select, identify, andquantify organic compounds in complex mix-tures at the femtomole level Compounds areselected using a combination of chroma-tographic separation and mass selection, andwhen using tandem mass spectrometry(MS/MS; see discussion below), the fragmen-tation pathway may be used for additional se-lectivity The speed of GC/MS is determined
by the chromatography step, which typicallyrequires from several minutes to one hour peranalysis Although GC/MS remains importantfor the analysis of many organic compounds,this technique is limited to volatile and ther-mally stable compounds (see chromatogra-phy/MS selection flow chart in Fig A.3A.2)
Therefore, thermally unstable compounds—
including food pigments such as carotenoidsand chlorophylls and biomolecules such as pro-teins, carbohydrates, and nucleic acids—can-not be analyzed in their native forms usingGC/MS (for more details regarding GC/MSand its applications, see Watson, 1997)
DESORPTION IONIZATION MASS SPECTROMETRY
During the 1970s and early 1980s, tion ionization techniques such as field desorp-tion (FD), desorption EI, desorption CI (DCI),and laser desorption were developed to extendthe utility of mass spectrometry towards theanalysis of more polar and less volatile com-pounds (see Watson, 1997, for more informa-tion regarding desorption ionization techniquesincluding DCI and FD) Although these tech-niques helped extend the mass range of mass
desorp-spectrometry beyond a traditional limit of m/z
1000 and toward ions of m/z 5000 (Fig.
A.3A.1), the first breakthrough in the analysis
of polar, nonvolatile compounds occurred in
1982 with the invention of fast atom ment (FAB; Barber et al., 1982) FAB and itscounterpart, liquid secondary ion mass spec-trometry (LSIMS), facilitate the formation ofabundant molecular ions, protonated mole-cules, and deprotonated molecules of nonvola-tile and thermally labile compounds such aspeptides, chlorophylls, and complex lipids up
bombard-to approximately m/z 12,000 FAB and LSIMS
use energetic particle bombardment (fast atoms
or ions from 3,000 to 20,000 V of energy) toionize compounds dissolved in nonvolatile ma-trices such as glycerol or 3-nitrobenzyl alcoholand desorb them from this condensed phaseinto the gas phase for mass spectrometric analy-sis Molecular ions and/or protonated mole-cules are usually abundant and fragmentation
is minimal
sample
APCI, electrospray, particle beam, CF-FAB
GC/MS
Figure A.3A.2 Selection of chromatography-mass spectrometry system for the analysis of a
sample Abbreviations: APCI, atmospheric pressure chemical ionization; CF, continuous flow; CI,chemical ionization; EI, electron impact; FAB, fast atom bombardment; GC/MS, gas chromatogra-phy/mass spectrometry; LC/MS, liquid chromatography/mass spectrometry
Introduction to
Mass
Spectrometry for
Food Chemistry
Trang 17Introduced in the late 1980s, matrix-assisted
laser desorption/ionization (MALDI) has
helped solve the mass-limit barriers of laser
desorption mass spectrometry so that singly
charged ions may be obtained up to m/z 500,000
and sometimes higher (Hillenkamp et al.,
1991) For most commercially available
MALDI mass spectrometers, ions up to m/z
200,000 are readily obtained Like FAB and
LSIMS, MALDI samples are mixed with a
matrix to form a solution that is loaded onto the
sample stage for analysis Unlike the other
matrix-mediated techniques, the solvent is
evaporated prior to MALDI analysis, leaving
sample molecules trapped in crystals of solid
phase matrix The MALDI matrix is selected
to absorb the pulse of laser light directed at the
sample Most MALDI mass spectrometers are
equipped with a pulsed UV laser, although IR
lasers are available as an option on some
com-mercial instruments Therefore, matrices are
often substituted benzenes or benzoic acids
with strong UV absorption properties During
MALDI, the energy of the short but intense UV
laser pulse obliterates the matrix and in the
process desorbs and ionizes the sample Like
FAB and LSIMS, MALDI typically produces
abundant protonated or deprotonated
mole-cules with little fragmentation
LIQUID
CHROMATOGRAPHY/MASS
SPECTROMETRY (LC/MS)
By the time that GC/MS had become a
standard technique in the late 1960s, LC/MS
was still in the developmental stages
Produc-ing gas-phase sample ions for analysis in a
vacuum system while removing the HPLC
mo-bile phase proved to be a challenging task Early
LC/MS techniques included a moving belt
in-terface to desolvate and transport the HPLC
eluate into a CI or EI ion source, or a direct inlet
system in which the eluate was pumped at a low
flow rate of 1 to 3 µl/min into a CI source
However, neither of these systems was robust
enough or suitable for a broad enough range of
samples to gain widespread acceptance
Since FAB (or LSIMS) requires that the
analyte be dissolved in a liquid matrix, this
ionization technique was easily adapted for
infusion of solution-phase samples into the
FAB ionization source, in an approach known
as continuous-flow FAB Continuous-flow
FAB was connected to microbore HPLC
col-umns for LC/MS applications (Ito et al., 1985)
Since this method is limited to microbore
HPLC applications at flow rates of <10 µl/min
and requires considerable operator tion, it is not ideal for the analysis of largesample sets Instead, more robust techniqueshave been developed to fulfill this requirement
interven-However, continuous-flow FAB is still in use
in some laboratories
Like continuous-flow FAB, the popularity
of particle beam interfaces is diminishing, butsystems are still available from commercialsources During particle beam LC/MS, theHPLC eluate is sprayed into a heated chamberconnected to a vacuum pump As the dropletsevaporate, aggregates of analyte (particles)form and pass through a momentum separatorthat removes the lower-molecular-weight sol-vent molecules Finally, the particle beam en-ters the mass spectrometer ion source where theaggregates strike a heated plate from which theanalyte molecules evaporate and are ionizedusing conventional EI or CI ionization Particlebeam LC/MS is limited to the analysis of vola-tile and thermally stable compounds that areamenable to flash evaporation and EI or CImass spectrometry Therefore, this approach isnot used for polar compounds in food chemistrysuch as carbohydrates, sugars, peptides, pro-teins, or nucleic acids (Fig A.3A.2)
Since thermospray became the first widelyutilized LC/MS technique (during the late1970s and early 1980s), this technique should
be mentioned here Thermospray facilitates theinterfacing of standard analytical HPLC sys-tems at flow rates up to 1 ml/min with massspectrometers Although the interface betweenthe HPLC and mass spectrometer is inefficientand exhibits low sensitivity for most analytes,thermospray has been useful for the LC/MSanalysis of many types of small molecules
During thermospray, the HPLC eluate issprayed through a heated capillary into a heateddesolvation chamber at reduced pressure Gasphase ions remaining after desolvation of thedroplets are extracted through a skimmer intothe mass spectrometer for analysis The sensi-tivity of thermospray is poor since there is nomechanism or driving force to enhance thenumber of sample ions entering the gas phasefrom the spray during desolvation Also, ther-mally labile compounds tend to decompose inthe heated source These problems were solvedwhen thermospray was replaced by elec-trospray during the late 1980s
During the 1990s, electrospray ionization(ESI) and atmospheric pressure chemical ioni-zation (APCI) became the standard interfacesfor LC/MS Unlike thermospray, particle beam,
or continuous-flow FAB, ESI and APCI
A.3A.3
Commonly Used Techniques
Trang 18faces operate at atmospheric pressure and donot depend upon vacuum pumps to removesolvent vapor As a result, they are compatiblewith a wide range of HPLC flow rates Also, nomatrix is required Both APCI and ESI arecompatible with a wide range of HPLC col-umns and solvent systems Like all LC/MS
systems, the solvent system should containonly volatile solvents, buffers, or ion-pairagents, to reduce fouling of the mass spec-trometer ion source In general, APCI and ESIform abundant molecular ion species (FiguresA.3A.1 and A.3A.2) When fragment ions are
8150
5000
100
computer-reconstructedmass chromatogram of m/z 269
Introduction to
Mass
Spectrometry for
Food Chemistry
Trang 19formed, they are usually more abundant in
APCI than ESI mass spectra
The APCI interface uses a heated nebulizer
to form a fine spray of the HPLC eluate, which
is much finer than the particle beam system but
similar to that formed during thermospray A
cross-flow of heated nitrogen gas is used to
facilitate the evaporation of solvent from the
droplets The resulting gas-phase sample
mole-cules are ionized by collisions with solvent
ions, which are formed by a corona discharge
in the atmospheric pressure chamber
Molecu-lar ions, M+ or M−., and/or protonated or
de-protonated molecules can be formed The
rela-tive abundance of each type of ion depends
upon the sample itself, the HPLC solvent, and
the ion source parameters Next, ions are drawn
into the mass spectrometer analyzer for
meas-urement through a narrow opening or skimmer,
which helps the vacuum pumps to maintain
very low pressure inside the analyzer while the
APCI source remains at atmospheric pressure
During ESI, the HPLC eluate is sprayed
through a capillary electrode at high potential
(usually 2000 to 7000 V) to form a fine mist of
charged droplets at atmospheric pressure As
the charged droplets migrate towards the
open-ing of the mass spectrometer due to electrostatic
attraction, they encounter a cross-flow of
heated nitrogen that increases solvent
evapora-tion and prevents most of the solvent molecules
from entering the mass spectrometer
Molecu-lar ions, protonated or deprotonated molecules,
and cationized species such as [M+Na]+ and
[M+K] can be formed (for additional tion on ESI, see Cole, 1997) In addition tosingly charged ions, ESI is unique as an ioni-zation technique in that multiply charged spe-cies are common and often constitute the ma-jority of the sample ion abundance The relativeabundance of each of these species dependsupon the chemistry of the analyte, the pH, thepresence of proton-donating or -accepting spe-cies, and the levels of trace amounts of sodium
informa-or potassium salts in the mobile phase In trast, APCI, MALDI, EI, CI, and FAB/LSIMSusually produce singly charged species A con-sequence of forming multiply charged ions is
con-that they are detected at lower m/z values (i.e.,
|z| >1) than the corresponding singly charged
species This has the benefit of allowing mass
spectrometers with modest m/z ranges to detect
and measure ions of molecules with very highmasses For example, ESI has been used tomeasure ions with molecular weights of hun-dreds of thousands or even millions of daltons
on mass spectrometers with m/z ranges of only
a few thousand (for a review of LC/MS niques, see Niessen, 1999)
tech-An example of the LC/MS analysis of a plantextract is shown in Figure A.3A.3 In this case,negative ion ESI-MS was used in combinationwith C18 reversed-phase HPLC separation Ex-
tracts of the botanical Trifolium pratense (red
clover) are used as dietary supplements bymenopausal and post-menopausal women (Liu
et al., 2001) The two-dimensional map trates the amount of information that may be
illus-ion source
sample compounds a and
b and impurity c
a
MS analyzer 1
m/z
M+⋅
CID
MS analyzer 2
b c
b
Figure A.3A.4 Scheme illustrating the selectivity of MS/MS and the process by which
collision-induced dissociation (CID) facilitates fragmentation of preselected ions
A.3A.5
Commonly Used Techniques
Trang 20acquired using hyphenated techniques such asLC/MS In the time dimension, chromatogramsare obtained and a sample computer-recon-structed mass chromatogram is shown for the
signal at m/z 269 One intense chromatographic
peak was detected in this chromatogram eluting
at 12.4 min In the m/z dimension, the negative
ion electrospray mass spectrum recorded at
12.4 min shows a base peak at m/z 269 Based
on comparison to authentic standards (data not
shown), the ion of m/z 269 was shown to
cor-respond to the deprotonated molecule ofgenistein, which is an estrogenic isoflavone(Liu et al., 2001) Since almost no fragmenta-tion of the genistein ion was observed, addi-tional characterization would require collision-induced dissociation (CID) and tandem massspectrometry as discussed in the next section
TANDEM MASS SPECTROMETRY (MS/MS) AND HIGH RESOLUTION
Desorption ionization techniques like FABand MALDI and LC/MS ionization techniqueslike ESI and APCI facilitate the molecularweight determination of a wide range of polarand nonpolar, low- and high-molecular-weightcompounds However, the “soft” ionizationcharacter of these techniques means that most
of the ion current is concentrated in molecularions and few structurally significant fragmentions are formed In order to enhance the amount
of structural information in these mass spectra,collision-induced dissociation (CID) may beused to produce abundant fragment ions frommolecular ion precursors formed and isolatedduring the first stage of mass spectrometry
Then, a second mass spectrometry analysis may
be used to characterize the resulting productions This process is called tandem mass spec-trometry or MS/MS and is illustrated in FigureA.3A.4
Another advantage of the use of tandemmass spectrometry is the ability to isolate aparticular ion such as the molecular ion of the
analyte of interest during the first mass trometry stage This precursor ion is essentiallypurified in the gas phase and is free of impuri-ties such as solvent ions, matrix ions, or otheranalytes Finally, the selected ion is fragmentedusing CID and analyzed using a second massspectrometry stage In this manner, the result-ing tandem mass spectrum contains exclusivelyanalyte ions without impurities that might in-terfere with the interpretation of the fragmen-tation patterns In summary, CID may be usedwith LC/MS/MS or desorption ionization andMS/MS to obtain structural information such
spec-as amino acid sequences of peptides and sites
of alkylation of nucleic acids, or to distinguishstructural isomers such as β-carotene and ly-copene
The most common types of MS/MS ments available to researchers in food chemis-try include triple quadrupole mass spectrome-ters and ion traps Less common but commer-cially produced tandem mass spectrometersinclude magnetic sector instruments, Fouriertransform ion cyclotron resonance (FTICR)mass spectrometers, and quadrupole time-of-flight (QTOF) hybrid instruments (TableA.3A.1) Beginning in 2001, TOF-TOF tandemmass spectrometers became available from in-strument manufacturers These instrumentshave the potential to deliver high-resolutiontandem mass spectra with high speed andshould be compatible with the chip-based chro-matography systems now under development
instru-In addition to MS/MS with CID to obtainstructural information, it is also useful to usehigh-resolution exact mass measurements toconfirm the elemental compositions of ions.Essentially, exact mass measurements permitthe unambiguous composition analysis of low-molecular-weight compounds (mol wt <500)
through precise and accurate m/z
measure-ments The types of mass spectrometers ble of exact mass measurements include mag-netic sector mass spectrometers, QTOF hybrid
capa-Table A.3A.1 Types of Mass Spectrometers and Tandem Mass Spectrometersa
aFTICR, Fourier transform ion cyclotron resonance; QTOF, quadropole time-of-flight; TOF, time-of-flight.
Introduction to
Mass
Spectrometry for
Food Chemistry
Trang 21mass spectrometers, reflectron TOF
instru-ments, and FTICR mass spectrometers (Table
A.3A.1) Some of these instruments permit the
simultaneous use of tandem mass spectrometry
and exact mass measurement of fragment ions
These include FTICR instruments, QTOF, and
the TOF-TOF
CONCLUSION
Mass spectrometry has become an essential
analytical tool for a wide variety of biomedical
applications such as food chemistry and food
analysis Mass spectrometry is highly sensitive,
fast, and selective By combining mass
spec-trometry with HPLC, GC, or an additional stage
of mass spectrometry (MS/MS), the selectivity
increases considerably As a result, mass
spec-trometry may be used for quantitative as well
as qualitative analyses In this manual, mass
spectrometry is mentioned frequently, and
ex-tensive discussions of mass spectrometry
ap-pear, for example, in units describing the
analy-ses of carotenoids (UNIT F2.4) and chlorophylls
(UNIT F4.5) In particular, these units include
examples of LC/MS and MS/MS and the use
of various ionization methods
LITERATURE CITED
Barber, M., Bordoli, R.S., Elliott, G.J., Sedgwick
R.D., and Tyler, A.N 1982 Fast atom
bombard-ment mass spectrometry Anal Chem
54:645A-657A
Cole, R.B (ed.) 1997 Electrospray Ionization
Mass Spectrometry John Wiley & Sons, New
York
Field, F 1990 Early days of chemical ionization J.
Am Soc Mass Spectrom 1:277-283.
Hillenkamp, F., Karas, M., Beavis, R.C., and Chait,
B.T 1991 Matrix-assisted laser
desorption/ioni-zation mass spectrometry of biopolymers Anal.
Chem 63:1193A-1203A.
Ito, Y., Takeuchi, T., Ishii, D., and Goto, M 1985
Direct coupling of micro high-performance uid chromatography with fast atom bombard-
liq-ment mass spectrometry J Chromatogr.
346:161-166
Liu, J., Burdette, J.E., Xu, H., Gu, C., van Breemen,R.B., Bhat, K.P.L., Booth, N., Constantinou,A.I., Pezzuto, J.M., Fong, H.H.S., Farnsworth,N.R., and Bolton, J.L 2001 Evaluation of estro-genic activity of plant extracts for the potential
treatment of menopausal symptoms J Agric.
Food Chem 49:2472-2479.
McLafferty, F.W and Turecek, F 1993 tion of Mass Spectra, 4th ed University ScienceBooks, Mill Valley, Calif
Interpreta-Niessen, W.M 1999 State-of-the-art in liquid
chro-matography-mass spectrometry J Chromatogr.
A 856:179-189.
Watson, J.T 1997 Introduction to Mass try, 3rd ed Lippincott-Raven, Philadelphia, Pa
Spectrome-KEY REFERENCES
McLafferty and Turecek, 1993 See above
This classic text describes fragmentation pathways and mechanisms for ions formed using electron impact (EI) ionization In addition, this edition con- tains additional information regarding desorption ionization and the corresponding related fragmen- tation mechanisms.
Watson, 1997 See above
This textbook provides an overview of biomedical mass spectrometry with particular emphasis on GC/MS and quantitative methods In addition, de- scriptions are provided of the various types of mass spectrometers and ionization techniques that are used for biomedical applications.
Contributed by Richard B van BreemenUniversity of Illinois at ChicagoChicago, Illinois
A.3A.7
Commonly Used Techniques
Trang 22SELECTED SUPPLIERS OF REAGENTS AND EQUIPMENT
Listed below are addresses and phone numbers of commercial suppliers who have been recommended for particular items used inour manuals because: (1) the particular brand has actually been found to be of superior quality, or (2) the item is difficult to find inthe marketplace Consequently, this compilation may not include some important vendors of biological supplies For comprehensive
listings, see Linscott’s Directory of Immunological and Biological Reagents (Santa Rosa, CA), The Biotechnology Directory (Stockton Press, New York), the annual Buyers’ Guide supplement to the journal Bio/Technology, as well as various sites on the
JVVRYYYCEEWUVCPFCTFEQO
#EG)NCUU
09$QWNGXCTF 8KPGNCPF0,
#EVKQP5EKGPVKHKE 21$QZ
%CTQNKPC$GCEJ0%
#&+PUVTWOGPVU
.CPFKPIU&TKXG /QWPVCKP8KGY%#
JVVRYYYCFKPUVTWOGPVUEQO
#FCRVKXG$KQU[UVGOU
4KDQEQP9C[
2TQITGUU2CTM WVQP$GFUHQTFUJKTG.7747-
JVVRYYYCFCRVKXGEQWM
#FQDG5[UVGOU
%JCTNGUVQP4QCF 21$QZ
JVVRYYYRGRVKFGEQO
#FXCPEGF/CEJKPKPICPF6QQNKPI
$WUKPGUURCTM#XGPWG 5CP&KGIQ%#
JVVRYYYCOVOHIEQO
#FXCPEGF/CIPGVKEU 5GG2GT5GRVKXG$KQU[UVGOU
#FXCPEGF2TQEGUU5WRRN[
5GG0C\&CT-%%JKECIQ
#FXCPEGF5GRCTCVKQP6GEJPQNQIKGU
.GUNKG%QWTV 21$QZ
9JKRRCP[0,
JVVRYYYCUVGEWUCEQO
#FXCPEGF6CTIGVKPI5[UVGOU
#(NKPVMQVG#XGPWG 5CP&KGIQ%#
JVVRYYY#65DKQEQO
#FXGPV4GUGCTEJ/CVGTKCNU '[PUJCO1ZHQTF1:,#7-
JVVRYYYCFXGPVTOEQO
#FXGV +PFWUVTKXCIGP
5.WNGC5YGFGP
#GUEWNCR
)CVGYC[$QWNGXCTF 5QWVJ5CP(TCPEKUEQ%# JVVRYYYCGUEWNCREQO
#HHKPKV[%JTQOCVQITCRJ[
*WPVKPIFQP4QCF )KTVQP%CODTKFIG%$1,:7-
JVVRYYYCHHKPKV[EJTQOEQO
#HHKPKV[5GPUQTU 5GG.CDU[UVGOU#HHKPKV[5GPUQTU
JVVRYYYCICTUEKGPVKHKEEQO
#)6GEJPQNQI[
*CORVQP#XGPWG 0GGFJCO/#
JVVRYYYCIVGEJEQO
#IGP$KQOGFKECN.KOKVGF
&WTDGNN5VTGGV 21$QZ
#ECEKC4KFIG
$TKUDCPG#WUVTCNKC
(#: JVVRYYYCIGPEQO
Suppliers
Trang 23#NNGPVQYP%CIKPI'SWKROGPV 4QWVG21$QZ
/QWPVCKP8KGY%#
JVVRYYYCN\CEQO
#N\GV EQ&WTGEV%QTRQTCVKQP 21$QZ
JVVRYYYECRQTI
#OGTKECP$KQ6GEJPQNQIKGU 5GG+PVTCEGN%QTRQTCVKQP
#OGTKECP$KQCPCN[VKECN
'TKG&TKXG 0CVKEM/#
JVVRYYYCOGTKECPDKQEQO
#OGTKECP%[CPCOKF 21$QZ
2TKPEGVQP0,
JVVRYYYE[CPCOKFEQO
#OGTKECP*KUVQ.CDU
(#KTRCTM4QCF )CKVJGTUDWTI/&
#OGTKECP+PVGTPCVKQPCN%JGOKECN
5VTCVJOQTG4QCF 0CVKEM/#
JVVRYYYCKEOCEQO
#OGTKECP.CDQTCVQT[5WRRN[ 5GG#OGTKECP$KQCPCN[VKECN
#OGTKECP/GFKECN5[UVGOU
$TGP4QCF9GUV /KPPGVQPMC/0
JVVRYYYXKUKVCOUEQO
#OGTKECP3WCNGZ
#%CNNG0GIQEKQ 5CP%NGOGPVG%#
JVVRYYYCOGTKECPSWCNGZEQO
#OGTKECP4CFKQNCDGNGF%JGOKECNU
$QYNKPI)TGGP 5V.QWKU/1
JVVRYYYCTEKPEEQO
#OGTKECP5EKGPVKHKE2TQFWEVU 5GG8945EKGPVKHKE2TQFWEVU
#OGTKECP5QEKGV[HQT
*KUVQEQORCVKDKNKV[CPF +OOWPQIGPGVKEU
JVVRYYYCVEEQTI
#OGTUJCO 5GG#OGTUJCO2JCTOCEKC$KQVGEJ
#OGTUJCO+PVGTPCVKQPCN
#OGTUJCO2NCEG KVVNG%JCNHQPV$WEMKPIJCOUJKTG
Trang 24JVVRYYYCPECTGEQO
#PEGNN
6JKTF5VTGGV0QTVJ 21$QZ
$C[RQTV/0
JVVRYYYCPEGNNEQO
#PFGTUQP+PUVTWOGPVU
6GEJPQNQI[%QWTV 5O[TPC)#
JVVRYYYITCUGD[EQO
#PFTGCU*GVVKEJ )CTVGPUVTCUUG
7-#RRNKGF2TGEKUKQP
VJ#XGPWG0QTVJYGUV +UUCSWCJ9CUJKPIVQP
JVVRYYYCRKEQOKPFGZJVON
#RRNKIGPG1PEQT 2CTEFO+PPQXCVKQP 4WG)GKNGTFG-C[UGTUDGTI$2
+NNMKTEJ%GFGZ(TCPEG
JVVRYYYQPEQTEQORTQFCRRJVO
#RRNKMQP
%JGUU&TKXG5WKVG) (QUVGT%KV[%#
JVVRYYYCRRNKMQPEQO
#RRTQRTKCVG6GEJPKECN4GUQWTEGU
9JKUMG[$QVVQO4QCF CWTGN/&
JVVRYYYCVTDKQVGEJEQO
#28)CWNKP
5%2#XGPWG CMG/KNNU9+
JVVRYYYCRXEQO
#SWCNQP 5GG*GTEWNGU#SWCNQP
#SWCTKWO5[UVGOU
6[NGT$QWNGXCTF /GPVQT1*
JVVRYYYCTEVWTEQO
#TIQPCWV6GEJPQNQIKGU
+PFWUVTKCN4QCF5WKVG) 5CP%CTNQU%#
#TQPGZ2JCTOCEGWVKECNU
6GEJPQNQI[(QTGUV2NCEG 6JG9QQFNCPFU6:
JVVRYYYCTQPGZEQO
#TVKUCP+PFWUVTKGU
2QPF5VTGGV 9CNVJCO/#
JVVRYYYCTVKUCPKPFEQO
#5++PUVTWOGPVU
6GP/KNG4QCF 9CTTGP/+
JVVRYYYCUKKPUVTWOGPVUEQO
#URGP4GUGCTEJ.CDQTCVQTKGU
$WGTMNG4QCF 9JKVG$GCT.CMG/0
JVVRYYYCURGPTGUGCTEJEQO
Suppliers
Trang 25#XGT[&GPPKUQP
0QTVJ1TCPIG)TQXG$QWNGXCTF 2CUCFGPC%#
JVVRYYYCXGT[FGPPKUQPEQO
#XGUVKP
&QP4GKF&TKXG 1VVCYC1PVCTKQ -*'%CPCFC
JVVRYYYCXGUVKPEQO
#8+8+PUVTWOGPVU
8CUUCT#XGPWG CMGYQQF0,
JVVRYYYCXKXKPUVEQO
#ZQP+PUVTWOGPVU
%JGUU&TKXG (QUVGT%KV[%#
JVVRYYYCZQPEQO
#\QP
#\QP4QCF ,QJPUQP%KV[0;
JVVRYYYC\QPEQO
$#D%1
5QWVJVJ5VTGGV 4KEJOQPF%#
JVVRYYYDCDEQEQO
$CEJCTCEJ
#NRJC&TKXG 2KVVUDWTIJ2#
JVVRYYYDCEJCTCEJKPEEQO
$CEJGO$KQUEKGPEG
*QTK\QP&TKXG -KPIQH2TWUUKC2#
JVVRYYYDCEJGOEQO
$CEJGO%CNKHQTPKC
-CUJKYC5VTGGV 21$QZ
6QTTCPEG%#
JVVRYYYDCEJGOEQO
$CGMQP
#NNGPFCNG#XGPWG 5CTCVQIC%#
$CMGT%JGOKECN 5GG,6$CMGT
$CPIU.CDQTCVQTKGU
6GEJPQNQI[&TKXG (KUJGTU+0
JVVRYYYDCPIUNCDUEQO
$CTF2CTMGT 5GG$GEVQP&KEMKPUQP
$CTPUVGCF6JGTOQN[PG 21$QZ
$#5 5GG$KQCPCN[VKECN5[UVGOU
$#5(
5RGEKCNV[2TQFWEVU
%QPVKPGPVCN&TKXG0QTVJ /V1NKXG0,
JVVRYYYDCWUEJEQO
$CZVGT (GPYCN&KXKUKQP
.CMG%QQM4QCF
&GGTHKGNF+.
JVVRYYYRQYGTHWNOGFKEKPGEQO
$CZVGT*GCNVJECTG 1PG$CZVGT2CTMYC[
&GGTHKGNF+.
JVVRYYYDCZVGTEQO
$CZVGT5EKGPVKHKE2TQFWEVU 5GG8945EKGPVKHKE
$C[GT
#ITKEWNVWTCN&KXKUKQP
#PKOCN*GCNVJ2TQFWEVU
5JCYPGG/KUUKQP2MY[ 5JCYPGG/KUUKQP-5
JVVRYYYDC[GTWUEQO
$C[GT 21$QZ
/KUJKYCMC+0
JVVRYYYDC[GTEQO
$C[GT&KCIPQUVKEU
$GPGFKEV#XGPWG 6CTT[VQYP0;
JVVRYYYDC[GTFKCIEQO
$C[GT2NE
&KCIPQUVKEU&KXKUKQP
$C[GT*QWUG5VTCYDGTT[*KNN 0GYDWT[$GTMUJKTG4),#7-
JVVRYYYDC[GTEQWM
$&+OOWPQE[VQOGVT[5[UVGOU
3WOG&TKXG 5CP,QUG%#
JVVRYYYDFHCEUEQO
$&.CDYCTG 6YQ1CM2CTM
$GFHQTF/#
JVVRYYYDFEQONCDYCTG
$&2JCT/KPIGP
6QTTG[CPC4QCF 5CP&KGIQ%#
Trang 26$GPFGT$KQU[UVGOU 5GG5GTXC
$GTCN'PVGTRTKUGU 5GG)CTTGP5EKGPVKHKE
$GVJGUFC4GUGCTEJ.CDQTCVQTKGU 5GG.KHG6GEJPQNQIKGU
$KQCPCN[VKECN5[UVGOU
-GPV#XGPWG 9GUV.CHC[GVVG+0
JVVRYYYDKQCPCN[VKECNEQO
$KQEGNN
7PKXGTUKV[&TKXG 4CPEJQ&QOKPIWG\%#
JVVRYYYDKQEGNNEQO
$KQEQCV 5GG$&.CDYCTG
$KQ%QOR+PUVTWOGPVU
%JWTEJKNN4QCF (TGFGTKEVQP0GY$TWPUYKEM '$2%CPCFC
JVVR
$KQ&GUKIP 21$QZ
%*9CNF5YKV\GTNCPF
$KQHNWKFU
&KXKUKQPQH$KQUQWTEG+PVGTPCVKQPCN
6CHV5VTGGV 4QEMXKNNG/&
JVVRYYYDKQUQWTEGEQO
$KQ(:.CDQTCVQTKGU
.KDGTV[4QCF5WKVG5 4CPFCNNUVQYP/&
JVVRYYYDKQHZEQO
$KQ)GPGZ.CDQTCVQTKGU
0QTTKU%CP[QP4QCF 5CP4COQP%#
$KQOGFC
6TKVQP&TKXG5WKVG' 21$QZ
(QUVGT%KV[%#
JVVRYYYDKQOGFCEQO
$KQ/GFKE&CVC5[UVGOU
5KNCU4QCF 5GCHQTF&'
JVVRYYYDOFUEQO
$KQOGFKECN'PIKPGGTKPI 21$QZ
8KTIKPKC%QOOQPYGCNVJ7PKXGTUKV[ 4KEJOQPF8#
$KQOGFKECN4GUGCTEJ+PUVTWOGPVU
9KNMKPU#XGPWG 4QEMXKNNG/&
JVVRYYYDKQOGFKPUVTEQO
$KQOGFKECN5RGEKCNVKGU 21$QZ
5CPVC/QPKEC%#
$KQ/GTKGWZ
4QFQNRJG5VTGGV
&WTJCO0QTVJ%CTQNKPC JVVRYYYDKQOGTKGWZEQO
$KQ/GVCNNKEU 21$QZ
2TKPEGVQP0,
JVVRYYYOKETQRNCVGEQO
$KQOQN4GUGCTEJ.CDQTCVQTKGU
%CORWU&TKXG 2N[OQWVJ/GGVKPI2#
JVVRYYYDKQOQNEQO
$KQPKSWG6GUVKPI.CDU
(C[$TQQM&TKXG 44$QZ
5CTCPCE.CMG0;
JVVRYYYDKQPKSWGEQO
$KQRCE5[UVGOU
#GTQ%COKPQ 5CPVC$CTDCTC%#
JVVRYYYDKQRCEEQO
$KQRTQFWEVUHQT5EKGPEG 5GG*CTNCP$KQRTQFWEVUHQT5EKGPEG
Suppliers
Trang 27JVVRYYYDKQURGEEQO
$KQUWTG 5GG4KGUG'PVGTRTKUGU
$KQU[O6GEJPQNQIKGU 5GG/QNGEWNCT5KOWNCVKQPU
$KQU[U
SWCKFW%NQUFGU4QUGU
%QORKGIPG(TCPEG
$KQ6GEJ4GUGCTEJ.CDQTCVQTKGU 0+#+&4GRQUKVQT[
$KQ6GM+PUVTWOGPVU
*KIJNCPF+PFWUVTKCN2CTM 21$QZ
5EQVV5VTGGV /WTHTGGUDQTQ60
JVVRYYYDKQXGPVWTGUEQO
$KQ9JKVVCMGT
$KIIU(QTF4QCF 21$QZ
$1%'FYCTFU 1PG'FYCTFU2CTM
$CNNCTFXCNG5VTGGV 9KNOKPIVQP/#
JVVRYYYDQEGFYCTFUEQO
$QGJTKPIGT+PIGNJGKO
4KFIGDWT[4QCF 21$QZ
4KFIGHKGNF%6
JVVRYYYDQGJTKPIGTKPIGNJGKOEQO
$QGJTKPIGT/CPPJGKO
$KQEJGOKECNU&KXKUKQP 5GG4QEJG&KCIPQUVKEU
$QGMGN5EKGPVKHKE
2GPPU[NXCPKC$QWNGXCTF (GCUVGTXKNNG2#
JVVRYYYDQGMGNUEKEQO
$QJFCP#WVQOCVKQP
/E%QTOCEM$QWNGXCTF /WPFGNGKP+.
0GYVQP/#
JVVRYYYDTCKPTGUGCTEJNCDEQO
$TCKPVTGG5EKGPVKHKE 21$QZ
$TCKPVTGG/#
JVVRYYYDTCKPVTGGUEKEQO
$TCPFGN
#VNCU&TKXG )CKVJGTUDWTI/&
&/GNUWPIGP)GTOCP[
JVVRYYYDDTCWPDKQVGEJEQO
$$TCWP/E)CY
/E)CY#XGPWG +TXKPG%#
JVVRYYYDDTCWPWUCEQO
$$TCWP/GFKECN 6JQTPENKHHG2CTM 5JGHHKGNF5297-
Trang 28$WEJNGT+PUVTWOGPVU 5GG$CZVGT5EKGPVKHKE2TQFWEVU
$WEMUJKTG
4KFIG4QCF 2GTMCUKG2#
$WTFKEMCPF,CEMUQP
&KXKUKQPQH$CZVGT5EKGPVKHKE2TQFWEVU
5*CTXG[5VTGGV /WUMGIQP/+
JVVRYYYDCPFLEQOOCKPHTCOGJVO
$WTNGKIJ+PUVTWOGPVU 21$QZ' (KUJGTU0;
JVVRYYYDWTNGKIJEQO
$WTPU8GVGTKPCT[5WRRN[
&KRNQOCV&TKXG (CTOGTOU$TCPEJ6:
JVVRYYYDWTPUXGVEQO
$WTTQWIJU9GNNEQOG 5GG)NCZQ9GNNEQOG 6JG$WVNGT%QORCP[
*4*%CPCFC
%/#/KETQFKCN[UKU#$
2TKPEGVQP5VTGGV 0QTVJ%JGNOUHQTF/#
JVVRYYYOKETQFKCN[UKUEQO
%CNDKQEJGO0QXCDKQEJGO 21$QZ
.C,QNNC%#
JVVRYYYECNDKQEJGOEQO
%CNKHQTPKC(KPG9KTG
5QWVJ(QWTVJ5VTGGV )TQXGT$GCEJ%#
JVVRYYYECNHKPGYKTGEQO
%CNQTKOGVT[5EKGPEGU
9GUV0QTVJ 5RCPKUJ(QTM76
%CODTKFIG%$6*7-JVVRYYYECONCDEQWMJQOGJVO
%CORFGP+PUVTWOGPVU 2CTM4QCF
5KNGD[.QWIJDQTQWIJ GKEGUVGTUJKTG.'677-
JVVRYYYECORFGPKPUVEQOJQOGJVO
%CRRGN.CDQTCVQTKGU 5GG1TICPQP6GMPKMC%CRRGN
%CTN4QVJ)OI*%QORCP[ 5EJQGORGTNGPUVTCUUG
-CTNUTWDG )GTOCP[
JVVRYYYECTNTQVJFG
%CTN<GKUU 1PG<GKUU&TKXG 6JQTPYQQF0;
JVVRYYY\GKUUEQO
%CTNQ'TDC4GCIGPVK 8KC9KPEMGNOCPP
/KNCPQ QODCTFKC+VCN[
&QXGT0*
JVVRYYYEDUEKEQO
%$55EKGPVKHKE 21$QZ
&GN/CT%#
JVVRYYYEDUUEKEQO
5GG%QTKGNN+PUVKVWVGHQT/GFKECN4GUGCTEJ
%'+PUVTWOGPVU )TCPF#XGPWG2CTMYC[
#WUVKP6:
JVVRYYYEGKPUVTWOGPVUEQO
Suppliers
Trang 29%GVWU 5GG%JKTQP
%JCPEG2TQRRGT 9CTN[9GUV/KFNCPFU$0<7-
%JCTNGU4KXGT.CDQTCVQTKGU
$CNNCTFXCNG5VTGGV 9KNOKPIVQP/#
JVVRYYYETKXGTEQO
%JCTO5EKGPEGU
(TCPMNKP5VTGGV /CNFGP/#
JVVRYYYEJGOINCUUEQO
%JGOKEQP+PVGTPCVKQPCN
5KPING1CM&TKXG 6GOGEWNC%#
JVVRYYYEJGOKEQPEQO
%JGO+ORGZ+PVGTPCVKQPCN
&KNNQP&TKXG 9QQF&CNG+.
JVVRYYYEJGOKORGZEQO
%JGO5GTXKEG 21$QZ
9GUV%JGUVGT2#
JVVRYYYEJGOUGTXKEGEQO
%JGOU[P.CDQTCVQTKGU
9GUVVJ6GTTCEG GPGZC-5
JVVRYYYEJGTYGNNEQO
%JK4GZ%CWNFTQP
2JQGPKZXKNNG2KMG /CNXGTP2#
JVVRYYYEJKTGZEQO
%JKTQP&KCIPQUVKEU 5GG$C[GT&KCIPQUVKEU
%JKTQP/KOQVQRGU2GRVKFG5[UVGOU 5GG/WNVKRNG2GRVKFG5[UVGOU
%JKTQP
*QTVQP5VTGGV 'OGT[XKNNG%#
JVVRYYYEJKTQPEQO
%JTQO6GEJ 21$QZ
JVVRYYYEJTQOCVQITCRJKGEQO
%JTQOQIGPKZ 6CNLGICTFUICVCP
JVVRYYYEJTQORCEMEQO
%JWICK$KQRJCTOCEGWVKECNU
0CPE[4KFIG&TKXG 5CP&KGIQ%#
JVVRYYYEJWICKDKQEQO
%KDC%QTPKPI&KCIPQUVKEU 5GG$C[GT&KCIPQUVKEU
%KDC)GKI[
5GG%KDC5RGEKCNV[%JGOKECNUQT 0QXCTVKU$KQVGEJPQNQI[
%KDC5RGEKCNV[%JGOKECNU
9JKVG2NCKPU4QCF 6CTT[VQYP0;
JVVRYYYEKFGZEQO#52PGYJVO
%KPPC5EKGPVKHKE 5WDUKFKCT[QH/QNGEWNCT4GUGCTEJ%GPVGT
JVVRYYYEKUVTQPDKQEQO
%NCTM'NGEVTQOGFKECN+PUVTWOGPVU 5GG*CTXCTF#RRCTCVWU
%NC[#FCO 5GG$GEVQP&KEMKPUQP2TKOCT[%CTG
&KCIPQUVKEU
QHVJG0GVJGTNCPFU
$NQQF6TCPUHWUKQP5GTXKEG 21$QZ
Trang 30%QNQPKCN/GFKECN5WRRN[
9GNNU4QCF (TCPEQPKC0*
JVVRYYYECKEQO
%QPPCWIJV.CDQTCVQTKGU 5GG#XGPVKU2CUVGWT
JVVRYYYKQNKG`DWTMGEQPVGEJJVON
%QPVKPGPVCN.CDQTCVQT[2TQFWEVU
%QRNG[&TKXG 5CP&KGIQ%#
JVVRYYYEQPNCDEQO
%QPXC6GE 2TQHGUUKQPCN5GTXKEGU 21$QZ
2TKPEGVQP0,
JVVRYYYEQPXCVGEEQO
%QQRGT+PUVTWOGPVU5[UVGOU 21$QZ
%QTPKPI0;
JVVRYYYEQTPKPIEQO
%QUVCT 5GG%QTPKPI
JVVRYYYEQ[NCDEQO
%2)
$QTKPUMK4QCF KPEQNP2CTM0,
JVVRYYYERIDKQVGEJEQO
%2.5EKGPVKHKE
-KPIHKUJGT%QWTV
*CODTKFIG4QCF 0GYDWT[4)5,7-
/QZNG[4QCF
&COCUEWU/&
JVVRYYYETKUVKPUVTWOGPVEQO
%TWCEJGO 5GG#PPQXKU JVVRYYYETWCEJGOEQO
%5$KQ
+PFWUVTKCN4QCF 5CP%CTNQU%#
Trang 31&CVC%GNN (CNEQP$WUKPGUU2CTM
+XCPJQG4QCF (KPEJCORUVGCF$GTMUJKTG 4)337-
JVVRYYYFCVCEGNNEQWM +PVJG75
JVVRYYYWUFCVGZQJOGFCEQO
C
5VCVG5VTGGV )GPGXC0;
JVVRYYYP[UCGUEQTPGNNGFWFCVW
&CXKF-QRH+PUVTWOGPVU
'NOQ5VTGGV 21$QZ
6WLWPIC%#
&GECIQP&GXKEGU 21$QZ
0'0GNUQP%QWTV 2WNNOCP9#
5QWVJ%NKPVQP#XGPWG 5QWVJ2NCKPHKGNF0,
JVVRYYYFGIWUUCJWNUEQO
&GPGDC5QHVYCTG
09PF#XGPWG /KCOK(.
JVVRYYYFGPGDCEQO
&GUGTGV/GFKECN
9GUV5QWVJ 5CNV.CMG%KV[76
$KQNQI[$WKNFKPI +QYC%KV[+#
JVVRYYYWKQYCGFW`FUJDYYY
&G8KNDKUU
&KXKUKQPQH5WPTKUG/GFKECN4GURKTCVQT[
&G8KNDKUU&TKXG 21$QZ
JVVRYYYFKCEJGOEQWM
&KCIGP /CZ8QNOGT5VTCUUG
&*KNFGP)GTOCP[
&KCIPQUVKE%QPEGRVU
/CFKUQP%QWTV /QTVQP)TQXG+.
&KCIPQUVKE&GXGNQROGPVU 5GG&KC%JG/
&KCIPQUVKE+PUVTWOGPVU
$WTTQWIJU 5VGTNKPI*GKIJVU/+
JVVRYYYFKCIKPEEQO
&KCOGFKZ
0QTVJ/KCOK#XGPWG /KCOK(.
&KC5QTKP
+PFWUVTKCN$QWNGXCTF 5VKNNYCVGT/0
JVVRYYYFKCUQTKPEQO
&KCVQOG75
/QTTKU4QCF (QTV9CUJKPIVQP2#
JVVRYYYGOUFKCUWOEQO
&KHEQ.CDQTCVQTKGU 5GG$GEVQP&KEMKPUQP
&KIGPG
%NQRRGT4QCF )CKVJGTUDWTI/&
JVVRYYYFKIGPGEQO
&KIK-G[
$TQQMU#XGPWG5QWVJ 6JKGH4KXGT(CNNU/0
Trang 32&W2QPV/GFKECN2TQFWEVU 5GG0'0.KHG5EKGPEG2TQFWEVU
&[PCN
&GNCYCTG&TKXG CMG5WEEGUU0;
JVVRYYYF[PCNPGV
&[PCN#5 7NNGTPEJCWUGP
1UNQ0QTYC[
(#:
JVVRYYYF[PCNPQ
&[PCNCD 21$QZ
#NRJC4QCF
%JGNOUHQTF/#
'99TKIJV
&WTJCO4QCF )WKNHQTF%6
JVVRYYYGYYTKIJVEQO ';.CDQTCVQTKGU
0#ORJNGVV$QWNGXCTF 5CP/CVGQ%#
JVVRYYYG[NCDUEQO 'CUVOCP-QFCM
.GG4QCF 4QEJGUVGT0;
JVVRYYYMQFCMEQO '%#%%
5GG'WTQRGCP%QNNGEVKQPQH#PKOCN%GNN
%WNVWTGU '%#RRCTCVWU 5GG5CXCPV'%#RRCTCVWU 'EQIGP54.
)GPUWTC.CDQTCVQTKGU 2VIG&QUFG/CKI
JVVRYYYGEQIGPEQO 'EQNCD
0QTVJ9CDCUJC5VTGGV 5V2CWN/0
JVVRYYYGEQNCDEQO '%12*;5+%5
4GUGCTEJ2CTM&TKXG5WKVG#
#PP#TDQT/+
JVVRYYYGEQRJ[UKEUEQO 'FIG$KQU[UVGOU
1TDKV&TKXG )CKVJGTUDWTI/&
5GG2GTMKP'NOGT 'MCIGP
%+PFWUVT[4QCF 5CP%CTNQU%#
'NECVGEJ 21$QZ
9KPUVQP5CNGO0%
JVVRYYYGNECVGEJEQO 'NGEVTQP/KETQUEQR[5EKGPEGU
/QTTKU4QCF (QTV9CUJKPIVQP2#
JVVRYYYGOUFKCUWOEQO 'NGEVTQP6WDGU
.KNN[%QTRQTCVG%GPVGT +PFKCPCRQNKU+0
JVVRYYYNKNN[EQO '.+5#6GEJPQNQIKGU 5GG0GQIGP 'NMKPU5KPP 5GG9[GVJ#[GTUV '/$+
5GG'WTQRGCP$KQKPHQTOCVKEU+PUVKVWVG '/5EKGPEG
&GOQETCV4QCF )KDDUVQYP0,
JVVRYYYGOUEKGPEGEQO '/5GRCTCVKQPU6GEJPQNQI[ 5GG456GEJPQNQI[
Suppliers
Trang 33(#:
JVVRYYYGWTQIGPVGEEQO 'WTQRGCP$KQKPHQTOCVKEU+PUVKVWVG 9GNNEQOG6TWUV)GPQOGU%CORWU
*KPZVQP%CODTKFIG%$5&7-'WTQRGCP%QNNGEVKQPQH#PKOCN
%GPVTGHQT#RRNKGF/KETQDKQNQI[
4GUGCTEJ 5CNKUDWT[9KNVUJKTG52,)7-
JVVRYYYECOTQTIWM 'XGTITGGP5EKGPVKHKE
'VJ5VTGGV 21$QZ
.QU#PIGNGU%#
JVVRYYYGXGTITGGPUEKEQO 'ZCNRJC$KQNQIKECNU
*CORFGP5VTGGV
$QUVQP/#
JVVRYYYGZCNRJCEQO 'ZEKVQP
21$QZ
&C[VQP1*
JVVRYYYGZEKVQPEQO 'ZVTCU[PVJGUG
<+.[QP0QTF 5#$2
)GPC[(TCPEG
(CEVQT++
(QTGUV#XGPWG 21$QZ
.CMGUKFG#<
JVVRYYYHCEVQTEQO (CNEQP
5GG$GEVQP&KEMKPUQP.CDYCTG (GPYCN
5GG$CZVGT*GCNVJECTG (KNGOCMGT
2CVTKEM*GPT[&TKXG 5CPVC%NCTC%#
(KPG5EKGPEG6QQNU
/QWPVCKP*KIJYC[
0QTVJ8CPEQWXGT$TKVKUJ%QNWODKC 8,2%CPCFC
(KPG5EKGPEG6QQNU
)8KPVCIG2CTM&TKXG (QUVGT%KV[%#
(KPG5EKGPEG6QQNU (CJTVICUUG
&*GKFGNDGTI)GTOCP[
JVVRYYYHKPGUEKGPEGEQO (KPP#SWC
&*GKFGNDGTI )GTOCP[
JVVRJQOGGRNWUQPNKPGFG
GNGEVTQRQTCVKQP (KUJGT%JGOKECN%QORCP[
(KUJGT5EKGPVKHKE.KOKVGF
%QNQPPCFG4QCF 0GRGCP1PVCTKQ-'.%CPCFC JVVRYYYHKUJGTUEKGPVKHKEEQO (KUJGT5EKGPVKHKE
2CTM.CPG 2KVVUDWTIJ2#
JVVRYYYHKUJGTUEKEQO 9((KUJGT5QP
'XCPU9C[5WKVG
5QOGTXKNNG0,
(KV\EQ
2KQPGGT%TGGM&TKXG /CRNG2NCKP/0
JVVRYYYHKV\EQEQO
2TKOG→2TKOG 5GG'RRGPFQTH2TKOG JVVRYYYRTKOGEQO
(NCODGCW
8CNRNCUV4QCF /KFFNGHKGNF1JKQ
JVVRYYYHNCODGCWEQO
/GCFQYDTQQM2CTMYC[
&WNWVJ)# JVVRTWUEJKPEEQO (NQY%[VQOGVT[5VCPFCTFU 21$QZ
5CP,WCP24
JVVRYYYHEUVFEQO (NQY.CDU 5GG+%0$KQOGFKECNU (NQY6GEJ5WRRN[ 21$QZ
1TCPIG6: JVVRYYYHNQYVGEJEQO (NWKF/CTMGVKPI 5GG(NWKF/GVGTKPI (NWKF/GVGTKPI
#GTKCN9C[5WKVG 5C[QUGVV0; JVVRYYYHOKRWOREQO (NWQTQEJTQOG
9KNNKCOU5WKVG
&GPXGT%1
(NWMC%JGOKECN 5GG5KIOC#NFTKEJ (/%$KQ2QN[OGT
/CTMGV5VTGGV 2JKNCFGNRJKC2# JVVRYYYHOEEQO (/%$KQ2TQFWEVU
6JQOCUVQP5VTGGV 4QEMNCPF/'
JVVRYYYDKQRTQFWEVUEQO (QTOC5EKGPVKHKE /KNETGGM4QCF 21$QZ
/CTKGVVC1*
JVVRYYYHQTOCEQO (QTV&QFIG#PKOCN*GCNVJ
VJ5VTGGV09 (QTV&QFIG+#
Trang 34JVVRYYYICVEDKQVGEJEQO )CWUUKCP
%CTPGIKG1HHKEG2CTM
$WKNFKPI5WKVG
%CTPGIKG2#
JVVRYYYICWUUKCPEQO )%'NGEVTQPKEU#4%'NGEVTQPKEU
JVVRYYYKPHQTOCIGPEQO )GPCKUUCPEG2JCTOCEGWVKECNU
5EKGPEG2CTM 0GY*CXGP%6
JVVRYYYIGPCKUUCPEGEQO
)'0#:+5$KQVGEJPQNQI[
2CTE6GEJPQNQIKSWG
#XGPWG#ORÂTG /QPVKIP[NG$TGVQPGWZ
(TCPEG
JVVRYYYIGPCZKUEQO
)GP$CPM 0CVKQPCN%GPVGTHQT$KQVGEJPQNQI[
+PHQTOCVKQP 0CVKQPCN.KDTCT[QH/GFKEKPG0+*
$WKNFKPI#4QQO0
4QEMXKNNG2KMG
$GVJGUFC/&
JVVRYYYPEDKPNOPKJIQX )GPG%QFGU
#XKU&TKXG
#PP#TDQT/+
JVVRYYYIGPGEQFGUEQO )GPGOCEJKPGU
9CUJKPIVQP5VTGGV 5CP%CTNQU%#
JVVRYYYIGPGOCEJKPGUEQO )GPGPVGEJ
&0#9C[
5QWVJ5CP(TCPEKUEQ%#
JVVRYYYIGPGEQO )GPGTCN5ECPPKPI)5+.WOKPQOKEU
#TUGPCN5VTGGV 9CVGTVQYP/#
JVVRYYYIGPGUECPEQO )GPGTCN8CNXG
&KXKUKQPQH2CTMGT*CPPKHKP2PGWVTQPKEU
)NQTKC.CPG (CKTHKGNF0,
JVVRYYYRPGWVTQPKEUEQO )GPGURCP
0QTVJ%TGGM2CTMYC[5WKVG
$QVJGNN9#
JVVRYYYIGPGURCPEQO )GPG6JGTCR[5[UVGOU
6GNGUKU%QWTV 5CP&KGIQ%#
JVVRYYYIGPGVJGTCR[U[UVGOUEQO )ÃPÃVJQP*WOCP)GPQOG 4GUGCTEJ%GPVGT
DKUTWGFGNO+PVGTPCVKQPCNG
'XT[(TCPEG
JVVRYYYIGPGVJQPHT )GPGVKE/KETQU[UVGOU
3WGGPDQTQWIJ.CPG 4C[PG$TCKPVTGG'UUGZ%/6(7-
JVVRYYYITKEQWM )GPGVKEU%QORWVGT)TQWR
5EKGPEG&TKXG /CFKUQP9+
JVVRYYYIEIEQO )GPGVKEU+PUVKVWVG#OGTKECP*QOG 2TQFWEVU
%CODTKFIG2CTM&TKXG
%CODTKFIG/#
JVVRYYYIGPGVKEUEQO )GPGVKZ
5QOGTHQTF4QCF
%JTKUVEJWTEJ&QTUGV$*3#7-JVVRYYYIGPGVKZEQWM )GPG6QQNU
1PG5WOOGTVQP9C[
2JKNQOCVJ14
JVVRYYYIGPGVQQNUEQO )GPG9QTMU
21$QZ4WPFNG/CNN
#FGNCKFG5QWVJ#WUVTCNKC#WUVTCNKC
JVVRYYYIGPGYQTMUEQO
9QTNF2CTMYC[%KTENG 5V.QWKU/1
JVVRYYYIGPQOGU[UVGOUEQO )GPQOKE5QNWVKQPU
8CTUKV[&TKXG5WKVG'
#PP#TDQT/+
JVVRYYYIGPQOKEUQNWVKQPUEQO )GPQO[Z
5GG$GEMOCP%QWNVGT )GPQU[U$KQVGEJPQNQIKGU
.CMG(TQPV%KTENG5WKVG 6JG9QQFNCPFU6:
JVVRYYYIGPQU[UEQO
Suppliers
Trang 35JVVRYYYINCUEQNEQO )NCZQ9GNNEQOG (KXG/QQTG&TKXG 4GUGCTEJ6TKCPING2CTM0%
JVVRYYYINCZQYGNNEQOGEQO )NGP/KNNU
#NNYQQF4QCF
%NKHVQP0,
JVVRYYYINGPOKNNUEQO )NGP4GUGCTEJ
&CXKU&TKXG 5VGTNKPI8#
JVVRYYYINGPTGUGCTEJEQO )NQ)GTO
21$QZ
/QCD76
JVVRYYYINQIGTOEQO )N[EQ
2KOGPVGN%QWTV 0QXCVQ%#
JVVRYYYIN[EQEQO )QWNF+PUVTWOGPV5[UVGOU
4QEMUKFG4QCF 8CNNG[8KGY1*
JVVRYYYIQWNFEQO )TCNCD+PUVTWOGPVU 5GG&KOEQ)TC[
)TCRJ2CF5QHVYCTG
1DGTNKP&TKXG
5CP&KGIQ%#
JVVRYYYITCRJRCFEQO )TCUGD[#PFGTUQP 5GG#PFGTUGP+PUVTWOGPVU JVVRYYYITCUGD[EQO
)TCUU+PUVTWOGPV
#&KXKUKQPQH#UVTQ/GF
'CUV)TGGPYKEJ#XGPWG 99CTYKEM4+
JVVRYYYITCUUKPUVTWOGPVUEQO )TGGPCETGCPF/KUCE+PUVTWOGPVU /KUCE5[UVGOU
2QTV9QQF4QCF 9CTG*GTVHQTFUJKTG5(0,7-
)TGGT.CDU
0WYC[%KTENG GPQKU0%
JVVRITGGTNCDUEQO )TGKPGT
/C[DCEJGUVTCUUG
2QUVHCEJ
&(TKEMGPJCWUGP)GTOCP[
JVVRYYYGTNCPIGPEQOITGKPGT )5+.WOQPKEU
.QODCTF5VTGGV 1ZPCTF%#
JVVRYYYIUKNWOQPKEUEQO )6'+PVGTPGVYQTMKPI
%CODTKFIG2CTM&TKXG
%CODTKFIG/#
JVVRYYYDDPEQO )9+PUVTWOGPVU
/GFHQTF5VTGGV 5QOGTXKNNG/#
JVVRYYYJCORVQPTGUGCTEJEQO
*CTNCP$KQRTQFWEVUHQT5EKGPEG 21$QZ
JVVRYYYJCTNCPEQO
*CTNCP6GMNCF 21$QZ
*CUGNVQP$KQNQIKEU 5GG,4*$KQUEKGPEGU
14
Suppliers
CPFA Supplement 8 Current Protocols Selected Suppliers of Reagents and Equipment
Trang 36(#:
*KVCEJK5EKGPVKHKE+PUVTWOGPVU 0KUUGK5CPI[Q#OGTKEC
0(KTUV5VTGGV 5CP'NUC%#
JVVRYYYJKKJKVCEJKEQO
*K6GEJ5EKGPVKHKE
$TWPGN4QCF 5CNKUDWT[9KNVUJKTG5227 7-
JVVRYYYJKVGEJUEKEQWM
*QGEJUV#) 5GG#XGPVKU2JCTOCEGWVKECN
*QGHGT5EKGPVKHKE+PUVTWOGPVU
&KXKUKQPQH#OGTUJCO2JCTOCEKC$KQVGEJ
%GPVGPPKCN#XGPWG 2KUECVCYC[0,
JVVRYYYCRDKQVGEJEQO
*QHHOCP.C4QEJG
-KPIUNCPF5VTGGV 0WVNG[0,
JVVRYYYTQEJG75#EQO
*QNDQTP5WTIKECNCPF/GFKECN +PUVTWOGPVU
9GUVYQQF+PFWUVTKCN'UVCVG 4COUICVG4QCF /CTICVG-GPV%6,<7-
*QPG[YGNN
%QNWODKC4QCF /QTTKUVQYP0,
JVVRYYYJQPG[YGNNEQO
*QPG[YGNN5RGEKCNV[(KNOU 21$QZ
%QNWODKC4QCF /QTTKUVQYP0,
JVVRYYYJQPG[YGNNURGEKCNV[HKNOUEQO
*QQF6JGTOQ2CF%CPCFC
%QOR5KVG#44
5WOOGTNCPF$TKVKUJ%QNWODKC 8*<%CPCFC
JVVRYYYVJGTOQRCFEQO
*QTKDC+PUVTWOGPVU
#TOUVTQPI#XGPWG +TXKPG%#
JVVRYYYJQTKDCEQO
*QUMKPU/CPWHCEVWTKPI
*CNN4QCF 21$QZ
*CODWTI/+
JVVRYYYJQUMKPUOHIEQEQO
*QUQMCYC/KETQP2QYFGT5[UVGOU
%JCVJCO4QCF 5WOOKV0,
5GG%QTKGNN+PUVKVWVGHQT/GFKECN4GUGCTEJ
*85+OCIG 21$QZ
*CORVQP/KFFNGUGZ69;&7-JVVRYYYJXUKOCIGEQO
*[DCKF
9CNFGITCXG4QCF 6GFFKPIVQP/KFFNGUGZ69 7-
JVVRYYYJ[DTKFQPEQO
*[%NQPG.CDQTCVQTKGU
5QWVJ*[%NQPG4QCF QICP76
JVVRYYYJ[ENQPGEQO
*[UGS
#NOCPQT#XGPWG 5WPP[XCNG%#
JVVRYYYJ[UGSEQO +$#)OD*
5QWVJ)TCPF$NXF
5V.QWKU/1
JVVRYYYKDCIQEQO +$($KQVGEJPKEU 5GG5GRTCEQT
5GG'CUVOCP-QFCM
+%0$KQEJGOKECNU 5GG+%0$KQOGFKECNU +%0$KQOGFKECNU
*[NCPF#XGPWG
%QUVC/GUC%#
JVVRYYYKEPDKQOGFEQO +%0(NQYCPF2JCTOCEGWVKECNU 5GG+%0$KQOGFKECNU +%0+OOWPQDKQEJGOKECNU 5GG+%0$KQOGFKECNU +%04CFKQEJGOKECNU 5GG+%0$KQOGFKECNU +%10+:
-KPI5VTGGV9GUV5WKVG 6QTQPVQ1PVCTKQ
/:'%CPCFC JVVRYYYKEQPKZEQO
6GEJPQNQI[
5CTFKPKC*QWUG 5CTFKPKC5VTGGV QPFQP9%#0.7-
+FGC5EKGPVKHKE%QORCP[
21$QZ
/KPPGCRQNKU/0
JVVRYYYKFGCUEKGPVKHKEEQO +'%
5GG+PVGTPCVKQPCN'SWKROGPV%Q ++6%
8KEVQT[$QWNGXCTF 9QQFNCPF*KNNU%#
JVVRYYYKKVEKPEEQO
Suppliers
Trang 37JVVRYYYKEKEQO +PEGNVGEJ 5GG0GY$TWPUYKEM5EKGPVKHKE +PEUVCT
5GG&KC5QTKP +PE[VG
&WODCTVQP%KTENG (TGOQPV%#
JVVRYYYKPE[VGEQO +PE[VG2JCTOCEGWVKECNU
2QTVGT&TKXG 2CNQ#NVQ%#
JVVRYYYKPE[VGEQO +PFKXKFWCN/QPKVQTKPI5[UVGOU
*CTHQTF4QCF
$CNVKOQTG/&
+PFQ(KPG%JGOKECN 21$QZ
5QOGTXKNNG0,
JVVRYYYKPFQHKPGEJGOKECNEQO +PFWUVTKCN#EQWUVKEU
%QOOGTEG#XGPWG
$TQPZ0;
JVVRYYYKPFWUVTKCNCEQWUVKEUEQO +PGZ2JCTOCEGWVKECNU
)NGPN[QP2CTMYC[
)NGPN[QP$WUKPGUU2CTM
$WTPCD[$TKVKUJ%QNWODKC 8,,%CPCFC JVVRYYYKPGZRJCTOEQO +PIQNF/GVVNGT6QNGFQ
$CNNCTFXCNG5VTGGV 9KNOKPIVQP/#
JVVRYYYOVEQO +PPQIGPGVKEU08
6GEJPQNQIKG2CTM
$<YKLPCCTFG
$GNIKWO JVVRYYYKPPQIGPGVKEUEQO
+PPQXCVKXG/GFKECN5GTXKEGU
)KNNGURKG9C[
'N%CLQP%#
JVVRYYYKOURWTGEQO +PPQXCVKXG4GUGCTEJ
*CTDQT.CPG05WKVG
2N[OQWVJ/0
JVVRYYYKPTGUEQO +PPQXCVKXG4GUGCTEJQH#OGTKEC
06COKCOK6TCKN5WKVG
5CTCUQVC(.
JVVRYYYKPPQXTUTEJEQO +PQVGEJ$KQU[UVGOU
%TCDDU$TCPEJ9C[
4QEMXKNNG/&
JVVRYYYKPQVGEJKPVNEQO +018+5+10
1NF%CPCN4QCF
;QTDC.KPFC%#
JVVRYYYKPQXKUKQPEQO +PUVGEJ.CDQTCVQTKGU
/KNKVKC*KNN4QCF 2N[OQWVJ/GGVKPI2#
JVVRYYYKPUVGEJNCDUEQO +PUVTQP
4Q[CNN5VTGGV
%CPVQP/#
JVVRYYYKPUVTQPEQO +PUVTWOGPVCTKWO 21$QZ
+PUVTWOGPVCTKWO
*GNUKPMK(KPNCPF JVVRYYYKPUVTWOGPVCTKWOHK +PUVTWOGPVU5#
&KXKUKQP,QDKP;XQP
4WGFW%CPCN
.QPILWOGCW%GFGZ(TCPEG
JVVRYYYKUCKPEEQO +PUVTWVGEJ
8CPFGTXGPVGT#XGPWG5WKVG' 2QTV9CUJKPIVQP0;
JVVRYYYKPUVTWVGEJEQO +PVGITCVGF&0#6GEJPQNQIKGU
%QOOGTEKCN2CTM
%QTCNXKNNG+#
JVVRYYYKFVFPCEQO
+PVGITCVGF)GPGVKEU 5GG)GP\[OG)GPGVKEU +PVGITCVGF5EKGPVKHKE+OCIKPI5[UVGOU
5VCVG5VTGGV5WKVG
5CPVC$CTDCTC%#
JVVRYYYKOCIKPIU[UVGOUEQO
5GG19.5GRCTCVKQP5[UVGOU +PVGNNK)GPGVKEU
5GG1ZHQTF/QNGEWNCT)TQWR +PVGTCEVKXC$KQ6GEJPQNQIKG 5GFCPUVTCUUG
&7NO)GTOCP[
JVVRYYYKPVGTCEVKXCFG +PVGTEJKO
*CXGTJKNN5WHHQNM%$:77-JVVRYYYKPVGTHQEWUNVFWM +PVGTIGP
/CPJCVVCPXKNNG4QCF 2WTEJCUG0;
JVVRYYYKPVGTIGPEQEQO +PVGTOQWPVCKP5EKGPVKHKE
0-G[U&TKXG -C[UXKNNG76
JVVRYYYDKQGZRTGUUEQO
5GG'CUVOCP-QFCM
5GG6JGTOQSWGUV +PVGTPCVKQPCN+PUVKVWVGHQTVJG
#FXCPEGOGPVQH/GFKEKPG
/KF8CNNG[&TKXG ,GUUWR2#
JVVRYYYKKCOQTI +PVGTPCVKQPCN.KIJV
)TCH4QCF 0GYDWT[RQTV/#
16
Suppliers
CPFA Supplement 8 Current Protocols Selected Suppliers of Reagents and Equipment
Trang 385GG#IKNGPV6GEJPQNQIKGU ,#9GDUVGT
.GQOKPUVGT4QCF 5VGTNKPI/#
JVVRYYYLCYGDUVGTEQO ,6$CMGT
5GG/CNNKPEMTQFV$CMGT
4GF5EJQQN.CPG 2JKNNKRUDWTI0,
JVVRYYYLVDCMGTEQO ,CEMUQP+OOWPQ4GUGCTEJ CDQTCVQTKGU
21$QZ
9$CNVKOQTG2KMG 9GUV)TQXG2#
JVVRYYYLCEMUQPKOOWPQEQO 6JG,CEMUQP.CDQTCVQT[
/CKPG5VTGGV
$CT*CTDQT/'
JVVRYYYLCZQTI ,CGEG+PFWUVTKGU
0KCICTC(CNNU$QWNGXCTF 0QTVJ6QPCYCPFC0;
JVVRYYYLCGEGEQO
,CPFGN5EKGPVKHKE 5GG5255 ,CPMG-WPMGN 5GG+MC9QTMU ,CPUUGP.KHG5EKGPEGU2TQFWEVU 5GG#OGTUJCO
,CPUUGP2JCTOCEGWVKEC
6TGPVQP*CTDQWTVQP4QCF 6KVWUXKNNG0,
JVVRWULCPUUGPEQO ,CUEQ
%QOOGTEG&TKXG 'CUVQP/&
JVVRYYYLCUEQKPEEQO
,GPC$KQUEKGPEG QGDUVGFVGT5VT
,GPC)GTOCP[
JVVRYYYLGPCDKQUEKGPEGEQO ,GPEQPU5EKGPVKHKE
$WTUEC&TKXG5WKVG
$TKFIGXKNNG2#
JVVRYYYLGPEQPUEQWM ,'1.+PUVTWOGPVU
&GCTDQTP4QCF 2GCDQF[/#
JVVRYYYLGQNEQOKPFGZJVON ,GYGVV
)TCPV5VTGGV
$WHHCNQ0;
JVVRYYY,GYGVV+PEEQO ,QJPOU5EKGPVKHKE 5GG8945EKGPVKHKE ,QJP9GKUUCPF5QPU
#NUVQP&TKXG
$TCFYGNN#DDG[
/KNVQP-G[PGU$WEMKPIJCOUJKTG /-*(7-
,QJPUQP,QJPUQP/GFKECN
#TDTQQM$QWNGXCTF'CUV
#TNKPIVQP6:
JVVRYYYLPLOGFKECNEQO ,QJPUVQP/CVVJG[%JGOKECNU 1TEJCTF4QCF
4Q[UVQP*GTVHQTFUJKTG5)*'7-JVVRYYYEJGOKECNUOCVVJG[EQO ,QNNG[%QPUWNVKPICPF4GUGCTEJ
'%GPVGT5VTGGV7PKV*
)TC[UNCMG+.
JVVRYYYLQNNG[EQO ,QTFCP5EKGPVKHKE 5GG5JGNVQP5EKGPVKHKE ,QTIGPUGP.CDQTCVQTKGU
08CP$WTGP#XGPWG QXGNCPF%1
JVVRYYYLQTXGVEQO ,4*$KQUEKGPEGUCPF ,45EKGPVKHKE
9VJ5VTGGV GPGZC-5
,WNG$KQ6GEJPQNQIKGU
5EKGPEG2CTM5WKVG 0GY*CXGP%6
JVVRJQOGVQYPCQNEQORTGECUVIGNKPFGZ JVO
-4#PFGTUQP
$QYGTU#XGPWG 5CPVC%NCTC%#
JVVRYYYMTCPFGTUQPEQO -CDK2JCTOCEKC&KCIPQUVKEU 5GG2JCTOCEKC&KCIPQUVKEU -CPVJCN*24GKF
%QOOGTEG$QWNGXCTF 21$QZ
2CNO%QCUV(.
JVVRYYYMCPVJCNEQO -CRCM
2CTMFCNG&TKXG 5V.QWKU2CTM/0
JVVRYYYMCRCMEQO -CTN*GEJV 5VGVVGPGT5VT
&5QPFJGKO 4JÑP)GTOCP[
-CTN5VQT\
-ÑPKPIKP'NKUCDGVJ5VT
&$GTNKP)GTOCP[
JVVRYYYMCTNUVQT\FG -C8Q'9.
21$QZ
&.GWVMKTEJKO#NNI¼W)GTOCP[ JVVRYYYMCXQEQOGPINKUJ
UVCTVUGKVGJVO -GKVJNG[+PUVTWOGPVU
#WTQTC4QCF
%NGXGNCPF1*
JVVRYYYMGKVJNG[EQO -GOKP
/CWT[5VTGGV$QZ
&GU/QKPGU+#
JVVRYYYMGOKPEQO -GOQ
$TQQM%QWTV$NCMGPG[4QCF
$GEMGPJCO-GPV$4*)7-JVVRYYYMGOQEQO
Suppliers
Trang 39JVVRYYYMRNEQO -QFCM
5GG'CUVOCP-QFCM -QPVGU)NCUU 5GG-KODNG-QPVGU$KQVGEJPQNQI[
-QPVTQP+PUVTWOGPVU#) 2QUVHCEJ%*
<WTKEJ5YKV\GTNCPF
(#:
&CXKF-QRH+PUVTWOGPVU 21$QZ
6WLWPIC%#
-TCHV#RRCTCVWU 5GG)NCU%QN#RRCTCVWU -TCOGT5EKGPVKHKE%QTRQTCVKQP
'ZGEWVKXG$QWNGXCTF 8CNNG[%QVVCIG0;
-WNKVG5GOKEQPFWEVQT2TQFWEVU
9KNNQY6TGG4QCF GQPKC0,
JVVRYYYMWNKVGEQO CD.KPG+PUVTWOGPVU
VJ$NQQOKPIFCNG#XGPWGU /GNTQUG2CTM+.
JVVRYYYNCDNKPGEQO CD2TQFWEVU
5WUUGZ#XGPWG 21$QZ
5GCHQTF&'
JVVRYYYNCDRTQFWEVUKPEEQO CD4GREQ
9KVOGT4QCF5WKVG
*QTUJCO2#
JVVRYYYNCDTGREQEQO CD5CHGV[5WRRN[
21$QZ
,CPGUXKNNG9+
JVVRYYYNCDUCHGV[EQO CD6GM2TQFWEVU 5GG0CNIG0WPE+PVGTPCVKQPCN CDEQPEQ
2TQURGEV#XGPWG -CPUCU%KV[/1
JVVRYYYNCDEQPEQEQO
.CDKPFWUVTKGU 5GG$CTPUVGCF6JGTOQN[PG CDPGV+PVGTPCVKQPCN 21$QZ
9QQFDTKFIG0,
JVVRYYYPCVKQPCNNCDPGVEQO #$1/1&'40'
TWG&QODCUNG 2CTKU
(TCPEG
JVVRYYYNCDQOQFGTPGEQOHT CDQTCVQT[QH+OOWPQTGIWNCVKQP 0CVKQPCN+PUVKVWVGQH#NNGTI[CPF +PHGEVKQWU&KUGCUGU0+*
&WDNKP+TGNCPF
JVVRYYYNCDUECPKG CDU[UVGOU 5GG6JGTOQ.CDU[UVGOU CDU[UVGOU#HHKPKV[5GPUQTU 5CZQP9C[$CT*KNN
%CODTKFIG%$5.7-JVVRYYYCHHKPKV[UGPUQTUEQO CDVTQPKEU
)QXGTPQTU4QCF )WGNRJ1PVCTKQ 0-'%CPCFC JVVRYYYNCDVTQPKEUEQO CDVTQPKZ/CPWHCEVWTKPI
+PXGUVOGPV$QWNGXCTF
*C[YCTF%#
JVVRYYYNCDVTQPKZEQO CHC[GVVG+PUVTWOGPV
5CICOQTG2CTMYC[0QTVJ 21$QZ
.CHC[GVVG+0
JVVRYYYNCHC[GVVGKPUVTWOGPVEQO
.CODGTV+PUVTWOGPVU 6WTHYGI
6*.GWVKPIGYQNFG 6JG0GVJGTNCPFU JVVRYYYNCODGTVKPUVTWOGPVUEQO CPECUVGT5[PVJGUKU
21$QZ
9KPFJCO0*
JVVRYYYNCPECUVGTU[PVJGUKUWUEQO CPEGT
5VCVG4QCF
9KPVGT5RTKPIU(.
JVVRYYYNCPEGTEQO C8KUKQP)OD*
)GTJCTF)GTFGU5VT
&
)QGVVKPIGP)GTOCP[
JVVRYYYNCXKUKQPFG CYUJG
5GG#FXCPEGF2TQEGUU5WRRN[ CZQVCP
TWG.GQP$NWO
8CNGPEG(TCPEG
JVVRYYYNCVQZCPEQO %.CDQTCVQTKGU
0GY$QUVQP5VTGGV 9QDWTP/#
JVVRYYYNENCDQTCVQTKGUEQO %2CEMKPIU
%CTQNKPC5VTGGV 5CP(TCPEKUEQ%#
JVVRYYYNERCEMKPIUEQO %5GTXKEGU
5GG.%.CDQTCVQTKGU '%1
.CMGXKGY#XGPWG 5V,QUGRJ/+
JVVRYYYNGEQEQO GFGTNG.CDQTCVQTKGU 5GG9[GVJ#[GTUV GG$KQOQNGEWNCT4GUGCTEJ CDQTCVQTKGU
5QTTGPVQ8CNNG[4QCF5WKVG/ 5CP&KGIQ%#
18
Suppliers
CPFA Supplement 8 Current Protocols Selected Suppliers of Reagents and Equipment
Trang 40JVVRYYYCUVTQECOEQO KHG5EKGPEGU
PF5VTGGV0QTVJ 5V2GVGTUDWTI(.
JVVRYYYNKHGUEKEQO KHG6GEJPQNQIKGU
/GFKECN%GPVGT&TKXG 21$QZ
4QEMXKNNG/&
JVVRYYYNKHGVGEJEQO KHGEQFGU
9GUV#XGPWG 5VCOHQTF%6
JVVRYYYNKHGEQFGUEQO KIJVPKP
/V4GCF$QWNGXCTF 4QEJGUVGT0;
JVVRYYYNKIJVPKPOKZGTUEQO KPGCT&TKXGU
.WEM[P.CPG2KRRU*KNN
$CUKNFQP'UUGZ55$97-JVVRYYYNKPGCTFTKXGUEQO KPUEQVVOU&KTGEVQT[
)TCPIG4QCF 5CPVC4QUC%#
JVVRYYYNKPUEQVVUFKTGEVQT[EQWM KPVQP+PUVTWOGPVCVKQP 7PKV(QTIG$WUKPGUU%GPVGT 7RRGT4QUG.CPG
2CNITCXG&KUU0QTHQNM+2#27-JVVRYYYNKPVQPKPUVEQWM KUV$KQNQIKECN.CDQTCVQTKGU
$8CPFGNN9C[
%CORDGNN%#
JVVRYYYNKUVNCDUEQO -$+PUVTWOGPVU 5GG#OGTUJCO2JCTOCEKC$KQVGEJ NQ[F.CDQTCVQTKGU
9GUV6JQOCU#XGPWG 5JGPCPFQCJ+#
JVVRYYYNNQ[FKPEEQO
.QEVKVG
6TQWV$TQQM%TQUUKPI 4QEM[*KNN%6
JVVRYYYNQEVKVGEQO QHUVTCPF.CDU
%GUUPC#XGPWG )CKVJGTUDWTI/&
JVVRYYYNQHUVTCPFEQO QOKT$KQEJGOKECN
'CUV/CKP5VTGGV /CNQPG0;
JVVRYYYNQOKTEQO 5.$KQNCHKVVG
96GP/KNG4QCF 5QWVJHKGNF/+
JVVRYYYNWOKIGPEQO WOKPGZ
6GEJPQNQI[$QWNGXCTF
#WUVKP6:
JVVRYYYNWOKPGZEQTREQO ;0:6JGTCRGWVKEU
+PFWUVTKCN$QWNGXCTF
*C[YCTF%#
JVVRYYYN[PZIGPEQO [RJQOGF
2CTMYC[0QTVJ
&GGTHKGNF+.
/'&#UUQEKCVGU 5GG/GF#UUQEKCVGU /CEJGTG[0CIGN
5QWVJ6JKTF5VTGGV
'CUVQP2#
JVVRYYYOCEJGTG[PCIGNEQO /CEJGTG[0CIGN
4GF5EJQQN.CPG 2JKNNKRUDWTI0,
JVVRYYYOCNNDCMGTEQO /CNNKPEMTQFV%JGOKECNU
5YKPING[4KFIG&TKXG
%JGUVGTHKGNF/&
JVVRYYYOCNNEJGOEQO /CNXGP+PUVTWOGPVU 'PKIOC$WUKPGUU2CTM )TQXGYQQF4QCF /CNXGP9QTEJGUVGTUJKTG 94:<7PKVGF-KPIFQO /CTKPWU
2KGT%5VTGGV QPI$GCEJ%#
/CTMUQP5EKGPEG EQ9JCVOCP.CDU5CNGU 21$QZ
*KNNUDQTQ14
/CTUJ$KQOGFKECN2TQFWEVU
$NQUUQO4QCF 4QEJGUVGT0;
JVVRYYYDKQOCTEQO /CTUJCNN(CTOU75#
.CMG$NWHH4QCF 0QTVJ4QUG0;
GOCKNKPHQ"OCTHCTOUEQO /CTVGM
&QDDKP4QCF
%QNWODKC/&
JVVRYYYOCTVGMDKQEQO /CTVKP5WRRN[
JVVRYYYOCUVCNNGTI[EQO
Suppliers