Chapter 4: Time Value of Money Objective Explain the concept of compounding... Example: Interest Rate on a Lump Sum Investment nearest the to % 18... Effective Annual Rates of an APR of
Trang 1Chapter 4: Time Value of
Money
Objective
Explain the concept of compounding
Trang 2– Continuing in this manner you will find that
the following amounts will be earnt:
Trang 4Future Value of a Lump Sum
n
i PV
Trang 5Example: Future Value of a
1738
$
) 03 0 1
(
* 1500
$
) 1
Trang 6Present Value of a Lump Sum
n n
n n
i
FV i
FV PV
i
i PV
FV
−
+
= +
(
* )
1 (
: obtain to
) 1
(
by sides
both Divide
) 1
(
*
Trang 7Example: Present Value of a
2 years Given the
risk, you require a
return of 8% What
is the present value
55281
34293
) 08 0 1
(
000 ,
40
) 1
Trang 8Solving Lump Sum Cash Flow for Interest Rate
(
) 1
n
n
PV
FV i
PV
FV i
i PV
FV
i PV
FV
Trang 9Example: Interest Rate on a
Lump Sum Investment
nearest the
(to
% 18 7
071773463
0
1 2
1 2
1 15000 30000
1
10
1
10 10
Trang 10Review of Logarithms
are used by finance are:
) ln(
) ln(
) ln(
) ln(
)
* ln(
) ln(
0 ,
) ln(
x y
x
y x
y x
x e
x x
e
y
x x
Trang 11Review of Logarithms
prove from the last ones, and are useful
in finance
) ln(
* ) ln(
) ln(
) ln(
) ln(
) ln(
)
*
* ln(
) ln(
) ln(
) /
ln(
y x
y x
z y
x z
y x
y x
y x
≠ +
+ +
=
−
=
Trang 12Solving Lump Sum Cash Flow for Number of Periods
( ) ( )( i)( )
PV
FV i
PV
FV n
i n
i PV
FV
i PV
FV
i PV
ln
ln 1
ln ln
1 ln
* )
1 ( ln ln
) 1
(
) 1
(
*
Trang 13Effective Annual Rates of an APR of 18%
Annual
Percentage
rate
Frequency of Compounding AnnualEffective Rate
Trang 14The Frequency of
Compounding
compounding increases, so does the annual effective rate
compounding rises to infinity?
1 1
m
k Lim
EFF
Trang 15The Frequency of Compounding
1 1
1
1
− +
=
+
= +
m
m
EFF m
k
EFF m
k
m
k EFF
m
m
m m
Trang 16Annual Percentage Rate
Trang 17Derivation of PV of Annuity Formula: Algebra 1 of 5
( ) ( ) ( ) ( ) n ( ) n
i
pmt i
pmt i
pmt
i
pmt i
pmt PV
+
+ +
+
+ +
+ +
+ +
=
−
1 1
1
1 1
1 3
2 1
Trang 18Derivation of PV of Annuity Formula: Algebra 2 of 5
1 1
1 1
1
1
1 1
1 {
*
1 3
2 1
n n
i i
i
i i
pmt PV
+
+ +
+
+ +
+ +
+ +
=
−
Trang 19Derivation of PV of Annuity Formula: Algebra 3 of 5
( ) ( ) ( ) ( ) ( ) 1 }
1 1
1 1
1
1
1 1
1 {
* ) 1
(
* )
1 (
*
1 3
2 1
n n
i i
i
i i
i pmt
i PV
+
+ +
+
+ +
+ +
+ +
+
= +
−
Trang 20Derivation of PV of Annuity
Formula: Algebra 4 of 5
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )n ( )n ( )n ( )n
n n
n n
i
pmt i
i i
i
i
pmt i
pmt
i i
i i
i
i i
pmt i
PV
+
− +
+ +
+ +
+
+ +
+ +
+ +
=
+
− +
+ +
+ +
+
+ +
+ +
+ +
= +
1
1 1
1 1
1 1
1
1
1 {
* 1
1
*
]} 1
1 1
1 [
1
1 1
1 1
1
1
1 1
1 {
* )
1
(
*
1 2
2
1 0
1 2
2
1 0
Trang 21+
−
+ +
= +
n
n
n
pmt i
pmt PV
i
pmt pmt
PV i
PV
i
pmt
PV i
pmt i
PV
1 1
*
} 1
1 1
{
*
1
1 )
1 (
*
1
1 1
1
* )
1 (
Trang 22i
i
pmt PV
1
1 1
*
} 1
1 1
{
*
Trang 23PV Annuity Formula: Payment
i
i
PV pmt
i i
pmt
i i
pmt PV
*
1 1
*
1
1 1
*
Trang 24PV Annuity Formula: Number
i PV n
pmt
i
PV i
pmt
i
PV i
n pmt
i
PV i
i pmt
i
PV i
i
pmt PV
n
n
n n
−
−
= +
+
−
= +
* 1
ln
;
* 1
1
* 1
ln 1
ln
*
;
* 1
1
1 1
*
; 1
1
*
Trang 25Annuity Formula: PV Annuity Due
) 1
{(
*
) 1
(
* } 1
1 {
*
) 1
i
i i
pmt
i
i i
pmt
i PV
=
+ +
−
=
+
=
Trang 26Derivation of FV of Annuity Formula: Algebra
1 1
* FV
sum) (lump
1
* FV
annuity) (reg.
1
1 1
*
− +
n
n
i i
pmt
i i
i pmt
i PV
i i
pmt PV
Trang 27FV Annuity Formula: Payment
*
− +
=
− +
i i
pmt FV
Trang 28FV Annuity Formula: Number
pmt
i
FV i
n i
i pmt
i FV
i i
pmt FV
n
n n
= +
+
= +
− +
=
1 ln
* 1
ln
* 1
ln 1
ln
* 1
ln
1
* 1
1 1
*
Trang 29Perpetual Annuities / Perpetuities
pmt PV
1
1 1
*
• Let n -> infinity with i > 0:
pmt
PV =
Trang 30Mortgage: The payment
financial calculator
• The first quantity to determine is the
amount of the loan and the points
500 ,
13
$
03
0
* ) 1 0 1
(
* 500000
$ Points
000 ,
450
$
) 1 0 1
(
* 500000
$ Loan
Trang 31Calculator Solution
This is the monthly
Trang 35After Tax Cash Flow
Trang 36Percent of Interest and Principal