1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bai 26 HDGBTTL tim GTLN NN tren mot khoang bang dao ham hocmai vn

3 199 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 215,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Bài 1 Tìm GTNN c a f x ( ) 2 x3 32

x

L i gi i:

Ta có:

5

L p b ng bi n thiên trên kho ng (0;3) ta d th y: min ( )f x  f(1)  5 x 1

Bài 2 Tìm GTLN c a ( ) 2 ln 9

1

x

x

1 0;

2

 

 

 

L i gi i:

2

( ) 2 ln 9

1

0;

0;

x

x

x

x x

f x

x

  

 

  

L p b ng bi n thiên trên 0;1

2

 

 

  ta th y:

Bài 3 Tìm GTLN c a: ( ) ln2

1

x

f x

x

 trên

1 (0; ]

2

L i gi i:

ÁP ÁN BÀI T P T LUY N

Các bài t p trong tài li u này đ c biên so n kèm theo bài gi ng Tìm GTLN, GTNN trên m t kho ng b ng

ph ng pháp đ o hàm thu c khóa h c LT H KIT-1: Môn Toán - Th y Lê Bá Tr n Ph ng t i website

Hocmai.vn giúp các B n ki m tra, c ng c l i các ki n th c đ c giáo viên truy n đ t trong bài gi ng Tìm GTLN,

GTNN trên m t kho ng b ng ph ng pháp đ o hàm s d ng hi u qu , B n c n h c tr c Bài gi ng sau đó

làm đ y đ các bài t p trong tài li u này

Trang 2

x

x

f x

Suy ra f(x) đ ng bi n trên (0; ] 1

4 ln 2 1 max ( )

     

Bài 4 Cho x, y, z0. Tìm GTNN c a 1 1 1

L i gi i:

2

2

2

1

2

xyz

xyz

t

t

t

L p b ng bi n thiên, d th y:

min ( ) (1) ( ) ( ) ( )

f t f P f x f y f z

x y z

    

Bài 5 Tìm GTNN c a ( ) ln(1 4 ), (0; 2]

t

t

L i gi i:

2

ln(1 4 ) 4 ln 4 (4 1) ln(4 1)

(4 1)

t

Trang 3

f(t) ngh ch bi n trên kho ng (0; 2] D o đó:

ln17 ( ) (2)

2 ln17

2

f t f

Giáo viên: Lê Bá Tr n Ph ng

Ngu n: Hocmai.vn

Ngày đăng: 09/10/2016, 23:24

🧩 Sản phẩm bạn có thể quan tâm