Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B có BC = 2AB.. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2BC.. Gọi H là hình chiếu của A lên đường thẳng BD.. T
Trang 1Khóa học Chinh phục Hình phẳng Oxy và Kĩ thuật giải Hệ phương trình – Thầy Đặng Việt Hùng – Moon.vn
Thầy Đặng Việt Hùng – Moon.vn VIDEO BÀI GIẢNG và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN
PHẦN 1 : ĐỀ BÀI
Câu 1: Giải phương trình ( )2 ( 2 )2 2 ( )
3
Câu 2 Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B có BC = 2AB Điểm M(2; -2) là trung
điểm của cạnh AC Gọi N là điểm trên cạnh BC sao cho BC = 4BN Điểm 4 8;
5 5
là giao điểm AN và
BM Xác định tọa độ các đỉnh của tam giác ABC biết N thuộc đường thẳng x + 2y – 6 = 0
Câu 3: Giải hệ phương trình
3
Câu 4 Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2BC Gọi H là hình chiếu của A
lên đường thẳng BD E, F lần lượt là trung điểm đoạn CD và BH Biết A(1;1), phương trình đường thẳng
EF là 3x – y – 10 = 0 và điểm E có tung độ âm Tìm tọa độ các đỉnh B, C, D
Câu 5 Giải hệ phương trình ( )( )
2
Câu 6 Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC vuông cân tại A với M là trung điểm của
AB, đường thẳng qua A vuông góc với MC cắt BC tại H, biết phương trình đường thẳng AB x: − + =y 1 0
và trung điểm của HB là 5;14
3
Tìm toạ độ các đỉnh của tam giác ABC biết B có hoàng độ lớn hơn 4.
Câu 7: Giải hệ phương trình
3 3
2
Câu 8 Trong mặt phẳng với hệ tọa độ cho tam giác ABC vuông tại B có phân giác trong AD với
15 1
;
2 2
thuộc BC Gọi E, F là 2 điểm lần lượt thuộc các cạnh AB và AC sao cho AE= AF Đường
thẳng EF cắt BC tại K Biết điểm 11 3;
2 2
, E có tung độ dương và phương trình đường thẳng
AK x− y+ = Tìm toạ độ các đỉnh của tam giác ABC
Câu 9: Giải hệ phương trình
3
+
PHẦN 2: LỜI GIẢI CHI TIẾT
Câu 1: Giải phương trình ( )2 ( 2 )2 2 ( )
3
Trang 2Tham gia Luyện thi môn TOÁN tại MOON.VN để đạt điểm số cao nhất trong kì thi THPT Quốc gia 2016
3
Ta có ( )2
1−x + x = +1 2 x 1−x ≥1⇒ 1−x + ≥x 1
Đặt 3 x2−2x− =2 t thu được 3 2 2( ) 0
1
t
t
=
≥
1
x
x
≥
≤ −
Đối chiếu điều kiện ta được nghiệm duy nhất x= −1
Câu 2 Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B có BC = 2AB Điểm M(2; -2) là trung
điểm của cạnh AC Gọi N là điểm trên cạnh BC sao cho BC = 4BN Điểm 4 8;
5 5
là giao điểm AN và
BM Xác định tọa độ các đỉnh của tam giác ABC biết N thuộc đường thẳng x + 2y – 6 = 0
Lời giải:
Gọi E là trung điểm của BC và F =AN∩ME
( )
0; 4
B
B
x
B y
Gọi N(6 2 ;− t t)⇒E(12 4 ; 2− t t−4) Lại có: EM EB =0
;
E t
=
Với E( )4; 0 ⇒C(8; 4− )⇒A(−4; 0)
Với 8 14; 16 8; 36; 28
Câu 3: Giải hệ phương trình
3
Lời giải
⇔
≥
Phương trình thứ nhất của hệ tương đương với
Trang 3Khóa học Chinh phục Hình phẳng Oxy và Kĩ thuật giải Hệ phương trình – Thầy Đặng Việt Hùng – Moon.vn
−
Phương trình thứ hai của hệ tương đương 123 x3+7x =x2+8x+15
Áp dụng bất đẳng thức Cauchy cho 3 số thực không âm ta có
3
Do đó phương trình ẩn x có nghiệm khi 8x=x2+ = ⇔ =7 8 x 1
Kết luận hệ có nghiệm duy nhất x= =y 1
Câu 4 Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2BC Gọi H là hình chiếu của A
lên đường thẳng BD E, F lần lượt là trung điểm đoạn CD và BH Biết A(1;1), phương trình đường thẳng
EF là 3x – y – 10 = 0 và điểm E có tung độ âm Tìm tọa độ các đỉnh B, C, D
Lời giải:
Gọi K là trung điểm của AB khi đó AKED là hình
vuông, gọi I là tâm hình vuông
Khi đó KF/ /AH ⇒KF ⊥DF do vậy 5 điểm
A,K,F,E,D cùng thuộc đường tròn đường kính KD
Suy ra AF ⊥EF ⇒AF x: +3y− =4 0
;
Khi đó: AE x: + − =y 2 0;I( )2; 0 ⇒KD x: − − =y 2 0 Gọi D d d( ; −2) ta có:
D d
=
Vì D và F nằm khác phía so với AE nên ta có D(1; 1− )⇒C(5; 1 ;− ) ( )B 1;5
Vậy B( ) (1;5 ;C 5; 1 ;− ) (D 1; 1− )
Câu 5 Giải hệ phương trình ( )( )
2
5x y x y 3 2 x y 2x y 3x 4
Trang 4Tham gia Luyện thi môn TOÁN tại MOON.VN để đạt điểm số cao nhất trong kì thi THPT Quốc gia 2016
Phương trình thứ nhất của hệ tương đương với
1
− −
− + + − Phương trình thứ hai của hệ trở thành
Khi đó phương trình thứ hai của hệ trở thành 2 ( )
Áp dụng bất đẳng thức liên hệ trung bình cộng – trung bình nhân ta có
2 2
2
x
− −
Do đó phương trình (1) có nghiệm khi các dấu đẳng thức xảy ra, tức là
2
1
x
x x
− =
⇔ =
Đối chiếu điều kiện, kết luận hệ vô nghiệm
Câu 6 Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC vuông cân tại A với M là trung điểm của
AB, đường thẳng qua A vuông góc với MC cắt BC tại H, biết phương trình đường thẳng AB x: − + =y 1 0
và trung điểm của HB là 5;14
3
Tìm toạ độ các đỉnh của tam giác ABC biết B có hoành độ lớn hơn 4.
Lời giải:
Ta có:
2
5
Dễ thấy MK là đường trung bình của tam giác ABH khi đó ta
có MK/ /IH do vậy 4
5
CH
CK = và HK =BK
Do vậy KC =5BK Ta có:
3
3
C
C
x
y
− =
Phương trình đường thẳng qua C và vuông góc với AB là x+ − =y 3 0
Do vậy A=AB∩AC⇒A( )1; 2
Kết luận: A( ) ( ) (1; 2 ;B 5; 6 ;C 5; 2− ) là các điểm cần tìm
Trang 5Khóa học Chinh phục Hình phẳng Oxy và Kĩ thuật giải Hệ phương trình – Thầy Đặng Việt Hùng – Moon.vn
Câu 7: Giải hệ phương trình
3 3
2
Lời giải
;
x≥ y≥ Phương trình thứ nhất của hệ tương đương với
1
0
−
Phương trình thứ hai của hệ trở thành
3
2
Áp dụng bất đẳng thức Cauchy ta có
Do đó phương trình ẩn x có nghiệm khi các dấu đẳng thức xảy ra, tức là 2x− =1 3x3− = ⇔ =2 1 x 1
Câu 8 Trong mặt phẳng với hệ tọa độ cho tam giác ABC vuông tại B có phân giác trong AD với
15 1
;
2 2
thuộc BC Gọi E, F là 2 điểm lần lượt thuộc các cạnh AB và AC sao cho AE= AF Đường
thẳng EF cắt BC tại K Biết điểm 11 3;
2 2
, E có tung độ dương và phương trình đường thẳng
AK x− y+ = Tìm toạ độ các đỉnh của tam giác ABC
Lời giải:
Gọi I là giao điểm của AD và EF Do tam giác AEF cân tại A có
phân giác AI nên: AI là phân giác đồng thời là đường cao và trung
tuyến
Ta có: KE AD DE AK
⊥
⊥
15 1
;
2 2
và vuông góc với AK Khi đó ta có phương trình
31
2
DE x+ −y = .Vì E thuộc DE nên ta gọi ;31 2
2
−
2
( ) 2
;
t
Khi đó A=AD∩AK ⇒A( )5;3 ⇒AC: 3x+ − =y 18 0;AB x: +3y− =14 0;BC: 3x− −y 22=0
Do vậy ( ) ( ) 20
5;3 ; 8; 2 ; ; 2
3
−
là toạ độ các điểm cần tìm
Trang 6Tham gia Luyện thi môn TOÁN tại MOON.VN để đạt điểm số cao nhất trong kì thi THPT Quốc gia 2016
Câu 9: Giải hệ phương trình
3
+
Lời giải
Điều kiện
0 0
2 2
0
x x
y
≥
≥
≥
≥
⇒
3
3
+
Đẳng thức xảy ra khi và chỉ khi x=y Phương trình thứ hai trở thành
≥
Kết luận hệ phương trình có nghiệm duy nhất x= =y 1
Thầy Đặng Việt Hùng