ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --- Trịnh Thị Hồng Thúy NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỪ HAI PHA CỨNG/MỀM BẰNG PHƯƠNG PHÁP LẮNG ĐỌNG ĐIỆN HÓA LUẬN VĂN THẠC SĨ
Trang 1ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-
Trịnh Thị Hồng Thúy
NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỪ HAI PHA CỨNG/MỀM
BẰNG PHƯƠNG PHÁP LẮNG ĐỌNG ĐIỆN HÓA
LUẬN VĂN THẠC SĨ KHOA HỌC
Hà Nội - Năm 2015
Trang 2ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-
Trịnh Thị Hồng Thúy
NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỪ HAI PHA CỨNG/MỀM
BẰNG PHƯƠNG PHÁP LẮNG ĐỌNG ĐIỆN HÓA
Chuyên ngành: Vật lí nhiệt
Mã số: (Chương trình đào tạo thí điểm)
LUẬN VĂN THẠC SĨ KHOA HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC: TS LÊ TUẤN TÚ
Hà Nội - Năm 2015
Trang 3LỜI CẢM ƠN
Đầu tiên, tôi xin gửi lời cảm ơn sâu sắc đến thầy hướng dẫn luận văn của tôi
là TS Lê Tuấn Tú, người đã động viên, tạo mọi điều kiện và giúp đỡ để tôi hoàn thiện luận văn tốt nghiệp này Thầy đã hướng dẫn tôi nghiên cứu về vấn đề thiết thực và có nhiều ứng dụng trong cuộc sống cũng như trong khoa học
Tôi xin chân thành cảm ơn các thầy cô bộ môn Vật lý nhiệt độ thấp, cũng như các thầy cô trong khoa Vật lý đã giảng dạy và giúp đỡ tôi trong suốt quá trình học tập và hoàn thành luận văn tốt nghiệp Ngoài ra, tôi cũng xin cám ơn đề tài VNU QG.14.03 đã hỗ trợ một phần kinh phí
Cuối cùng, tôi xin gửi lời cảm ơn tới gia đình và bạn bè, những người đã luôn bên tôi, cổ vũ và động viên tôi những lúc khó khăn để tôi có thể vượt qua và hoàn thành tốt luận văn này
Hà Nội, ngày 24 tháng 11 năm 2015
Học viên
Trịnh Thị Hồng Thúy
Trang 4MỤC LỤC
MỞ ĐẦU 1 CHƯƠNG 1: TỔNG QUAN VỀ VẬT LIỆU TỪ 2 1.1 Vật liệu từ có cấu trúc nano 2
1.1.1. Dây nano từ tính Error! Bookmark not defined
1.1.2. Màng mỏng từ tính Error! Bookmark not defined 1.2 Vật liệu từ cứng Error! Bookmark not defined
1.2.1. Khái niệm Error! Bookmark not defined
1.2.2. Một số đặc trưng quan trọng Error! Bookmark not defined
1.2.3. Ứng dụng Error! Bookmark not defined 1.3 Vật liệu từ mềm Error! Bookmark not defined
1.3.1. Khái niệm Error! Bookmark not defined
1.3.2. Một số đặc trưng quan trọng Error! Bookmark not defined
1.3.3. Ứng dụng Error! Bookmark not defined 1.4 Giới thiệu về vật liệu từ hai pha cứng/mềm Error! Bookmark not defined CHƯƠNG 2: CÁC PHƯƠNG PHÁP THỰC NGHIỆMError! Bookmark not defined 2.1 Phương pháp lắng đọng điện hóa Error! Bookmark not defined
2.2 Phương pháp Vol – Ampe vòng (CV) Error! Bookmark not defined
2.3 Hiển vi điện tử quét (SEM) Error! Bookmark not defined
2.4 Phổ tán sắc năng lượng (EDX) Error! Bookmark not defined
2.5 Từ kế mẫu rung (VSM) Error! Bookmark not defined 2.6 Nhiễu xạ tia X (XRD) Error! Bookmark not defined
Trang 52.7 Hiển vi điện tử truyền qua (TEM) Error! Bookmark not defined
2.8 Chi tiết thí nghiệm Error! Bookmark not defined
CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN Error! Bookmark not defined
3.1 Kết quả chế tạo vật liệu từ mềm CoNi Error! Bookmark not defined
3.1.1 Kết quả đo Vol – Ampe vòng (CV) Error! Bookmark not defined
3.1.2 Kết quả hiển vi điện tử quét Error! Bookmark not defined
3.1.3 Kết quả đo tính chất từ Error! Bookmark not defined
3.2 Kết quả chế tạo vật liệu từ cứng CoNiP dạng màng mỏngError! Bookmark not defined
3.2.1 Kết quả đo Vol - Ampe vòng (CV) Error! Bookmark not defined
3.2.2 Kết quả phân tích EDX Error! Bookmark not defined
3.2.3 Kết quả đo nhiễu xạ tia X Error! Bookmark not defined
3.2.4 Kết quả đo tính chất từ Error! Bookmark not defined
3.3 Kết quả về hệ vật liệu hai pha CoNiP/CoNi Error! Bookmark not defined
3.3.1 Kết quả của kính hiển vi điện tử quét Error! Bookmark not defined
3.3.2 Kết quả phân tích EDX Error! Bookmark not defined
3.3.3 Kết quả đo tính chất từ Error! Bookmark not defined
3.3.4 Ảnh hưởng của từ trường Error! Bookmark not defined
KẾT LUẬN Error! Bookmark not defined
TÀI LIỆU THAM KHẢO 3
BÁO CÁO ĐÃ CÔNG BỐ LIÊN QUAN ĐẾN LUẬN VĂNError! Bookmark not defined.
Trang 6DANH MỤC CÁC HÌNH VẼ
Hình 1.2 (a) Dây nano Ni được tạo mảng có đường kính 200nm; (b)
Dây nano Co bị phân tán có đường kính khoảng 70nm
3
Hình 1.3 (a) Dây nano Ni một đoạn; (b) Dây nano Ni-Au hai đoạn;
(c) Dây nano nhiều lớp Co-Cu
3
Hình 1.4 Những chu trình trễ của một mảng dây nano Ni Đường
kính của các dây nano là 100 nm, chiều dài của chúng là 1
µm
4
Hình 1.6 (a) Ghi từ song song; (b) Ghi từ vuông góc 7 Hình 1.7 Đường cong từ trễ và các đặc trưng của vật liệu từ cứng 9 Hình 1.8 Đường cong từ trễ của vật liệu từ mềm và một số thông số
trên đường từ trễ
11
Hình 1.9 Sơ đồ minh họa đường khử từ của nam châm hai pha 12 Hình 2.1 Bố trí ba cực của phương pháp mạ điện chế tạo dây nano 14
Hình 2.3 Đồ thị biểu diễn quan hệ dòng - thế trong quá trình khử 16 Hình 2.4 Đồ thị biểu diễn quan hệ dòng - thế trong quét thế vòng 17
Hình 2.11 Sơ đồ của máy hiển vi điện tử truyền qua 25 Hình 3.1 Đường đặc trưng CV của dung dịch điện phân 28
Trang 7Hình 3.2 Ảnh SEM của dây nano khi loại bỏ các khuôn 29 Hình 3.3 Đường cong từ trễ của dây nano CoNi với từ trường đặt vào
song song với trục của dây
29
Hình 3.4 Đường đặc trưng CV của dung dịch điện phân chứa CoNiP 30
Hình 3.6 Đồ thị biểu diễn sự phụ thuộc của tỉ lệ phần trăm nguyên tử
P vào nồng độ mol NH2PO2.
32
Hình 3.8 Đường cong từ trễ của các màng CoNiP được đo tại nhiệt
độ phòng
33
Hình 3.9 Sự phụ thộc của lực kháng từ vào nồng độ mol của NH2PO2 34 Hình 3.10 Sự phụ thuộc của tỉ lệ Mr/Ms 7500 Oe vào nồng độ của
NH2PO2
35
Hình 3.11 Sự phụ thuộc của từ độ vào tỉ lệ phần trăm của P tại 7500
Oe
35
Hình 3.14 Đường cong từ trễ của vật liệu CoNiP với từ trường đặt vào
song song với trục của dây
37
Hình 3.16 Đường cong từ trễ của vật liệu CoNiP bị ảnh hưởng của từ
trường đặt vào
38
Hình 3.17 Ảnh TEM của vật liệu CoNiP khi có từ trường đặt vào sau
khi loại bỏ khuôn
39
Hình 3.18 Phổ XRD của vật liệu CoNiP khi chế tạo trong 39 Hình 3.19 Phổ EDX của vật liệu CoNiP khi được chế tạo trong từ
trường
40
Trang 8Hình 3.21 Ảnh SAED của vật liệu CoNiP 41 Hình 3.22 Đường cong từ trễ của vật liệu CoNiP dưới ảnh hưởng của
từ trường
41
Trang 9MỞ ĐẦU
Trong thời đại ngày nay, công nghệ nano là hướng nghiên cứu đang thu hút được nhiều sự quan tâm của các nhà khoa học cũng như các nhà đầu tư công nghiệp bởi ứng dụng của nó trong sản xuất các thiết bị ứng dụng trong công nghiệp, chế tạo các thiết bị điện tử Trong lĩnh vực khoa học và công nghệ nano thì vật liệu nano luôn là một nhánh nghiên cứu dành được sự quan tâm đặc biệt do những đặc điểm
và tính chất mới lạ so với các vật liệu thông thường Quan trọng hơn, các khái niệm
và các ứng dụng của công nghệ nano hiện nay không chỉ giới hạn trong các ngành khoa học kĩ thuật mà còn được áp dụng cho các ngành khoa học sự sống và y học Đặc biệt, công nghệ chế tạo và các đặc trưng vật lý của cấu trúc nano một chiều, hai chiều đã thu hút nhiều sự chú ý do các các ứng dụng quan trọng như: ghi từ, xét nghiệm sinh học, cảm biến ….[11, 13,15, 16]
Ở Việt Nam, vào những năm cuối của thế kỷ XX, vật liệu nano đã trở thành lĩnh vực rất được các nhà khoa học quan tâm chú ý Với nhiều trung tâm nghiên cứu, nhiều thiết bị máy móc hiện đại phục vụ cho việc nghiên cứu và ứng dụng vật liệu nano đã được trang bị và cũng đã thu được nhiều kết quả đáng kể, đặc biệt là các vật liệu dạng hạt nano, dây nano và màng mỏng
Trên cơ sở những điều nói trên, luận văn này chọn đối tượng nghiên cứu là chế tạo và nghiên cứu tính chất từ của các vật liệu nano từ tính đơn pha từ và hai pha từ cứng/mềm bằng phương pháp lắng đọng điện hóa
Luận văn gồm 3 phần chính:
Chương 1 - Tổng quan về vật liệu từ
Chương 2 - Các phương pháp thực nghiệm
Chương 3 - Kết quả và thảo luận
Trang 10CHƯƠNG 1: TỔNG QUAN VỀ VẬT LIỆU TỪ 1.1 Vật liệu từ có cấu trúc nano
Cấu trúc nano nói chung và vật liệu từ tính có cấu trúc nano nói riêng thường
là vật liệu đa pha, trong đó, đặc tính của vùng giáp ranh giữa các pha được qui định bởi tương tác trao đổi Chính tương tác trao đổi giữa các hạt hoặc các lớp từ tính khác nhau, tiếp xúc nhau hoặc phân cách nhau một khoảng vài nano mét là nhân tố quan trọng tạo nên một số hiện tượng vật lý mới [3]
Nhờ các phương pháp khác nhau mà con người chế tạo ra một số cấu trúc vật liệu nano điển hình như: chuỗi hạt nano, băng nano, dây nano, ống nano, màng mỏng nano (hình 1.1) Để chế tạo các cấu trúc nano vừa nêu trên, nói chung phải chuẩn bị khuôn đúc, mặt nạ, phải sử dụng kĩ thuật ăn mòn [3]
Hình 1.1 Một số dạng hình học của vật liệu nano [7]
Rất nhiều thiết bị công nghệ hiện đại được chế tạo dựa trên các vật liệu từ bao gồm: các máy phát điện, biến áp, động cơ điện, máy tính và các thành phần của
hệ thống âm thanh, video Các vật liệu nano từ tính được quan tâm bởi mối liên hệ giữa các đặc trưng vi cấu trúc và các tính chất từ Các đặc trưng đó bao gồm kích
Trang 11TÀI LIỆU THAM KHẢO Tiếng Việt:
1 Nguyễn Đình Đức, Vật liệu composite - tiềm năng và ứng dụng, trường đại học
công nghệ, đại học QGHN
2 Nguyễn Hữu Đức (2003), Vật liệu từ liên kim loại, NXB Đại học Quốc gia Hà
Nội
3 Nguyễn Hữu Đức (2008), Vật liệu từ cấu trúc nano và điện tử học spin, NXB
Đại học Quốc gia Hà Nội
4 Nguyễn Hoàng Hải (2009), Hiệu ứng nhớ từ trong vật liệu từ cứng FeCo/(Nd,
Pr)2Fe14B, Tạp chí Khoa học ĐHQGHN, Khoa học Tự nhiên và Công nghệ
25 (2009)
5 Lưu Tuấn Tài (2010), Giáo trình vật liệu từ, NXB Đại học Quốc gia Hà Nội
6 Nguyễn Thị Thái (2014), Ảnh hưởng của đường kính và tỉ số hình dạng lên
tính chất từ của dây nano, Luận văn thạc sĩ Vật lí, trường Đại học Khoa học
tự nhiên, đại học QGHN
7 Đào Thị Trang (2015), Nghiên cứu sự ảnh hưởng của nồng độ P lên vật liệu
CoNiP, Khóa luận tốt nghiệp, trường Đại học Khoa học tự nhiên, đại học
QGHN
8 Nguyễn Xuân Trường (2015), Nghiên cứu chế tạo nam châm kết dính
Nd-Fe-B/Fe-Co từ băng nguội nhanh có yếu tố ảnh hưởng của từ trường, Luận án
tiến sĩ khoa học vật liệu, Viện Khoa học Vật liệu, Viện Hàn lâm Khoa học và
Công nghệ Việt nam
Tiếng Anh:
9 C Zet, C Fosalau (2012), Magnetic nanowire based sensors, Digest Journal
of Nanomaterials and Biostructures, Vol 7, pp 299 – 306
10 C Wen Kuo and P Chen (2010), The Applications of Metallic Nanowires for Live Cell Studies, Electrodeposited Nanowires and their Applications,
Nicoleta Lupu (Ed.), ISBN: 978-953-7619-88-6, InTech Publishing House
Trang 1211 D Zhang, Z Liu, S Han, C Li, B Lei, M P Stewart, J M Tour, C Zhou
(2004), Magnetite (Fe3O4) Core-Shell Nanowires: Synthesis and
Magnetoresistance, Nano Lett, 4, pp: 2151-2155
12 K.B Lee, Park, S., Mirkin, C A (2004), Multicomponent magnetic
nanorods for biomolecular separations, Angew Chem Int Ed 43, pp: 3048
13 Le Tuan Tu, Luu Van Thiem, Pham Duc Thang (2014), Influence of bath
composition on the electrodeposited Co-Ni-P nanowires, Communications in
Physics, Vol 24, No 3S1, pp 103-107
14 Le Tuan Tu, Luu Van Thiem (2014), Fabrication and characterization of
Communications in Physics, Vol 24, No 3 (2014), pp 283-288
15 Luu Van Thiem, Le Tuan Tu, Phan Manh Huong (2015), Magnetization
Reversal and Magnetic Anisotropy in Ordered CoNiP Nanowire Arrays:
Effects of Wire Diameter, Sensors, 15, pp 5687-5696
16 M Alper, K Attenborough, R Hart, S.J.Lane, D.S Lashmore, C.Younes
and W.Schwarzacher (1993), Giant magnetoresistance in electrodeposited
superlattices, Appl Phys Lett 63 pp 2144-2146
17 Martin, C.R (1994), “Nanomaterials: A membrane-based
syntheticapproach”, Science, Vol 266, pp 1961
18 Nguyen Thi Lan Anh (2015), Magnetic behavior of arrays of CoNi/CoNiP
nanowires, Graduate studies, VNU University of Science, VNU, Hanoi
19 P Cojocaru, L Magagnin, E Gomez, E Vallés (2011), Nanowires of
NiCo/barium ferrite magnetic composite by electrodeposition, Materials
Letters 65, pp: 2765–2768
20 P Cojocaru, L Magagnin, E Gómez, E Vallés (2010), Electrodeposition of
CoNi and CoNiP alloys in sulphamate electrolytes, Journal of Alloys and
Compounds, 503, pp: 454–459
21 R.N Emerson, C Joseph Kennady, S Ganesan (2007), Effect of organic
additives on the magnetic properties of electrodeposited CoNiP hard
Trang 1322 S Karim, K Maaz (2011), Magnetic behavior of arrays of nickel
nanowires: Effect of microstructure and aspect ratio, Materials
Chemistry and Physics, Vol 3, pp: 1103 – 1108
23 S Guana, zand Bradley J Nelson (2005), Pulse-Reverse Electrodeposited
Nanograinsized CoNiP Thin Films and Microarrays for MEMS Actuators,
Journal of The Electrochemical Society,15, pp: C190-C195
24 T Ouchi, N Shimano, T Homma (2011), CoNiP electroless deposition
process for fabricating ferromagnetic nanodot arrays, Electrochimica
Acta, Vol 56, pp 9575 – 9580
25 V Varadan, L.F Chen, J Xie (2008), Nanomedicine: Design and
Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems
Wiley Publishing House
26 W Yanga, C Cui, Q Liu, B Cao, L Liu, Y Zhang (2014), Fabrication and
magnetic properties of Sm2Co17and Sm2Co17/Fe7Co3 magnetic nanowires
via AAO templates, Journal of Crystal Growth, 399, pp: 1–6
27 Y Cao, G Wei, Hongliang Ge, Yundan Yu (2014), Synthesis and Magnetic
Properties of NiCo Nanowire Array by Potentiostatic Electrodeposition, Int
J Electrochem Sci., 9 (2014) 5272 – 5279