De phuc vu cho cac do'i tUcfng t\i hoc : Cac bai giai luon chi tiet va ddy du, phan nho tCrng loai toan va dua vao do cac phucfng phap hop l i.. Mac du chiing toi da co g^ng het siic tr
Trang 1• BOI Dl/dNG HQC SINH GIOI
BOG
Trang 2BAN GIAO V I E N NANG K H I E U TRl/CfNG THI
TUYEN TAP 500 BAITOAN
•
HDIH imm GIAN
C H O N LOG
• •
• PHAN LOAI VA PHUdNG PHAP GIAI THEO 2 3 CHUYEN
• B o i difdng hoc sinh g i o i
• C h u a n b i t h i T i i t a i , D a i hoc va Cao d a n g
(Tdi ban idn thvt ba, c6 svCa chUa bo sung)
N H A X U A T B A N D A I H O C Q U O C G I A H A N O I
Trang 3n ta
p Che ban : (04 ) 3971489
-6
Hanln chinli : (04
) 39714899
; Ton
g Bie
n tap : (04 ) 3971501
1
• Fax : (04 ) 3971489
9
* *
*
Chiu trdch nhiem xuat
ban:
Gidm doc
- Tong bien tap:
T
S
PHAM THI TRA
M
Bien tap:
THU
Y HO
A
Saa bdi:
THA
I VA
N
Che ban:
Nha sach
THAI
AN
SACH L
L 195OH2014
-In 1.00
0 cuon, kh
o 1
7 x
24cm tai Con
4 2014/CXB/01-127/OHQGHN
ngay 10/03/2014
Quyet din
h xua
t ba
n so: 198L
K TN/ QO
- NXBOHQGH
N nga
y 15/04/2014
in xon
g v
a nop
Trang 4NhSm phuc vu cho viec ren luyen va on t h i vao Dai hoc bkng phucrng phdp t i m
hieu cac de t h i dai hoc da ra, de tiT nang cao va chuan bi kien thiJc can thiet
De phuc vu cho cac do'i tUcfng t\i hoc : Cac bai giai luon chi tiet va ddy du, phan
nho tCrng loai toan va dua vao do cac phucfng phap hop l i
Mac du chiing toi da co g^ng het siic trong qud t r i n h bien soan, song vSn khong
tranh khoi nhiJng thieu sot Chiing toi mong don nhan moi gop y, phe binh tii quy
dong nghiep ciing doc gia de Ian xuat ban sau sach ducfc hoan thien hcfn
Cuoi Cling, chiing toi xin cam cm NIlA X U A T B A N D A I H O C Q U O C G I A H A N O I da giiip da chiing toi moi mat d l bo sach dUdc ra dcfi
NGUYEN DtfC DONG
Trang 5BANG K
E CA
C KI HIE
U VA CHLf
VIET TAT TRONG SAC
H
CAC K
I HIE
U TOA
N HO
C v A
CAC Tl/
VIET TAT
(i)
•
< => : (i
ABC)
; (EFG)] :
va
(EFG)
• =
> : (i) ke
dilcfng
• C > :
g tru
e A
• = : don
g nha
t
• D
o : Phep
doi xiiTn g
true 0
• i : khon
g don
g nha
t
• Q (0; cp )
0; k) : Phep v
i t
u tam
C
• D
N : din
h nghl
a
• St p
: Die
n tic
h l
y
• Sx q
: Die
n tic
h xun
g quan
h
• H Q
h
• CMR : chiJn
g min
h ri
ng
• A' =
''7(ai
A : A' l
a
hi nh
xuong dtfcfn g
thftng (d)
• V
T :
ve tr
ai
• d[M
• BDT : ba
t d in g
thijfc
• d[M
; (ABC)
I : khoang eac
h tii
diem
M
• y cb t
: ye
u ca
u ba
i toa
• d pc m
: die
u pha
i chuCn g
m
in
phang (a) v
a (P)
• g t
: gi
a
th ie
t
• (S
; AB; D) = (AB) : n
hi die
n c an h
B
• K
L : ket lua
hai dUom
g t hi ng
d
• D
K : dieu kie
n
va d'
• P
B : phan ban
• [HTCABCT
d
• CPB : chiT
a pha
n ba
n
va mp(ABC)
4
Trang 6Chuyen de 1 : T O N G Q U A N V E C A C K H A I N I E M
T R O N G HINH H O C K H O N G G I A N
• H i n h hoc khong gian la mot mon hoc ve cac v $ t the t r o n g k h o n g g i a n ( h i n h h i n h hoc
trong khong gian) ma cac diem h i n h t h a n h nen vat the do thudng thiTcrng k h o n g ciing nftm trong mot mat phang
• Nhif vay ngoai d i e m v a d i i d n g t h d n g k h o n g drfoTc d i n h n g h i a nhiT t r o n g h i n h hoc
phAng; mon h i n h hoc k h o n g gian con xay di/ng t h e m mot doi tuong can nghien ciifu nCfa la
k h a i n i # m mgt p h a n g c u n g k h o n g difoTc d i n h n g h i a K h i noi tori k h a i n i e m nay ta
lien tuang den mot mat ban bang phang, mot mat ho nildc yen lang, mot tb giay dat d i n h
sat t r e n mot m a t da di/gc l a m phang No duoc ky hieu bdi cac chCf i n L a T i n h n h a : (P), (Q), (R), hoac cac chCf thudng H y Lap nhU (a), ((5), (y),
• M a t phang k h o n g ducfc d i n h nghia qua mot k h a i n i e m khac; nhifng thifc te cho thfi'y mSt
ph&ng CO nhutng t i n h chat cu the sau, goi la cac t i e n de :
O T I E N D E 1: C o it n h a t b o n d i e m t r o n g k h o n g g i a n k h o n g t h ^ n g h a n g (nghia la luon luon c6 i t n h a t 1 diem d ngoai mot mat ph^ng tiiy y)
O T I E N DE 2: N e u mpt dtfdng th&ng v a mpt m a t p h ^ n g c6 h a i d i e m c h u n g t h i dUcTng th&ng a y se n S m t r p n v ^ n t r o n g m a t p h a n g n e u t r e n
O T I E N D E 3: N e u h a i m a t ph&ng c6 d i e m c h u n g t h i c h t i n g c 6 v 6 so' d i e m c h u n g :
n e n h a i m a t p h S n g do c S t n h a u theo m p t dUdng t h ^ n g d i q u a v 6 so' d i e m
c h u n g a y Di/cfng t h a n g ay goi la giao tuyen cua h a i mat ph^ng
O T I E N D E 4: C o m p t v a c h i m p t m $ t p h a n g d u y n h a t d i q u a b a d i e m p h a n bi#t
k h o n g t h ^ n g h a n g
O T I E N D E 5: T r e n m p t m § t p h a n g t u y y t r o n g k h o n g g i a n c a c d i n h ly h i n h h o c ph&ng scf c a p (da hoc tCr Idp 6 den Idp 10 va cac d i n h l y nang cao) d e u diing
O T I E N DE 6: Moi doan th&ng trong k h o n g gian d e u c6 dp d a i x a c d i n h : tien de neu
len sU bao toan ve dp dai, goc va cac t i n h chat lien thuoc da biet trong h i n h hoc p h i n g
• TiT do chung ta c6 mot so each xac d i n h m a t ph4ng n h i / sau :
O H E Q U A 1: C o mpt v a c h i mpt mfit p h S n g d u y n h a t d i q u a m p t d U d n g t h S n g v a mpt d i e m n S m n g o a i dt^dng t h a n g do
O H E QUA 2: C o mpt v a c h i mpt m^t phdng duy nhat di q u a h a i di^cAig th^ng cSt n h a u
O H E Q U A 3: C o m p t v a c h i mpt m ^ t p h a n g d u y n h a t d i q u a h a i di^c/ng t h d n g song song
• Dong thdi ta phai hieu t h e m r k n g mot mat phang se rong khong bien gidi va dUcmg t h ^ n g c6
do dai v6 tan mac du ta se bieu dien no mpt each h i n h thiifc hflu han va k h i e m ton nhU sau:
• De thuc hien dirge phep ve c h i n h xdc m6t h i n h h i n h hoc trong k h o n g gian ngoai cac dudng thay ve lien net, ta can phai nam chac di/pc k h a i n i e m di/dng khuat ve bkng net dijft doan:
Mpt dtfdng b i k h u a t t o a n bp h a y c h i k h u a t mpt d o a n c u e bp n a o do k h i v a c h i
k h i ton t a i it n h a t m p t m a t p h S n g du'ng p h i a trvC6c h o ^ c p h i a t r e n c h e n o mpt
e a c h t o a n bp h o a c c u e bp ti^cAig uTng
Trang 7• Muo
n xa
c din
h nh
^n
h mo
t ma
t ph^
ng trong khong gian ta con chon thu thuat thU
c h
an
h :
Mpt hi nh t am g ia
c, tii
" g ia
c ho ac d
a gia
c ph&n
g (k ho ng genh), dUcfn
h m
pt m^
t ph Sn
g tr on
g kh on
g gia
n
Ta gpi ca
c m&t
p h^
g hi nh
thvCc v
di ca
c k
y h ip
u (A BC ), (A BC D) , (C ),
txictng
vtng
• Ma
t ph dn
g hi nh thu^c
hi kh ua
t n eu c
6 mp
t h ay n hi eu m^t ph&n
^m t ro ng m
^t ph&n
g h in
h thd'
c m
a ma
t d
o
hi kh
a kh
i dUcTn
g t h^
ng do k ho ng la b ie
n cu
a ma
t p hd ng
tii'oTng vlng
k hu
at cu
e b
p ha
y to an
bp
• Mp
t die
m nhm
t ro ng mpt m$
t ph&n
g h in
h thuT
c b
i k hu
at th
i go
i la d ie
m khuat
• No
i ha
i d ie
m m
a i
t n ha
t c
6 mp
t die
m k hu
at th
i dUp
c mp
t dUcfn
g kh ua
ai diicta
g d
o k ho ng la b ie
n c ua c ac m^t phAn
g h in
bi (a) ch
e khua
t cu
e bo, d
o (d) c
6 1 doan
ve
net dijf
t doa
n nkm dudi (a)
S
• (d)
bi ma
t ph
^n
g (SAC) ch
e khua
t cu
e bo, d
m sa
u (SAC) (hie
n
nhie
n (d) cun
g d sau cac ma
t (SAB), (SBC))
• Canh AC b
i h
ai ma
t phan
g (SBC) v£
l (SBC) ch
e
khua
t toa
n bo, d
i ha
i m
at ph
^n
g (SAB), (SBC)
-A
A
c /—
1—
^V FJ L^
• A]
phin
g (AiADDi), mSc di
j n
o d trU<Sc
ma
t phan
g
(ABBjAi) v
a d tre
n m
at phan
g (ABCD)
• (d)
bi ch
e khua
ve net
duTt
doan nam sau h
ai ma
t phan
g (ADDiAj);
(CDDjCj),
mac di
j doa
n EF
t phan
g
(ABBjAi);
(BCCiBi);
va
d tre
n m
at phan
g (ABCD)
• CA
C K
Y HI EU
AN ^fHd
Thiir tr
f Ky hie
u
Y nght
a Gh
m A thuoc ducfn
g thing (d) ha
y dadn
g
thin
g (d) chur
a A Hay
vie
2
A i
(d) Die
m A or ngoai difdn
g thin
g (d) ha
y
dUcfng thin
g (d) khon
g chtif
a A Ha
y vie
d)
3 (d) c (a) DU&ng
thin
g (d) nk
m tron
g ma
t phin
g (a)
hay (a) qua
y quan
h (a) ne
u (a) lu
u dong Hay
viet nh
am
la
:
(d) e (a)
4 (d) / / (a) Difcrng
thin
g (d) son
g son
g \6\
t ph in
g
(a)
Cach viet kha
thin
g (d) ei
t ma
t phing (a) ta
i A each vie
t khd
c :
(d) n
(a) = {A}
Trang 86 (d,) n (da) = A H a i dUcfng t h i n g (di), (da) dong quy t a i A Cach viet khac :
Cling chijfa 3 diem A, B, C phan biet k h o n g
t h i n g hang
Cach viet khac : (a) = (p)
C phan biet va k h o n g t h i n g hang
(ABC) : la m a t p h I n g
h i n h thijfc vdi ba
dildng bi&n A B , BC,
AC
ducfng t h i n g (d) khong qua A
Co so cua phiiong phap t i m giao tuyen cua
hai mat p h l n g (a) va (P) can thUc hien 2 budc
• B , : T i m h a i diem chung A , B cua (a) va (P)
n Ba : Difdng t h i n g A B la giao tuyen can t i m
hay A B = (u) n (P) (ycbt)
n P H i r O N G P H A P ,
• Ti/ong t u nhtr phaong phap 1 k h i chi t i m ngay dtfoc 1 diem chung S
• Luc nay ta c6 h a i trifcfng hap :
> H a i mat p h l n g (a), (P) thuf tif chiJa hai difdng
t h i n g (di), (da) ma (dj) n (da) = I
=> SI la giao tuyen can t i m
> H a i m a t p h l n g (a), (P) thuf tif chtifa h a i difdng
t h i n g (di), (da) ma (di) // (da)
S _
Difng xSy song song vdi (dj) hay (da)
=> xSy la giao tuyen can t i m
Trang 9m CA
C B AI T OA
a (SBC)
a (SBD), t
a c
6 :
• S
la die
g
t uT giac lo
i ABC
va (2 )
suy r
a :
(SAC) o
(SBD) = SO (ycbt)
a (SDC) cun
m chung
• Ha
l gia
c AB
CD
theo gi
a thie
t khong song song
^ AB ^ CD = E : l
a die
m chun
g thu
t hai
Do d
o :
(SAB) n
(SDC) = SE (ycbt)
Tucfng tif: (SAD
D ^ BC; d
o AD/
/ BC
Bai 2
Cho ti
l die
n ABC
D Go
i Gj,
Ga l
a trpn
g tar
n ha
i tam giac BC
D v
a ACD La
g die
m cii
a B
D, AD, CD.Tim cac gia
B) hi
(G1G2B) n
(ACD) c/ (ABK
J
hi
(GiGaB) n
(ACD) = GgK hoSc
AK
d
(ABK) ^ (CIJ) =
G,G2
Bai 3
Cho hin
la hin
h bin
h han
h ta
m O
aJ
Tim giao tuyen cua ha
i m
at phSn
g (SAD) v
a (SBC)
hi
Tim giao tuyen cua ha
i mS
t phin
g (SAB) v
a (SCD)
c/ Ti
t ph^
ng (SAC) v
a (SBD)
a (SBC), t
• D
e y A
D c (SAD); B
C c (SBC) m
a AD // BC
Ta dun
g xS
y // A
D hoa
c BC
[(SAD) = (xSy; AD)
^ |(SBC) =
(xSy; BC)
=^ (SAD) n (SBC) =
xSy (ycbt)
hi
Tifang tir, difn
g uS
v // A
B hoft
c
CD
8
Trang 10=> (SAB) r^ (SCD) = uSv (ycbt)
c/ Goi O = A C n B D , tiTcrng t a bai 1
=> (SAC) n (SBD) = SO (ycbt)
B a i 4
Cho h i n h chop S.ABCD c6 day la h i n h t h a n g A B C D vdi A B la day Idtn Gpi M la mot diem bat ky t r e n SD va E F la difang t r u n g b i n h cua h i n h thang
a/ T i m giao tuyen ciia h a i mSt p h i n g (SAB) va (SCD)
b/ T i m giao tuyen cua h a i m a t phSng (SAD) va (SBC),
c/ T i m giao tuyen cua h a i mSt p h a n g ( M E F ) va ( M A B )
Doc gia t u giai tUcfng t u n h u cac bai t r e n
Goi I , J , E, F thur t a Ik t r u n g d i e m cac doan t h i n g A D ,
BC, SA, SB theo thur tvt d6 Thifc h i e n cac lap luan nhtf cac
bai toan t r e n ;
a/ (SG1G2) n (ABCD) = I J (ycbt)
b/ (CDGiGa) n (SAB) = E F (ycbt)
c/ (ADG2) ^ (SBC) = xG2y (ycbt)
T r o n g do xGay // A D hoSc BC
L o a i 2 : T l M G I A O D I £ M C U A D U d N G T H A N G 1fA M A T P H A N G
Ca sd cua phaang phap t i m giao d i e m O cua dudng t h a n g
(a) va mat phSng (a) la xet 2 h a i k h a nSng xay r a :
n Trirdng hop (a) chiJa dudng t h S n g (b) va (b) l a i c&t diicrng
Trang 11Giai
• D
e y den KB > K
D =
>
KN khong son
o C
D = I
Ma KN
c (MNK) C
D (MNK) =
I (ycbt)
g (ADC)
Ta
CO
: AD
n (MNK) =
E (ycbt)
Bai 7
Cho ti
J die
n ABCD La
y die
m M tren A
HtfdTng di
n
Doc gi
a t
u giai, xe
m hin
h ben
a/ C
D (MNK) =
P (ycbt)
b/ AD
n (MNK) =
Q (ycbt
)
Bai 8
Cho hin
h cho
p tu
f gia
c S.ABCD La
y tre
n SA, S
ii t\i
sao
cho MP khong th
e c&t
A
B ha
y CD Tim giao die
n (MNP) =
K (ycbt)
Trong mp(SAC) M
K o AC = H
1
ma M
K c (MNP) |
=> A
C r
> (MNP) =
H (ycbt)
Bai 9
Cho mo
t tam giac AB
g chil
a ta
m giac Tre
va tron
g ma
t phin
g (ABC) t
a la
y mo
t die
m O Din
B, BC, A
C v
a SC
Hi^dn
g di
n
Tuang tu, do
h ben)
AB
n (MNO) =
E (ycbt)
BC
o (MNO) =
F (ycbt)
AC
n (MNO) =
G (ycbt)
SC
n (MNO) =
H (ycbt)
10
Trang 12Loal 3 : Cfll/NG MWfl B A D I £ M T R O N G K H O N G G I A N T H A N G H A N G
I pmroNG P H A P
Co so cua phiiong phap can phai chufng m i n h ba diem
trong yeu cau b ^ i toan la d i e m chung cua 2 mSt phSng nao
do (chfing ban A, B, C nSm t r e n giao tuyen (d) cua h a i m a t
phSng do nen A, B, C t h a n g hang)
O day k h o n g loai triJ k h a n&ng chiJng m i n h difoc difdng
thang A B qua C => A, B, C t h i n g hang
n CAC B A I T O A N C O BAM
B a i 10
Xet ba diem A, B, C k h o n g thuoc m a t p h i n g (u) Goi D, E, F Ian luot la giao diem ciia A B ,
EC, CA va (g) ChCifng m i n h D, E, F t h a n g hang
G i a i
De y thay D, E, F viTa a t r o n g mp(ABC) vifa d t r o n g mp(a)
Do A, B, C g (a), nen (a) va (ABC) p h a n biet nhau
=> (a) n (ABC) = A (A chuTa D, E, F)
Trang 13to al
4 :
CmiUG
MWfl MQ
T DtfCiN G
T HA NG
T RO NG KHONG
GIAN
QU
A MO
T DI
£M C
h diXcrn
g thing (d)
qua mo
t die
m c
o dinh :
Ta can tim tre
n (d) h
ai die
m tu
y y A; B va chuTng mi
g vd
i mo
t die
m I
co dinh c6 sS
n tron
g
khon
g gian
=> (d) qu
a I CO din
h (dpcm)
IL PHtfONG
PHAP,
Co sd cua phiTcfn
g pha
p ca
n thu
c hie
thin
g a
co dinh
a (a) chil
a d (liOi dong)
• B
2 : Tim giao die
m I = a ^ d
=> I la die
m c
o dinh ma
d d
i qu
a
m CA
C B AI
OA
N CO
ai die
m c
o dinh trong khong gian
t die
m M luu dong trong khong gian sao ch
o MA
n a = I va M
m c
o din
h
Giai
Goi O = A
B n (a) =
> O
co dinh (
vi
A, B
co dinh
vk
a 2
phia cua (a))
Ta CO : mp
(P) =
(MA
; MB) n (a) = I
J
De y tha
y :
O e I
J =
> O,
I, J thing hang
Nghia la dacfng thin
Bai 1
4
Cho hin
h thang ABC
D (A
B // C
D v
a AB > CD) Xe
t die
m S
e
(ABCD) v
a ma
B = M, a
n S
D = N ChuTn
g minh difdng thing M
m c
o din
h
De thay
dxiac nga
y MN
c (SBD) v
a
AC
c (SAC) v
a MN
o AC = O t
hi O
e
BD = (SBD) n (SAC)
=> MN qua O
co dinh (dpcm)
12
Trang 14Bai 15
C h o h a i d i f d n g t h f t n g d o n g q u y O x , O y v a h a i d i e m A , B k h o h g n S m t r o n g m a t p h i n g (xOy) M o t m a t p h a n g l i f u d o n g ( a ) q u a A B l u o n l u o n c a t O x , O y t a i M , N C h i i f n g t o M N q u a mot d i e m co d i n h
Co so cua p h i f a n g p h a p l a t a c a n chiifng m i n h d U d n g thiif n h a t
qua giao d i e m ciia 2 d i f d n g c o n l a i b a n g 2 budrc co b a n :
Trang 15O Ca ch k ha
c
Doc g ia churng m in
h r Sn
g J
F q ua
O = I
G n C
D =
> C D;
i t am g ia
c AB C, A B
C sa
o c ho
B c
at A'
B' a
E , A
C cd
t A
C d F
a d ie
m E,
, G t hS ng h an
g
b/ Ch iJ ng m in
h difcfn
g th an
g AA ', BB ', CC d on
g quy
Gidi
a/ De
y th ay E , F , G l
a b
a d ie
m ch un
g cu
a h
ai ma
t p h^
ng p ha
n bie
t
(a ) ^ ( AB C) v
a ( P) = (A B' C)
Do do : E , F , G
e (A ) = ( a)
n
(P)
Va
y E,
, G t h^
ng h an
g (d pc m)
b/ Nh an x
et nh
u s au :
: AA' , BB
' cr
(EAA'); AA ' o B B' #
0
^ BB' , CC
c (GBB')
; BB
; CC
n AA
' #
0
^ AA ', BB ', CC d on
g qu
y t
ai O ( dp cm )
Chuyen de
2 :
QUAN HE SONG
SONG
to ai 1: CHtJN
G MWf
l HA
I DLfCJN G
T HA NG
S ON
G S ON
g ph ap c an thiic h ie
n h
ai hxidc
CO b an cho d in
h n gh ia
a / / b
• Bi : K ie
m tr
a h
ai difdn
g th an
g a
c un
g tr on
g mo
t m
at
ph an
g ha
y hife
u n ga
m ra ng h ie
n nh ie
n die
u d
o x ay
a
ne
u ch un
g tr on
g 1 h in
h ph an
g na
o do
(1 )
• B2 : Du ng d in
h ly T ha le
s, ta
m gia
c don
g da ng , ti nh c ha
t ba
c ca
u ( ti nh c
\6i difdn
g thi
J ba ) l
a h
ai ca nh c ua h in
h th an
g, ha
y h
ai ca nh doi cu
a h in
h ha
i difcfn
g th
^n
g d
o k ho ng c6 d ie
m ch un
g
(2 )
n CAC BA
p S.
AB CD c6 G
j, G2 , G3
,
G, I an lucft la t ro ng t am c ac t am giac S
A
Ch um
g mi nh
tiJf
gi ac G iG aG gG , l
a h in
h bi nh h an
h
14
Trang 16Cho diem S d ngoai m a t phSng h i n h b i n h h a n h A B C D X e t m S t p h d n g a qua A D c^t SB
va SC Ian lucft d M va N Chiirng m i n h A M N D la h i n h t h a n g
G i a i S D6 y thay hai mSt phSng (a) va (P) c6 2 diem M vfl N 1^ d i ^ m chung
Cho tuT dien A B C D Goi M , N I a n li^gt l a t r u n g diem cua BC va B D Ggi P l a diem
tren canh A B sao cho P ?t A va P # B X e t 1 = P D A N va J = PC o A M
Co so ciia phuong phap m o t l a sii dung d i n h l y phuong giao tuyen song song
De chiing m i n h d // a t a can thUc h i e n h a i bade CO ban chufng m i n h : d
• E l : Chufng m i n h d = y o p m a
• B2 : K e t luan t i f t r e n d // a
y r- a = a
p n a = b a//b
Trang 17g die
u kie
g (d) son
bang h
ai btfdr
c :
•
Bi : Quan sat v
a qua
n l
y gi
a thie
t tim dudng thing
• B
2 : K
et lua
n (d) / / (a) the
o die
u kie
n ca
n v
a dii
m cA
c BA
I T OA
N CO B
AM
Ba i2
1
Tron
g tu
f die
n ABCD, chufn
g minh rSng dean no'i ha
i tron
g ta
m Gi,
G2
cua ha
i A
ABC
va
AABD t
, A
2 l
a trun
g die
m B
C v
a BD theo thut ti
T do, t
Theo din
h l
y Thales, t
a c
6 :
'0,02/
/A, A
2 B
'm
a A,A2 //CD (tinh chat dUcrn
g trun
g binh)
Theo tin
G1G
2 /
/ (ACD) (dpcm)
Ba
i 2
2
Cho hinh chop S.ABCD
day la hin
h bin
h hanh ABC
D Go
i
M, N la trung diem SA
va
SB
Chijfng minh : M
N / / (SCD) v
a AB //
NCD)
Gi
ai
Theo tin
h cha
t dudn
g trun
g bin
h trong tam giac
=>
MN //
A
B, m
a AB //
CD
=>
MN //
CD
cz
(SCD)
Theo dieu kie
O Ca ch k ha
c
De y M
N = (MNCD) n (SAB) v
a tron
g ha
i ma
B D
MN //
B v
a CD =>
MN //
(SCD) 3 CD (ycbt)
TifOng tyl
:
AB //
N c (CDMN) =
>
AB //
CDMN) (dpcm)
Ba
i 2
3
Xet ha
i hinh bin
h hanh ABC
D v
a ABEF khong dong phlng Go
i
M, N la h
g minh rin
g M
N / / (DEF)
3 3
Gi
ai
De y thay M, N la trong tam cua ba
i ta
m gia
c ABD
Keo da
i th
i D
M o E
N =
P : la trung diem A
B
PM PX
h l
y Thale
s
^ MN //
D c (EFDC) ^ (DEF) (dpcm
) D
16
Trang 19n ckc
B AI
OA
N CO
a t ia c un
g ch ie
u, so ng s on
g va Ichong d on
g ph
^n
g Ax , By , C
B' = C
C c
6 d
o d
ai kh ac k ho ng ChOfn
g mi nh ( AB C) //
C // AC
c
(ABC)
Ne
n ta c6
ai dUcrng t h^
ng d on
g qu
y A B' , A
C
tr on
g mp (A 'B 'C ') th oa d ie
u ki en ( I)
=> (A B' C) //
(A BC ) (d pc m)
Bai 2
7
Ch
o hi nh b in
h ha nh A BC
e A
x c
a Cy
on
g so ng c un
g ch ie
g ma
t p hS ng ( AB CD ) Chiifn
g mi nh ( B;
x) //
(D
; C y)
Gi&i
Ti ra ng t
u x et
ai m at
hi ng ( B;
A x) v
a
(D
; Cy ), thu
T ta chuTa ca
c c ap d ud ng t hi
ng
do ng quy
fAB//CD IAx//Cy
=> (B
; A x) //
(D
; C y) ( dp cm )
Bai 2
8
Ch
o ha
i h in
h bi nh h
^n
h A BC
D va A BE
F d
ro ng h ai m at p h^
ng k ha
c nh au
Giai
Ha
i ma
t ph li ng ( AD F) v
a ( BC E) thiif ti
T chuT
a ca
c c ap dirdng
th dn
g do ng quy / A
;
iAF//BE
AD//BC
(A DF ) / / ( BC E) ( dp cm )
D an
g 2 : C
H UfN G MINH CA
C D
l /d
N G TH
A NG D6N G PHANG
LP Bi rO NG PB
AP
Ccf sd
ua p hu an
g ph ap chiifng m in
h ca
c d ud ng t hi ng d
i, d2 , dg
d on
g ph in
^n h ai bi/<Jc ca
an :
• Bi : C hv in
g mi nh d ], dg , ds ,
d
oi mo
t c
at nh au v
a c un
g so ng s on
g vd
i m
pt ma
Trang 20• B2 : Ket luan d], d2, ds, c (a) // (P) => di, d2, d^j, dong phing trong (a); (a) phai
chufa cac giao diem cija d,, da, ds,
ngoai ciia goc : fiAfc, CXt), I5A6 theo thuT tu do
Do cac tam gidc can tai dinh A nen cac
phan giac ngoai song song vdi canh day, nen :
At, //BC c (BCD)
AtaZ/CDe (BCD)
;At3//BDc(BCD)
=> At,, At2, Ata dong ph^ng (trong (P) // (BCD) \k (P) qua A) (dpcm)
Htfdng d i n
Doc gia tu giSi iMng t\l hai bai toan tren
Trang 21DE SH L i"
HA IJ ES T RO NG K H6 NG G IA
N
•k
Di nh l yi (thu|ln) :
Hai ditang thing tuy
y d,, d2 trong
khong gian chdn tren
cdc in^t phdng song
song nhau (a)
II (P)
II (y) tao ra cdc doan thang tUcmg
• TrUd
c kh
i x
et di nh l
y dao , t
a qu an tarn d en h
ai kh
ai
ni em s au
hi xe
t d en
ac d ay t
y so , c hi ng h an :
A, A
B1B9
• (A i;
B]
) l
a c ap goc c ua d ay t
y s
o (
*)
• (A2
; B2 ) v
a (A3
; B3 ) l
a c ac cStp ngo
n cu
a d ay t
y s
o (
*)
• Do an n
oi ca
n la (doan) ba
c t ha ng c ua d ay ty so (*)
• Di nh l
y :
Neu c6 day ty
so trong khong gian
:
A,A
(*) da, xdy ra tren hai
dudng
thdng (d,), (d2) thi
cdc bac thang AiB,,
A2B2, A3B3 cung song
song vai mot mg,t
phdng c6
dinh
O Gh
i c hu : Ta c6 p ha
t bie
u kh ac c ua d in
h
ly
Th al
es da
o nhi
f s au :
Vai dieu kien c6
day ty
so (*)
da xdy
ra tren hai
dudng thdng (dj), fd^
) thi
mot trong
3 bac
thang A,B,, A2B2, A^B^
se song song vdi
mot
mat phdng chda hai
bac thang con lai
"A ,B
i //(a ) = (A2B2 ; A3B3)
A2 B2 //
(P )- (A 3B 3;
Ai Bi ) (A )
A3 B3 //
(Y ) S ( A,
Bi ; A2B2)
(di) (goc)A
i
(ngpn tren) A
2
(ngon difdi) A3
L PHirON
G PH AP ,
Co s
d c ua p hu on
g ph ap chufng mi nh dUdng t hi ng s on
g so ng v
di mS
t p hi ng b
h l
y T ha le
s da
o t ro ng k ho ng g ia
n go
m h
ai bud
c c
a b an s au
ay :
• Bi : X ac d in
h t re
n h
ai du dn
g t hi ng tiiy y c ha ng h an
di) , (d2 ) d
e t im
Aj As B,B3
Xd
c d in
h c Sp ( Ai
; B j)
a c Sp goc, cd
c c Sp ( Aj
; B2 ) v
a (A3 B3 ) l
a h
ai cS
p ngon
n B2 : L uc do c ac doan b ac t ha ng A iB
i, A2B2 , A3B
3 dira
c ke
t l ua
n cu ng s on
g (P ) ( xe
m •.>)
20
Trang 22• pmroNG PHAPj
Ta chutng m i n h dUdng t h i n g (d) n a m t r o n g m a t p h i n g (a) // (()) => (d) // (p)
m cAc B A I T O A N C O B A N
Bai 32
Cho tut dien A B C D c6 A B = CD Goi M va N la hai diem lUu dong t r e n A B va CD sao cho
AM = CN Chutng m i n h M N luon song somg vdi mSt p h I n g co dinh^
Giai
Neu dat A B = CD = a; A M = C N = x De y thay t r e n A B va C D ta co day t y
AM ^ CN
AB CD
|(M; N) va (B; D) la hai cap ngon tUcJng ufng
thang AC, M N va B D ciing song song v<Ji mot mSt phIng (a)
due nay (a) chUa co d i n h v i day t y so — chUa la h k n g so)
a
Ta diTng (a) n h u sau : goi E, F, G la t r u n g d i e m cac canh A B ,
DC, CB theo thuf t i l do t h i (a) = (EFG) va (a) thoa yeu cau la
Vay M N // (EFG) = (a) co d i n h (dpcm)
Bai33
Cho hai h i n h binh h a n h A B C D va A B E F k h o n g dong phIng; tren cAc dUOng cheo A C va
BF Ian lucft lay cac diem tuy y M , N sao cho
Cho h i n h vuong A B C D va A B E F d t r o n g hai m a t p h I n g khac nhau T r e n cac difdng cheo
AC va BF, ta Ian lugt lay cac d i e m M , N sao cho A M = B N Chutng m i n h r a n g M N // (CEF)
Ap dung d i n h ly Thales cho cac doan bac t h a n g :
A B , M N , CF voti de y EF cz (CEF); A B // EF c (CEF)
^ M N // (CEF) (dpcm)
Trang 23Bai 3
5
Tr en h
ai ti
a Ax v
a By c h6
o nh au , ta I an
luat
la
y ha
i di em
M N sao ch
o AM
Chufng m in
h rS ng M
N lu on lu on s on
g so ng v
di mp
t mS
t ph Sn
g c
o di
nh
Tr ad
e he t:
HUoTng
dim
By la'
y d ie
m N , din
h bd
i : B
N, =
1
Ax la
y die
m
Mj din
h bd
i : A M; =
k (v
i k > 0 , ch
o tn/dc )
Hi en n hi en 1^
h
ai di em M
j \k
N ] c
o di nh
Th eo g ia t hi
et va
tii
ea ch d an
g tr en h in
h ta
co :
AM , AM , AM
i BN
i
BN ,
BN AM
B
N
Ne
n th eo d in
h ly dao cu
a di nh l
y Th al
^s M
N
lu on lu on s on
g so ng v
di mS
t ph in
g c
o di nh ((5) =
(A
; Bd ) ch aa A
B va d ad ng t hi ng
d qu
a B s on
g
so ng v
di N, M]
(d pc m)
Bai 3
6
Ch
o ha
i da dn
g th in
g ch eo n ha
u
dj va
d2 M
la m
ot di em c hu ye
n do ng t re
n do ng t re
n d2
T
im q
uy ti eh t ru ng d ie
m I cua do an M
N
Hu&ng dan
Go
i AB la d oa
n vu on
g go
e ch un
g cu
a
di va
d2
(
A e d
j, B
d2); O
la t ru ng d ie
m eii
a AB
Ta eo : = = i
di
d'2
O M'
N'
OB I
X
Th eo d in
h
ly
T ha le
s da
o th
i 01
nkm
t ro ng m
at ph ln
g
(P )
q ua
O so ng s on
g vd
i
di va
da, tiif
c la m
at ph an
g xa
c
di nh b
ai ha
i da dn
g th in
O Ia
n lacr
t so
ng
so ng v
di d ] va
d-^
Giai han
; M v
a N c ha
y tr en d ] va k ho ng
co ra
ng
huge ne
n I c ha
y tii
y y t re
n (
P)
• Dao :
L ay m
ot di em
a dO ng dacfng t hi ng s on
g
so ng v
di d
'2,
da dn
g th in
g na
y ci
t
d'l
t
ai E La
y di em M ' e d
'l
do'i xO ng vdri O qua
E
MI c
lt d
'2
d N'.
D in
h
ly
d ad ng t ru ng b in
h ch
o th ay
I
la
tr un
g di em cua M'N ' TC
f M' va N ' dif ng cac da dn
g th in
g so
ng
so ng v
di AB Ch un
g Ia
n la
gt el
t d] d
M va
c OM 'M
A va O N' NB d eu la n hf ln
g hi nh c hS n ha
t :
=> , ^ ^ ^ _
^ MN 'N M' la m
ot hi nh b in
h ha nh
do d
o I la t ru ng d ie
y ti eh t ru ng d ie
m I cua do an M
N
la
m
at ph in
g
(P )
i qu
a O s on
g so ng
Trang 24Chuyen de 3 : PHlTONG PHAP T I E N D E
Ta da t h a y di/gc k h i giai toan h i n h hoc t r o n g k h o n g gian tif h a i chuyen de trUdc mot each chi/a tiidng m i n h iSm viec sCf dung h a i t i e n de 5 va t i e n de 6 the nao ?
Den day, de" khftc phuc viec do Chung toi diTa vac mot chuyen dfe PHUCfNG PHAP TIEN' DE vdi mot mong muon la doc gia se thiTc sa thay difoc mot each c h i n h xac han, tUdng m i n h hon :
si^ c a n thiet c u a t i e n de 5 v a t i e n de 6 Hien n h i e n viec gidi thieu rong r a i nhif the doi hoi
doc gia can chuan bi mot i t kien thiife ve sir vuong goc va nhOmg k h a i n i e m ve cac h i n h khoi Sau nhOrng suy n g h i va t r a n t r d t r o n g suot qua day hoc va viet sach chiing toi hy vpng duge doc gia dong cam vcii vi$e dat chuyen de 3 a v i t r i nay t r o n g quyfin sach c h i mot each
lidc le cung la du
Co so ciia phifong phap la sii dung sii c^n t h i e t cua h a i t i e n de 5 va t i e n de 6 d4 xay diTng
va chufng m i n h mot so bai toan co ban t r o n g k h o n g gian k h i h i n h t h a n h nen cac v a t the (hien
nhien 4 t i e n de d trirdc da duoc ngam hieu la luon luon di/gc sOf dung)
n C A C B A I T O A M C O B A M
B a i 37
Cho a, b, c la ba difdng t h i n g k h o n g ciing nkm t r o n g mpt m a t phAng va doi m o t cSt nhau
Chufng m i n h rSng : a, b, c dong guy
G i a i
T h a t vay : gia sijf a, b, c k h o n g dong quy, t h i cac giao diem ciia chiing lap t h a n h ba diem
khong t h a n g hang va ba difcfng thftng cung nam t r o n g mot m a t phang T r a i v d i gia t h i e t
Theo phep chufng m i n h p h a n chiifng ycbt dUcrc chijfng m i n h xong
B a i 38
Cho 3 t i a Ox, Oy, Oz doi mot vuong goc
a/ Chufng m i n h r k n g ba t i a do k h o n g cung n k m t r o n g mot m a t phang
b/ Ijay t r e n ba t i a Ox, Oy, Oz Ian lifgt cac diem A, B, C (khac goc O) Chijfng m i n h r a n g :
(AB + BC + CAf ^ eiOA' + OB^ + OC^)
c/ Ky hieu a, p, y la ba goc tarn giac ABC, a, b, c la do dai OA, OB, OC T i n h cosa, cosp, cosy
va chufng to r a n g a, [3, y n h o n
G i a i
a/ T h a t vay : gia sCf ba t i a cijng thuge mot m a t
phang, v i Ox va Oy ciing vuong goc v6i Oz, nen Ox va
Oy cung n a m t r e n mot du'dng t h a n g Dieu do t r a i vdi
gia t h i e t
Do do ycbt di/gc chufng m i n h b a n g phep chufng
m i n h phan chufng
b/ Ap dung bat d a n g thufc Bunhiacovky, ta eo :
(AB +BC +CA)^ < 3 ( A B ' + BC^ + CA^) = 3(0A^ + 0B^+ OB^ + OC^ + OC^ +OA^)
(AB + BC + CAf <i 6(0A^ + OB^ + OC^)
c/ Ap dung d j n h ly h a m cos cho AABC, ta c6 :
BC^ = AC^ + A B ' - 2AC.AB.cosa
Trang 25cosa =
< =>
a nho
n (dpcm)
Va
^ + b
^V b^
g khong gian ba tia
Ox, Oy, O
Ox, Oy, O
z pha
i don
g phSng
Gi
ai
Gia siif Ox, Oy, O
z khon
B =
1 (dvcd)
Dong thd
i tren tia doi Oz' cu
a ti
a Oz, t
a cho
n die
m C sao ch
" A
C =
OC = OAcos60
" O
C = -
2
Din
h l
y ham cosin trong
C 2OB.OCcos60°
-« BC' =
1 +
i ~ 2.1.-.i =
C = (1)
Tifong tu : AB
^ = OA' + OB^
- 2OA.OBcosl20'' =
1 +
1 2.1.1(-1
-) =
3
« AB =
Va
(2)
Ttf (1) v
a (2) t
a difg
c : CA + C
B = A
B
< =>
C e A
n dau)
Vay Ox, Oy, O
z ph
ai don
g phang (dpcm)
Ox, Oy, O
a y(5z = 90" ChiJn
g min
Hi^cTng da
n
Gia sU
Ox, Oy, O
z khon
do the
o tht
f
tu cac die
m A, B, C sao ch
o : OA = a
; O
B = OC = a
Stf dun
g din
h l
y ham cosin
=> AB = A
C = VOC^ + OA^ - 2 0C O
A.
CO S4 5"
AB = A
C =
ha^
.a ' - 2.a>/2.a ^
= =
a
Ma : B
Trang 261/ Gia sd O x ; O y ; Oz d o n g p h ^ n g t r o n g m p ( a ) n a o d o , t a co h a i k h a n&ng :
T i a Oy hoac n a m t r o n g m i e n goc xOz ( x e m h l ) hoac m i e n n g o a i goc ic8z ( x e m h 2 ) t h i
xOy = 3 0 ° * 6 0 ° (h.2) hoac xOy = 1 5 0 ° * 6 0 ° ( h l ) (v6 l y v d i g i a t h i e t xOy = 6 0 ° )
Trang 27Luc do, (1) + (2) ch
o ta gia thi§'t:
2 co
s fliOt)
1 OA OB
OC
= 1 <=>
OD
V ' ) OE
' =
1 oO
E = 2cosf
(3)
Ha
i tia OA; O
C c
o dinh trong khong gian nen tia phan giac O
D cun
g c6' din
h
Hai tia OB; O
D c
o din
h tron
g khon
g gia
n ne
n tia phan giac O
E c
o din
J
= cons
t ch
o ta die
m E
co din
h trong khong gian
Vay kh
i A, B, C lou dong sao ch
o
nhung luon qua E
co din
i m
at ph
^n
g (ABC) lii
U don
g the
o
Cho hin
h bin
h han
h ABCD Tren cac can
h SA, SB
m A], B
i, C
j sa
o ch
o SA
SC : k (k > 0, k cho san) ChuTn
i C
i thay doi th
i mp(AiBiCi) ca
t S
O ta
i 1 die
m c
o din
h (vd
i O = A
C o BD)
Gi
ai
Goi AM la trung tuyen cua ZiAB
C tu
y y con
B', C tuy
y thij
f t
ii tren A
B v
a AC (h.2)
Kh
i AM
o B'C = M', t
— (*
) (Do
c gi
a tu chufng min
Do d6, ne
u go
i S
O ^ A,C, = O', th
O
SAi SC
i SO'
(1) (h.l)
Nen SA SC ,
SAi SC]
h (ycbt)
D nh
o nhat, ha
y ch
i r
a gi
a tr
i nh
o nh
at do
Gi
ai
Goi S la dien tic
h AMB
D S = i
BD.MO =
|
aV2
M0 (1)
a
Nhun
g minM
O = dlO; SA] = O
D =
O th
i S
O la dudng cao
=> ASO
A vuon
g ta
i O (2)
26
Trang 28(3)
^ S = 4SO^ + AC'^
Be y trong (3) chi c6 SO la thay doi, do do S nho
nhat khi va chi khi SO nho nhat Trong mp(0; d) co
dinh ha OH 1 d tai H
=> OH = d[0; (d)] = minSO (do (d) co dinh)
=> minS = 40H^ + AB^ xay ra khi S = H (ycbt)
Bai 45
Cho 3 diem A, B, C khong thuoc mat phang (P) Gia sd cac doan t h i n g AB va BC deu c l t
(P) Chufng minh rang doan t h i n g AC khong c l t (P)
Giai
• Do M, N, I thuoc hai mat phing phan bi$t (P) va (ABC)
nen thing hang
• NhUng M , N, I la ba diem n l m trong ba canh cua AABC
ma thing hang thi dan den di6u v6 ly
Vay doan AC khong the nao c l t mp(P) difoc (dpcm)
Trang 29a si
f A, B, C 1^ 3 diem th^ng
h^ng
Goi d la diTcrng thSn
g d
i qu
a A, B va
C Dudn
g thing nay
cung vd
i die
m D xac din
h mo
t m
at phftn
g (a) T
a c
6 : / ^r
v ^ ^
D; A
; B
; C
e (a) (1)
De y tha'y (1
) tr
ai vo
l gi
a thie
t "khon
g c
6 4 diem nao /
tron
g n diem
da ch
o cun
g phang"
/"
\
Vay khon
g th
e c
6 3 diem nao tron
g n diem
ay thin
g han
g (dpcm)
i tin
h cha
t l
a 4 diem bat ky nao tron
• K
hi n = 4 t
hi ba
i toa
n difan
g nhie
n dung
• Gia
h ma
t phlng (a) X6
t die
m
Aj (v(J
i 3 < i < n) The
o gi
a thie
t 4 diem Aj;
a A
j e (a) vd
i mo
i i = 4
; 5
; n
Nhir va
y t
at c
a n diem
ay thup
c mp(a) (dpcm)
i I;
J Ia
n lug
t l
a tru
ng die
m cu
a ha
n can
h AC M
at phln
g (IJM) ca
t can
h BD t
ai
N Chufn
g min
t die
n IMJ
N than
Tron
g m
at phin
g (IJM)
h l
y Thale
s da
o th
i AC
; BD
; IJ nam trong
=> O la trun
K trong tam giac MI
dt (MIJ) =
dt (NIJ)
Vay IJ chia thie
t die
n IMJN thanh hai pha
n die
n tic
h
bang nhau (dpcm)
D
Ti
m die
m M trong khong gian sao ch
o I = MA
^ + MB^
a tru
ng die
m cii
a AB; C
ng tuye'
n ch
o :
MA^ + MB^ = 2MI'^
AB-'
2
28
Trang 302
^ / c / - i 2 T T 2 A B ^ + C D ^ ^ A B ^ + C D ^ , , 2 L i
=> L = 4MG^ + IJ'' + > + IJ'' = hang so
2 2 Dang thufc xay ra k h i va chi k h i M = G => E = MA^ + MB^ + MC^ + M D ^ dat gia t r j nho nhat k h i va chi k h i M d G, trong tarn cua tuT dien (ycbt)
Ta CO : VQ.MNP = VAO.NP + VA.OMP + VA.OMN
Khoang each tif A den ba mat p h l n g (Oyz); (Ozx) va (Oxy) la :
OM " ON ~ OP " 3
Vay the tich tuT dien O M N P nho nhat b^ng - abc xay ra k h i mp(a) = m p ( M N P ) dugc d i n h nhu tren (ycbt)
Trang 31Chuyen de
4 :
QUAN H
E V
U6
NG G
OC
Loai
1: DUCIN
G T HA NG W ON
G G OC fdJ^T
HA
NG
Dang
1 : C
HQ NG M IN
H Ol/dN
G THAN
G V
UO NG
GOC V
dl MA
T PHAN
G
BANG
DIEU KIEN
CAN VA
dla;bcu;
a^
b =
0 =>d_L
a (dpcm)
n CA
C B AI T OA
N CO B
' A
B 1 SA
CI
(SAD)
^^AB L DA
c (SAD)
AB 1
(SAD) (dpcm)
va S
B =
De y den ha
c (ABCD)
=> S
O 1
(ABCD) (dpcm) A
\k hin
h tho
i tS
m O
=> AClBDc(SBD) (1)
AC J_ S
O c (SBD) (2)
TCr (1) v
a (2) ch
o : AC
1 (SBD
) (dpcm)
30
Trang 32B a i 53
Cho h i n h ch6p S.ABCD c6 day la h i n h cha n h a t \k SA J_ (ABCD) Goi A E , A F 1^ dudng
cao cua cac ASAB va ASAD ChOfng m i n h r ^ n g SC 1 (AEF)
G i a i
D 6 y A D ± ( S A B ) v a B C / / A D
(Sau nay ta c6 the chufng m i n h (1) bSng d i n h l y 3 dadng
vuong goc se n h a n h hdn hoac bdng t i n h chat giao tuyen
cua hai mftt p h i n g vuong goc)
Hon nOa E A 1 SB (c^ch dung) (2)
Mot cAch tuang tif S C I A F (4)
Tif (3) va (4) => SC 1 (AEF) (dpcm)
B a i 54
Cho h i n h chop S.ABCD c6 day A B C D la h i n h chuT n h a t , goi I , J la t r u n g d i e m A B , C D v^
gia sii SA = SB ChOfng m i n h rSng CD 1 (SIJ)
Cho tijf dien A B C D c6 H , K la true tarn cdc tarn gidc A B C va DBC Gia sC( r k n g H K 1
(DBC) Chufng m i n h A H , D K va BC dong quy
I i ^ I
Vfiy A H , D K v^ BC dong quy t a i I
B a i 56
Cho tiJ dien SABC c6 SA 1 (ABC) Goi H va K I a n luot l a trifc tarn ckc tarn gidc ABC v^
SBC Chufng m i n h ;
a/ A H ; SK; BC dong quy b/ SC 1 ( B H K ) c/ H K 1 (SBC)
Trang 33C = A' D
C
BC
^A A' 'B CI SA (do SA
X (A BO )
Ta
CO :
C 1 (SAA' ) =
>
BC
1 SA '
Vay
CO
the no
i : A H;
SK
va BC dong quy (dpcm)
C 1 B
K (1 )
Ma tk ha ct ac
o : \
^^
^^
^ JBHXSA (doSAKABO)
nen : BH
1 (SAC ) ^ B
H 1
SC
Tif (1 ) v
a (2 ) t
a su
y r
a : S
C ± ( BH K) (dpcm)
d
Theo cau a/ t
a c
6 : B
C ± (SAA') =
>
BC ±
HK
Theo cau b/ t
a c
6 : S
C _L
BH K) =
>
SC J_
HK
Tif (3 ) v
a (4 ) t
a su
y r
a : H
K ± (SBC) (dpcm)
Cho hinh vuong AB CD nam trong mat phAn
g (P) Qu
a A ditag nijf
c vd
i mp(MCB ) cS
t (P
)
tai R difdn
g thSn
g qu
a M vuong
goc \6i
mp(MCD) ca
t (P ) ta
i S
1/ Chufn
g min
h : A; B
; R thang hang
2/ Ti
n R
S kh
i M lifu don
g tre
n nijf
a dudn
g t hi ng
R 1 (MBC ) MR
1
BC
Ma d
a CO : A
D 1 AM ^ AD
1 (MAR ) =
a AR
va
AB
cung vuong go
TiJong ti
f tre
n
= > A , D , S thang hang
2/ D
o M
R ± (MBC) ^
d M c6 difcrn
// BC
)
MA ' = A B.A
R
Tifcrng tif : M A' = A D.A
S
AB A
R = A D.A
S
^ AR = A
S
=j> I thuoc difdn
g t hi ng A
C
Do R chay tren tia A
a S chay tren tia A
v (ti
a do
i ti
a AD ) ne
Vay, I chay tren tia do
Vay sau khi la
32
Trang 34Dang 2 : C H J N G M I N H Dl/dNG T H A N G V U O N G G O C Vdl M A T P H A N G
B A N G T R U C Dl/CiNG T R O N
L PHirONG P H A P
Ca stf ciia phi/ang phap chiirng m i n h difdng t h i n g d vuong
goc v6i mat phang a bftng van dung d i n h nghia t r u e dxidng
tron: l a dxtiing t h S n g v u o n g g o c vdri m a t p h a n g chii'a
dUdng t r o n t a i t a m c u a n o bang h a i btfdp ca ban nhU sau :
n B i : T i m mot diem S a d i n h each deu cac d i n h da giac
day ABC n h a sau : SA = SB = SC =
T i m diem O d day each deu cac d i n h da giac day ABC
OA = OB = OC =
• Ba : No'i h a i d i e m S, O do t h a n h true d cua di/crng t r 6 n
No la dudng thftng vuong goc v d i moi mat phang ehiJa
duac di/cfng t r o n (ABC)
n C A C B A I T O A N C O B A N
B a i 58
Cho h i n h vuong A B C D canh a Ve cung ve mot phia (ABCD); cac doan AA'' C C vuong goc
(ABCD) sao cho AA' = C C = a Chufng m i n h : A'C 1 ( B C D )
a/ Dat : SA = SB = SC = a > 0 (cho san)
BC = 2 C I = 2 ^ = a V s (ASIC 1^ niJra A deu)
Ta CO : •iCA = a (.\ASC deu)
A B = a>/2 (AASB v u o n g c a n t a i S)
< <^ B C ' = CA^ + A B 2
[CA^ - AB^ = a^ - 2a^ - Sa^
Theo d i n h l y Pythagore dao => ACAB vuong t a i A (dpcm)
Trang 35T he
o ti nh c ha
t dUcfn
g
t ru ng t uy en
Cifng
v
di ca nh h uy en cua t am
g'lAc A
BC v uo ng
B = S
I la
true ducrng tr on
n go
ai ti ep zVABC =>
SI 1 ( AB C) (d
pc
m)
Ba i6
0
Ch
o hi nh c ho
p S.
AB CD d ay A BC
D la h in
h th
oi c
6 IJ AC = 60
" v
a SA = SB = SC
g SG
x (A BC D) Vd
i G l
a t ro ng t am t am g ia
c AB
C
Gi
ai
De y A AB
h thoi ) AA BC d eu
=> G l
a ta
m d ud ng t ro
n AB
C ng oa
i ti ep t am g ia
c de
u AB
C
Do
do ; G
A = G
B = G
C
^ G
6
(d ) tr ue eiia d ud ng t ro
n (A BC )
Gia t hi
et c
6 : S
A = S
B = SC
S e (d )
To
m la
i S
G c (d ) ha
y SG
1 (A BC ) ha
y SG
1 (A BC D) (d pc m)
p S.
AB CD c6 SA = SC = SD v
a AD
t = 9 0"
Go
i I l
a tr un
g di em
A
C ChuTn
g
mi nh r kn
g
SI
-L ( AB CD )
Gi
ai
De
y ti
f t am g ia
c AD
C (6 = 9 0°
)
=> lA = IC =
ID
Kc
t hcr
p g ia t hi
et SA = SC = SD
=i>
SI la t ru
e du dn
g tr on ( AC D) ng oa
i ti ep \
AC
D
=^
SI 1 ( AC D) ^ ( AB CD )
« SI
l (A BC D) (d pc m)
p S.
AB CD c6 AB CD l
a nijf
a lu
c gia
c de
u c
6 SB t) - SCT) = 9 0"
m AD v
a SD Ch ijf ng m in
h rft ng
0 1
1 (B CD ) va S
A 1 ( AB CD )
Gi
ai
De y d en t in
h ch
at cii
a du dn
g tr un
g tu ye
n ufn
g \'6i
c an
h
hu ye
n cu
a ta
m gia
c vu on
g, ta
eo :
AS BD (fi = 9 0"
) :>
I
B = I
D
AS CD (C 9 0°
) :r
>
C = I
c de
u AB CD ( la
m cii
a lu
c gia
c de
u la O )
=>
OB = OC = OD
ue di /d ng t ro
n (B CD ) ng oa
i ti ep t am g ia
c BC
D
=>
IO
1 (B CD ) (d pc m)
IB = IC =
ID
(1)
Ma S
A / / - O
I 2 SA
1 (A BC D) = ( BC D) (d pc m)
34
Trang 36tool I: DUdNG T H A N G W O N G G ^ C DUdJNG T H A N G
OUdNG THANG VUONG GOC Vdl MAT PHANG
L P B U O N G P H A P
Co sd cua phiTOng phap chOfng m i n h dudng t h i n g d vuong goc vdfi diTcfng
thSng a k h i ta sit dung d i n h nghia : d 1 a => d 1 a (tuy y trong a),
qua 2 bade ca ban :
• B i : Quan sat va quan l y gia thiet t i m mp(a) chijfa dudng thdng
a can chufng m i n h no vuong g6c vdi d
Goi I la trung diem canh C D va de y h a i trung tuyen cung la
dudng cao trong h a i tarn giac can cung ddy CD la : AADC va ABCD
Cho h i n h chop S.ABCD c6 A B C D la niJfa h i n h luc giac deu va SA 1 (ABCD) M o t m a t
phang qua A vuong goc vdi SD t a i D ' cat SB; SC t a i B', C ChuTng m i n h t i l giac AB'C'D' noi tiep difoc
Trang 37Theo each difng (a) ^ (AB'C'D') =
> AB' 1 SD (5)
Tif (4) v
a (5) =
>
AB' 1 (SBD); m
a (SBD) 3 B'D'
=>
AB ' ± B'D' « A BT
T = 9 0"
(6 )
Cung tif (5) v
a (6) =
> Tu
T gia
c AB'C'D' no
i tie
p dua
c (dpcm)
g minh
D IE
U KI EN D AI
h die
u kie
n
(=>) : Gia sij
f A
B 1 CD CD ± (ABH)
D ± A
H
Ap dung
he thiJ
c luan
g trong ta
m gia
c vdr
i M
la trun
g die
m CD
f
AC'
- AD
' -_
2 CD
.M
H
=> <i
iB C' -B D^
-
2C D
.M
H
=> AC' - AD' = BC' - BD' (dpcm)
• Di
^u k i$
n
(<=) : Gia AC' - AD' = BC' - BD' (1)
Gpi M
la trun
g die
m CD, AH
j,
BH 2
2Ci5.MH
7 (2
)
tuong tfng, t
a C
O : \
;B C' -
B D' = 2CD.MH2
(3)
Sijf dun
g (1) ch
o (2) v
a (3) :
2C D
.MH, =
2CD.MH2
=>
MH, =
la \.\S
(4) t
a c
6 CD
1 (ABHi) ^
( AB H2 ),
ca ha
i ma
t phSn
g (ABHi)
o d
o C
D 1 A
B (dpcm)
O Ke
t lugi n
: Die
u kie
e ha
i can
h do
i AB
Ba
i 6
7
Chiifng min
h rkn
Gi
ai
Goi E
la trun
g die
m can
h AB The
o tin
h cha
t cu
a ta
'A
B ^ C E
c
( CD E)
|A B
1
D E
C
( CD E)
=> AB
1 (CDE)
; m
a CD
c (CDE)
AB
1 C
D (dpcm)
Tuang tir t
a chiifn
g min
h difa
c B
C 1 A
D v
a A
C L
BD (dpcm)
O Gh
i ch
u :
Boc gid xem each
chiing minh khdc a
phdn goc cua hai
diictng thang trong
khong gian.
Viec nha tinh chat
nay, chung toi xin
nhdc : rdt ti^n ich trong
qua trinh
tinh
todn tren cdc til
dien dSu
Doc gid cUng c6
the dung diSu kien
dai so cila Bai
66
36
Trang 38Chufng m i n h rSng : Trong mot t i l di$n neu c6 2 cSp canh doi vuong goc nhau t h i c&p canh
doi thuT ba cung vuong goc nhau
• Ghi chii : Co thi chvCng minh bdi todn bdng phuang phdp vecta
Dang 2 : CHUfNG MINH HAI OUCiNG THANG VUONG GOC NHAU
L P H O D N G P H A P
Ca sd cua phuang phap can van dung d i n h ly ba dudng vuong goc n h u sau :
Gia stf A H 1 (a) => < ,
;HM la hinh chieu (ciia AM xuong (a))
t h i difcrng (d) n'km trong (a) thoa :
(d) 1 A M (ducrng xien) c* (d) J H M (hinh chieu)
Do do philcfng phdp gom 2 budc thuc hanh :
do t i m ra dudng xien ® va h i n h chieu ®
n B2 : Dirdng t h i n g thut @ la (d) nam trong mat p h l n g (c
• Neu : (D 1 ® (D J_ ® => (ycbt)
• Neu : (D ± ® (D 1 ® => (ycbt)
Trang 39n cA c B
AI TO AN C OB
De y thay : S
A 1 (ABCD)
Ma B
C 1 A
B
Cho hin
a ABC
D l
a hin
h ch
a nhat Chuto
, (SCD), (SAD) de
u Ik
nhflng tarn giac vuong
=> B
C 1 SB (din
=> ASB
C vuon
g a
B (ycbt)
Tirang ti
i D
C 1 SD (din
h l
y 3 dudng vuon
g goc) =
> ASD
C vuon
g d
D (ycbt)
Tom la
i hin
a nhifn
g tam giac vuon
g (dpcm)
D c
6 AB _L CD
vk
AC
1 BD Go
i H
la hin
h chie
u cu
a A xuong (BCD)
o B
H r>
CD = B,
CH saochoCHnBD
= C
i
DH sao ch
o D
H n BC = D
j Ta
CO :
CD ± A
B (gi
a thiet)
AB
H) 3B
Ti/ong
ta BD ± (ACH) z C
H BD ± C
H t
ai Cj
=> CH
la dudn
g ca
o ABC
D (2)
Tii
(1) v
a (2) ch
Di (v
i H
la trif
c tam ABCD) =
> B
C J_ A
Dj
=> B
C 1 (AHDi) ^ (ADD
i) 3
A
D B
C ± A
D (dpcm)
Ba
i 7
2
Cho Cx, D
h chC
? nha
t ABCD MQ
t mp(P
) qu
a
AB cat Cx, D
y t
ai E
va F Chufn
g min
h ran
g ABE
F l
a hin
h ch
Q nh^t
Ma AB
Theo din
h ly giao tuye
n son
g son
g th
i ABE
F l
a hin
h bin
n l
a hin
h chi
f nha
t (dpcm)
O Ca ch k ha
c : D
l y thay DC
1 (EBC) m
a AB//
CD
=> AB
X (CDE) r EB
=>
AB
1 E
B (1 ) => (dpcm)
Trang 40Bai 73
Trong hinh chop S.ABCD day la h i n h chC nhat ABCD Goi S H la diTcfng cao h i n h chop va
SK; SL thijf t u la dirdng cao cac t a m giac SAB va SCD Chijfng m i n h rSng H , K , L thSng hang
D e y v d i S H I (ABCD)
G i a i
fSH : la dudng xien
^HK : ]k hinh chieu
MaAB 1 SK (each difng) A B i H K (dinh ly ba dif&ng vuong goc)
TucJng t u CD ± H L (dinh l y ba di/cing vuong goc)
' A B x HK
Tom t a i : <CD ± H L => H , K, L thftng hang (dpcm)
B HK// H L
Bai 74
Cho tiJ dien SABC c6 A B C la t a m giac deu canh a, cac mftt (SAB); (SBC) va (SCA) hap vdi
(ABC) cac goc bftng nhau va bftng a
1/ Chiitng m i n h rftng : h i n h chieu H cua S len (ABC) la t a m du&ng tron noi tiep AABC
2/ Tinh tong dien tich 4 mftt cua tuT dien S.ABC
: 1
G i a i S
1/ Goi 1, J, K Ian lifot la hinh chieu ciia H len BC; CA; A B
Do dinh l y ba dUcfng thftng vuong goc
BC 1 SI; CA 1 SJ; A B 1 SK
Do d6 goc p h i n g cua cac mftt ben (SBC); (SAC) v ^ (SAB)
tao vdi (ABC) Ian lugt la S ^ , SJi?, gS^
g l i l =S3tl - SKfi = a
De y thay t a m giac vuong SHI, S H J , S H K bftng nhau nen :
H I = H J = H K
Vay, H la t a m dUdng tron HQI tiep AABC ( H cung la trong t a m , true t a m , t a m difdng tr6n
ngoai tiep cua AABC) (dpcm)
[SHAB = SsAB COS a I
2/ Theo dinh l y dien tich va h i n h chieu ta c6 : •JSHBC = ^sac cos a <=> -ISSBC