Nham muc dich giup cac ban hoc sinh Idp 10, Idp 1 1 , Idp 12 nam vOng kien thifc can ban ve mon Toan ngay tCr luc vao T H P T cho den khi chuan bi thi Tot nghiep, tuyen sinh Cao dang, Da
Trang 2NGIfT.ThS LE HOANH PHO
Trang 316 Han
g Chuo
i Hai B
-a Tr-an
g Ha Npi
-Dien thoai : Bie
n tap-Ch
e ban : (04 ) 39714896 :
Hanh chinh : (04
) 39714899 : Ton
q bie
n tap : (04 ) 3971501
ban:
Gidm doc
- Tong bien tap:
T S.
HA
M TH
I TR
AM
Bien tap:
L AN H UO
NG
Saa bdi:
N HA S AC
H HO NG A
N
Che ban:
N GU YE
N KHCJ
l MI
NH
Trinh bay bia:
VO T HI T HI
TA
Doi tdc lien ket
xuat ban:
Nh
a sac
h H ON
G
AN
SA CH
- 154DH201
4
In 2.00
0 cuon , kh
d 1
7 x
24cm tai Con
Giay phe
p xua
t ba
n so : 463-2014/CXB/10-9
9 OHQGHN , nga
B OHQGHN , v
Trang 4Nham muc dich giup cac ban hoc sinh Idp 10, Idp 1 1 , Idp 12 nam vOng kien thifc can ban ve mon Toan ngay tCr luc vao T H P T cho den khi chuan bi thi Tot nghiep, tuyen sinh Cao dang, Dai hoc, tac gia da
npi dung la phan dang Toan, tom tat kien thac va phUdng phap giai, cac chu y; phan tiep theo la cac bai toan chpn Ipc can ban minh hpa vdi nhieu dang loai va mac dp; phan cuoi la 8 bai tap c6 hadng dan hay dap so
DO da CO gang kiem tra trong qua trlnh bien soan song khong tranh khoi nhQng sai sot ma tac gia chaa thay het, mong don nhan cac gop y cua quy ban dpc, hpc sinh de Ian in sau hoan thien hdn
Tac gia
L E H O A N H P H O
Trang 5TiNH t>ON t>IEU TiM KHOANG DONG BIEN VA NGHjCH BIEN
Dinh nghia: Hdm so f xdc dinh tren K Id mot khodng, doan hodc nica khodng
- f dong hien tren K neu vai moi xi, X2 e K: x/ < X2 =^f(x\) < f(x2)
-f nghich hien tren K neu vai moi x/, X2 e K: xi < X2 =>f(xi) > f(x2)
Gid su hdm so c6 dao hdm tren khodng (a; b) khi do:
- Neu hdm so f dong bien tren (a: b) thif '(x) > 0 vai moi x e (a; b)
- Neu hdm so f nghich bien tren (a; b) thif'(x) ^0 vai moi x e (a; b)
Gid su hdm so f c6 dqo hdm tren khodng (a; b) khi do:
Neuf'(x) > 0 vai moi x e (a; b) thi hdm so f dong bien tren (a; b)
Neu f'(x) < 0 vai moi x e (a; b) thi hdm so f nghich bien tren (a; b)
Khi f '(x) = 0 chi tgi mot so hiru hgn diem cua (a; b) thi ket qud tren vdn dung Neu hdm so f dong bien tren (a; b) vd lien tuc tren nita khodng [a;b); (a;bj; doan [a:b] thi dong bien tren nica khodng [a;b); (a;bj; doan [a;b] tuang icng Tuang tu cho nghich bien
Phumtg phdp xet tinh dffn dieu:
- Tim tap xdc dinh
- Tinh dao hdm, xet ddu dqo hdm, lap bang bien thien
- Ket ludn
Chiiy:
1) Cong thirc vd quy tdc dao hdm
y^C =>y' ^0:y=x ^y' = l;y = x" =^y' = nx"-';
Trang 6(u v)' = u'.v + u.v';
2) Phuang trlnh luang
gidc ca
cosx = cos a <=>
X = 7
1 - a + k27
X = -a +
Z)
(keZ) (keZ)
Bai toa
n 1 : Ti
m khoan
g don
g bien , nghic
x - 8 = 0 <=
^ - 4
x + 1 = 0 o
x = hoac x
va (1
; +co) , nghic
+ 9x
^ - 3
y' = 4x^ - 4x = 4x(x^ -
1), y ' = 0 <=> x = 0 hoa
c x = ±1
6
Trang 8BBT:
X -00
-4
2
+00
y' -
0
4
0 -
y
Vay ham so dong bien tren khoang
( -4
; 2) v
(-;
-4), (2
;
+ 00 )
b)
D =
R
\6 y' = ~^^^
< 0 , Vx
^±
3
(x '- 9) '
Do do y' <
g do
Bai toa
n 5 : Xe
a khoang:
a) y
= ^|9-x^
b)y=
Vx' -2x + 7
D [-3; 3]
-
-, y' = 0
(-3; 0) v
b) V
i A' =
-x =
> D
= R
„ ,
2x-2 x
-1
Fa
CO
y = —, = ,
2Vx'-2
x +
7 Vx 2x + 7
<Oc>
bien tren nura khoang
[1
; +oo)
a)y Vl6^
6 x^ >
0 «
X '
; 4)
8
Trang 9Vay ham so dong bien tren (0; 2) va nghich bien tren (2; +oo)
Bai toan 7: Tim Ichoang don dieu cua ham so
Trang 10t y ' >
0 « 4cosx
>
0<
- +k 2;
n ha
m s
dong bien tren cac khoang
(- ^ + k
Xe
t y '
<0 <=
ham
nghich bien tren cac khoang
( — + k2
;T
; —
+ k 2;
r) , k
= 1
o x — +
kn; —
+ (
k +
l )7rj
+ kn;
— +
(
k + l
k+
l)7i],k
e
Va
y ha
m s
o d on
y a , b bat ky
thuoc R
v
a a < b
Tr en k ho an
g (a;b ) t
hi y ' >
0 v
a y ' =
0 ta
i h iju han d ie
m ne
n h am
f (b )
Va
y the
o d in
h nghi
a t
hi ha
m s
o f dong bien tren
im khoang
dong bien, ng hic
h bie
n cu
a h am so:
a) y =
X
sinx tren [
0; 2n]
b) y = x + 2cos
1 cosx
-Ta c6
x [ 0; 27t ] =:
> y ' >
0 v
a y ' =
0 <
= > x = 0 hoac x
= 2n
Vi ha
m s
o l ie
n tu
c tre
n doa
n [0
; 2n]
nen h am so dong bien tren doan [
0; 2::]
b) y'
= == 1
- 2 sinx
Tr en khoang
m s
o d on
g bie
Trang 11DANG TOAiy
Neu f'(x) > 0 v&i moi x e (a; h) thi ham s6fdong hien tren (a; h)
Neu f '(x) > 0 vai moi x e (a; b) vd f '(x) = 0 chi tai mot so hitu hgn diem cua (a; h) thi hdm so dong bien tren khodng (a; b)
Neuf'fx) < 0 vai moix e (a: H) thi hdm so nghich bien tren (a; b)
Neu f'(x) < 0 vai moi x e (a; b) vd f'(x) ^ 0 chi tai mot so hihi hgn diem cua (a; b) thi hdm so nghich bien tren khodng (a: b)
Neu hidm sof dong bien tren (a; b) vd lien tuc tren nua khodng [a;b); (a;bj; doqn [a;bj thi dong bien tren mm khodng [a;b); (a;b]; dogn [a;b] tuang icng
Neu hdm so f nghich bien tren (a; b) vd lien tuc tren nua khodng [a;b); (a;bj; dogn [a;b] thi nghich bien tren nua khodng [a;b); (a:hj: dogn [a;b] tuang ung
Chiiy:
I) Ddu nhi thuc bgc nhdt: f(x) = ax -i- b, a ^0
2) Ddu tam thuc bgc hai: f(x) ax^ ^ bx + c, a ^0
Neu A< 0 thif(x) luon cung ddu vai a
Neu A 0 thif(x) luon cung ddu vai a, trie nghiem kep
Neu A> 0 thi ddu "trong trdi - ngodi cung "
f(x) cung ddu a 0 trdi ddu a 0 ciing ddu a
3) Gid su hdm so f xdc dinh tren khodng (a; h) vd Xo e (a; b) Hdm so f duac
Hdm so f lien tuc tren mot khodng (a:b) neu no lien tuc tgi moi diem thuoc khodng do
Hdm so flien tuc tren nua khodng (a; bj neu no lien tuc tren khodng (a; b)
Hdm sof lien tuc tren nua khodng fa; b) neu no lien tuc tren khodng (a; b)
vd lim f(x) =f(a)
Trang 12Ham so flien tuc
tren dogn [a; b]
neu no lien tuc
tren khodng (a; b)
vd
\\mf(x) =f(a), \xmf(x) =f(b) x->a X—>
b
Bai toa
n 1 : Chun
a) f(x) =
- 6x
^ + 20x
- 1
3 b) f(x) =
2x
- cos
x + Vs sinx
Gidi
a) f'(x) = 3x^-12X
+ 20
Vi A' = 36
- 2
0 <
0 ne
n f (x) >
0 vo
i moi
2 + sinx
-
\ cos
x = 2(1 + ^ sinx
- ^ cosx)
= 2[
1 + sin(x
- y)]
^ 0 vo
i mo
i x
Vay ham so dong bien tren
a) f(x) =
V x'+
l -
X
b) f(x) = cos2x
,—
^ >
Vx^ = IX
I ^
X, V
x nen
+ 1) <
0 vo
i mo
i x
r(x) =
«sin2x l«
2x = -
- +2kK
«x = -
- +k7i,k
€Z
2 4
Ham f(x) lie
— + (k + 1)TC] v
a f (X) <
],ke
Vay ham so nghich
bien tren
R
Cach khac: T
bien tren
R:
Vx i,
X2
e R , X
y ha
i s
o a, b sao cho
+ 1) <
Vi f '(x) =
f nghic
h
bien tren khoang
(a; b) =^
dpcm
12
Trang 13Ba ai toan 3: Chung m i n h cac ham so sau don dieu tren R:
Vay ham so nghjch bien tren R
Bai toan 4: Chung minh ham so"
1)-Vay ham so nghich bien tren moi khoang (-oo; -1) va (-1; +oo)
Bai toan 5: Chung minh ham so: y = f(x) = ^ x^ + 2x^ + 3x - 1
a) nghich bien tren doan [ - 3 ; - ! ]
b) dong bien tren cac nira khoang ( - x ; -3] va [-1; +oo)
Trang 14(-3
l) ne
;-n f nghich
bien tren khoang
l] ne
;-n f nghich
bien tren doan [-3
l]
(-co;
-3) v
a (-1
; +00) ne
n f dong bien
tren
khoang (-00;
-3) v
a (-1
; +00) v
a f lien tuc tren cac nir
(-00; -3] v
a [-1
; +co)
Bai toa
n 6 : Chun
g min
h ha
m so: y =
1
+ x
^
nghich bien trong cac khoan
g QO; -1) v
(-a (1;
+00)
Giai
Tap xac dinh
D =
R
l(
l + x')-2x
x _ 1-x'
dong bien trong khoang
1 hoa
c X > 1
1 u do suy ra dpcm
Bai toa
n 7 : Chun
g min
h ha
m so: y
= (a ^ h
+ kn
; k
e Z ) do
n die
u
trong moi khoan
g xa
c dinh sin(x
+ b)
b +
k7i (
k 6 Z)
, _ sin(x + b)cos(
x + a) -sin(
x + a)cos(x
+ b)
sin(b
- a)
sin"(x + b)
sin"(x + b)
?t 0
(do
a b
?t
kji)
Vi y ^ 0
+ kTi , ne
n y' gii
g xa
c djnh, d
SO
Gia sif ham so
cd duo ham tren
khoang (a;
b):
Dung dieu kien can
- Neu ham so
f dong bien tren
(a: b) thif'(x) ^0
vai moi
x e (a; b)
- Neu ham so
f nghich bien tren
(a; b) thi f'(x) <0 vai
moi x
e (a;
b)
14
Trang 15Dung dieu kien dii
Neuf'(x) > 0 vai moi x e (a; b) thi ham so f dong hien tren (a; b)
Neuf '(x) > 0 vai moi x e (a; h) va f '(x) = 0 chi tgi mot sii huu hctn diem cua (a: h) thi ham so dong bien tren khodng (a; b)
Neuf'fx) < 0 vai moi x e (a; h) thi ham so nghich biin tren (a; b)
Neuf '(x) <0 vai moi x e (a: b) va f '(x) = 0 chi tgi mot s6 him han diem cua (a; b) thi ham so nghich bien tren khodng (a; b)
Bai toan 1: Tim cac gia tri cua thiam so a de ham so f(x) + 4x + 3
dong bien tren R
- Neu a = 2 thi f '(x) = (x + 2)^ > 0 vai moi x -2 nen ham so dong bien tren R
- Neu a = -2 thi ham so f '(x) = (x - 2)^ > 0 vai moi x 2 nen ham so dong bien
tren R
- Neu a < -2 hoac a > 2 thi f'(x) = 0 c6 hai nghiem phan biet nen f' c6 doi dau: loai
Vay ham so dong bien tren R khi va chi khi -2 < a < 2
Bai toan 2: Tim cac gia tri cua tham so a de ham so f(x) = ax^ - 3x^ + 3x + 2 dong bien tren R
Gidi
Tap xac dinh D = R Ta c6 f '(x) = 3ax^ - 6x + 3
Xet a = 0 thi f (x) = -6x + 3 c6 d6i dSu: loai
so dong bien tren R la f '(x) > 0, Vx
- Neu m < 0 thi y' < 0 vai moi x G R nen f nghich bien tren R
- Neu m = 0 thi y' = -3x^ < 0 vai moi x e R, dang thuc chi xay ra vai x = 0, nen ham so nghich bien tren R
Trang 16- Ne
u m > 0 thi y' = 0
« X =
(xi,
X2): loa
i
Vay ham so nghjch
bien tren
Bai toa
n 4 : Ti
- m + 4 nghich
bien
tren
R
< => f'(x) = cosx
- m < 0, V
m m
de ha
m s
o y = x + 2 + don
- NcL
i m
< 0 thi y ' >
0 va
i mo i
x
^\
Do do ham so dong bien tren m6i khoang
(-00; 1) v
a (1
; +oc)
x" 2x + l
(x-1)^
y' = 0
«>
x^
-2x+l-m = 0
<=>x = l
+00
y' + 0
0 +
y
Ham so nghich
bien tren moi khoan
g (
1 v
-m ; 1) v
a (1
; 1 + v
m ): loai
Vay ham so dong bien tren moi khoan
m a
de ha
m so: f(x) =
x ax" +
16
Trang 17Ham so nghich bien tren khoang ( 1 ; 2) k h i va chi
khi y' < 0 voi moi x e ( 1 ; 2)
Bai toan 7: T i m m de ham so y = + 3x^ + mx + m chi nghich biSn tren mot
Gidi:
D = R, y' = 3x^ + 6x + m A' = 9 - 3m
Xet A' < 0 thi y' > 0, V x : Ham luon d6ng bien (loai)
Theo de bai: X2 - xi = 3 » (x2 - x i ) ' = 9 <=> x^ + x^ -2X|X2 = 9
<=> (X2 + xi)^ - 4xiX2 = 9 <=> 4 - ^ m = 9<=> m = - ~ (thoa)
Bai toan 8: Tuy theo tham so m , xet sir bien thien cua ham so:
Va nghich bien tren moi khoang (-oo; 2m - V4m' - 9 ) , (2m + V4m" - 9 ; +oo)
Bai toan 9: Xet sir bien thien cua ham so: y = ^ ^ ^ " ^ theo tham so m
x - 1
Gidi
D = R \
Trang 18„ , ,
-2-n
- N6
u m = -
2 th
i y = 2, V
x 7t 1 la ham so khong doi
- Ne
u m > -
2 th
i y' <
0, V
x 9^1 nen ham so nghich
bien tren moi khoan
g
o)
2 th
i y' >
Nku ham
sSf dan
dieu tren
K va c6 M, N
thuoc K thi phuang trinh
f(M)=f(N) <^
M=N
Neu ham
so f dong bien tren
K va
cd M,
N thuoc
K thi bat phuang
trinh
f(M) >f(N) ^ M>N
Neu ham
so f nghich bien tren
K va
cd M,
N thuoc
K thi bat phuang trinh
f(M)>f(N) o M<N
C/iiiy:
1) Ta
CO the xet f(x)
la ham
so ve trdi, neu
can thi bien doi,
chon xet ham thuan
lai, dat anphu,
Tinh dgo ham roixet
tinh dan dieu
Neu ham
so f dan dieu tren K
thi phmmg trinh f(x)
thi x = a
la nghiem duy nhdt
ciia phuang trinh f(x)=0
2) Neu
f CO dgo ham cap
2 khong doi ddu
thif '
la ham dan dieu
nen phuang
trinh f '(x) = 0
cd toi
da 1 nghiem do
do phuang trinh f(x)
va f(b)
=0
vai a ^ b thi phuang trinh f(x)=0
3 <
t <
2
Xet ham
s6
f(t) =
V
3 + 1
- V 2
-1,
-3 < t <
18
Trang 19Bai toan 2: Giai pliuang trinh ^j2x^ + 3x^ +6x + \6 = 2V3 + V 4 - x
ma f(l)=2 V3 , do do phuong trinh tra thanh f(x) == f(l) x=l
Vay phuong trinh c6 nghiem day nhdt x = l
Bai toan 3: Giai phuong trinh Vx - V l - x = 5 - 4x
Giai
D i k kien: x ^ 0 PT 4x + V x - V T ^ = 5
2V^ 3^(1-x)^
Ma f '(x) > 0, Vx > 0 va f(x) lien tuc tren [0; +00)
Nen ham so f(x) dong bifin tren nua khoang [0; +00)
Khi X = 1 ^ f ( l ) = 5 nen X = 1 la nghiem PT
K h i x > 1 ^ f ( x ) > f ( l ) = 5:loai
Khi 0 < X < 1 ^ f(x) < f ( l ) = 5: loai Vay nghiem la x = 1
Bai toan 4: Giai phuong trinh: 3x" -18x + 24 = —^- ^—
Trang 20Bai toa
n 5 : Gia
i bk
phuong trinh: 4 | 2
x
1 | (x^
- x + 1) >
- 6x
^ + 15x
(x -
= R
Ta
CO
f '(t) = 3t^ +
2 >
0 ne
n f ddng biSn tren
T nghie
m dung
Xet X
- 2
> 0 thi 2
> X
- 2
<:i
> X > -
1: Dun
g
Vay tap nghiem
+ 6 + 3V
x +
13 <
20
Xet f(x) l
a ha
m s
o v
e trai, x ^ -1
Ta c6: f (x) =
1
+ •
1
> 0 nen
f(3) «
x <
3
Vay tap nghiem
l + y-) +
'(
l + x') = 4V^
Bai toa
n 7 : Gia
i h
e phuan
g trinh: <
x"yvl + y
"-"v
l + x^
=x
^y-x
Gidi
Dieu kien: x
y >
0
Phuang trinh thu hai cu
l
+ x' <
0
va
1
^|l + y^ <
0
nen suy ra
y >
0.
Do do
x >
0
Phuang trinh tuang
duang:
—^il +
-^=
y
yJl + y^
Xac6
f' (t )=
1
- /
Vl
+ t
^ <
0, vaimoi
t e (0; +oo )
Vi
+ t'
Suy
ra ha
m f nghich
bien tren
(0; +oo)
Phuang trinh f( —) = f(y) — = y
<»
xy = 1
X
X
20
Trang 21Thay vao phuong trinh thu nhat ciia he, ta c6:
Bai toan 8: Giai he phuong trinh
Ket hop dieu kien, ta c6 nghiem x = y = 1
V x ^ - ^ = 8 - x ' ( x - i r = y
Gidi
Dieu kien x > 1, y ^ 0
V 7 ^ - ( x - l ) ' + x ' - 8 = 0 (1)
y = ( x - l ) ^ (2) Xet ham s6 f(t) = V t ^ - (t - 1)^ + t^ - 8, voi t ^ 1
He phuong trinh tuong duong vdi:
2^/^^ 2 V t ^
f(t) dong bien tren (1; +GC)
Phuong trinh (1) c6 dang f(x) = f(2) nen (1) <=> x = 2, thay vao (2) ta dugc y = 1
Vay nghiem cua phuong trinh la (x; y) = (2; 1)
2 2
He da cho thanh
x' - 3x' - 9x + 22 = / + 3y- - 9y ix-^y-+{y + ^f=l
Trang 22v =
1
v = -
l
w =
0
Vay he da cho c6 nghiem
i h
e ba
t phuan
g trinh:
x' -3x'+
9x + - >0
Gidi
Tac6(l)<
=>
x 12
x + 35<
t f(x) - x^ - 3x^ + 9x + ^, D =
R
f (x) = 3x^
g biln: x > 5 =^
f(x) >
286/3
Do do f(x) >
0, Vx
G (5
; 7) '
Vay tap nghiem
ciia he bat phuan
g trin
h l
a S =(5; 7)
O S
O N
G HI
E M PH
K thi phuang trinh
f(x)
= 0
cd toi
da 1 nghiem
Neu f CO
dgo ham cap 2
khong doi ddu thif
' la ham dan
dieu nen phuang trinh
f '(x)
^~ 0
CO toi
da I nghiem do
do phuang
trinh f(x)
= 0 c6 toi
da 2 nghiem
Tit BBT cho ta
cdc gid tri ciia
y, neu
y nhdn gid tri
tie dm sang duang
hay
nguac lai tren mot
mien thi
y 0 c6 dimg
I nghiem tren mien
do
Bai toa
n 1 : Chun
- 8 = 0 c6 mot nghie
- 8 la ham so lien tuc va c6 dao ham tren
R
Vi f(0) = -8 < 0, f(l) = 10 > 0 nen ton tai mo
t s6
Xo
e (0
; 1) sa
o cho
trinh f(x) =
0 c
6 nghiem
Mat khac, t
a c
6 y' = IS
Bai toa
n 2 : Chun
-
x *"
+ 3x
^ 3x^ +
1 D =
R
Xet x > 1 thi f(x) = x''(x' ~ 1) + 3x^(x^
- 1) +
+ (
1 x^"
> 0: v
6 nghie
m
2x3
22
Trang 23Xet X < 0 thi: f'(x) = 13x'^ - 6x^ + 12x^ - 6x
= 13x'^ - 6x(x - 1)^ > 0 nen f ddng bien Bang bien thien:
y
- 0 0
Nen f(x) = 0 CO nghiem duy nhat x < 0
Vay phuong trinh da cho c6 nghiem duy nhat
Bai toan 3: Chung minh rSng phuong trinh 2x^ Vx - 2 = 11 c6 mot nghiem duy nhat
Do do ham so dong bien tren nua khoang [2; +oo)
Ham s6 lien tuc tren doan [2; 3], f(2) = 0, f(3) = 18 V i 0 < 11 < 18 nen theo dinh l i ve gia tri trung gian cua ham so lien tuc, ton tai so thuc c e (2; 3) sao cho f(c) = 11 tuc c la mot nghiem cua phuong trinh f
Vi ham s6 d6ng bidn tren [2; +co) nen c la nghiem duy nhat cua phucmg trinh
Bai toan 4: Tim so nghiem cua phuong trinh x^ - 3x^ - 9x - 4 = 0
Dura vao BBT thi phuong trinh y = 0 c6 diing 3 nghiem
Bai toan 5: Chung minh he x~ + ~ 1 CO dung 3 nghiem phan biet
_y- + x ' = 1
Gidi
Trir 2 phuong trinh ve theo ve va thay the ta dugc:
Trang 24(l -x)-y'(
l -y) = 0
=>
(l -y
^)(l -x)-(l -x
^)(l -y) =
0
=^ (
1 x)(
l y)[l +
y + y^
y)(y-x)(
l-l+
x + y) =
0
Xet X =
1 th
i h
e c
6 nghiem
(1; 0)
Xet y =
Xetx
^- y thi -
h
y^ = 1
+ X^
1 =
0
Dat f( x) =
X
- +
X
^- 1,D =
R T
a c6f(
l) -1
^0
f(x) = 3x^
+ 2x, f'(x) =0
«
x = -
| hoa
c X =
0-
0 +
y -23/27
+00
-00-^
Do do f(x) =
0 C O
+ X
+ y = 0 =^
= 1 o x^ + x^ + 2x = 0
phan biet
Ba
i toa
n 6 :
phan biet:
Vx^
+m
x +
2 = 2x +
1
Giai
PT<=> 2x + l
>0 ,
x
1 = mx,
X
>
-x'+m
x +
2 = (2x + l)' 2
3x"
+4x
m, x ^ - —
^ —
, X
7t
0 th
i f (x) =
= 2V
1-X'
+ V
l + x- - V l- x'
Giai
DiSu kien -1 <
x <
1 Da
t x = Vl + x"
- Vl-x' th
i t ^ 0
24
Trang 25Dieu kien c6 nghiem:
DANG TOAN
bat dang thicc:
x>a =>f(x) >f(a); x<h =^f(x) <f(b)
Neuy f(x) xdc dinh tren K cdy'< 0, Vx e K thi f(x) nghich hien tren K nen
cd hat dang thitc:
x>a ^f(x) <f(a): x<h =^f(x) >f(h)
Chuy:
1) Co the f '(x) = 0 chi tgi mot so hint han diem ciia K
ham so, chdng han tic so ciia mot phdn so cd man duang,
Neu y" > 0 thi y 'dong hien tic do ta cd ddnh gid f '(x) r6if(x),
3) Ham so f xdc dinh tren K la mot khodng, dogn hogc nica khodng
- f dong hien tren K neu vdi moi X/, x: e K: x/ < x? =^f(x\) < f(x2)
Bai toan 1: Chung minh cac bat dang thuc sau:
a) sinx < x vai moi x > 0, sinx > x vai moi x < 0
Trang 26Vai 0
< X
< ^ Ihi ha
m s
o f(x) =
x sinx lien tuc tren nua khoang
[0;
f'(x) =
1 cosx > 0 vai mo
-i x
e (0
; ^)
Do do ham s6 d6ng biSn tren [0;
^) nen f(x) >
f(0) =
0
Vai X <
X
sinx The
o a) th
i g'(x) >
0 va
i mo
i x > 0
Do do ham so
=5
> cos
x + — -
1 >
0 vo
i mo
i x > 0
X) '
(-Suy ra vai mo
i x < 0 ta c6 cos(-x) +
— 1 > 0
Bai toa
n 2 : Chini
> x +
- x lien tuc tren nua khoang
[0;
^) va c6
dao
ham
f '(x) = —
o d
o ha
m s
o f dong bien tren
khoang [0;
^) "en f(x) >
b) Ha
m s
o f(x) = tanx
- x
- — lien
tuc tren nua khoang
[0; —) v
-\ x
= (tan
x + x)(tanx
- x) >
0 va
i mo
i x € (0
; ^) (su
y r
a t
u a))
2 6
Trang 27Do do, ham so f dong bien tren nua khoang [0; ^ ) va ta c6 f(x) > f(0) = 0 v a i
moi X e (0; ^ ) => dpcm
Bai toan 3: Chung minh:
a) sinx > x , V x > 0 b) 2sinx + tanx > 3x V x e (0; — )
f ' " ( x ) = -1 + cosx < 0 nen f " nghich bien tren [0; +c»):
x > 0 f "(x) < f "(0) = 0 nen f ' nghjch b i l n tren [0; +oo):
X > 0 => f ' ( x ) < f (0) =- 0 nen f nghich h'lkn tren [0; +oo):
Do do ham so f dong bien tren [0; ^ ) nen f(x) > f(0) = 0
Bai toan 4: Chung minh bat dang thuc:
a) 8 s i n ^ + sin2x > 2x, V x e (0; n] b) tanx < — , V x 0;
Gidi a) Xet ham s6 f(x) = 8 s i n ^ ^ + sin2x - 2x, V x G (0; n]
f ' ( x ) = 4sinx + 2cos2x - 2 = 4sinx(l - sinx)
f ' ( x ) = 0 » X = — hoac X = 71
2 •
Vai X e (0; n] ta c6 f '(x) ^ 0 va dau bang chi xay ra tai hai diem Vay f(x)
Trang 28b) Ne
u X = 0
thi BD
T dung
N6u
X
> 0 thi BD
T tanx
4
(
7 1
Xct f(x) -tan
X
,Vx
-<
-,Vx
e 0;
_
, -tan
x ^
x'cos'x 2x'cos"x
Vi 0
< X ^
— ne
n 0 < 2
x <
— ^ sin 2x < 2
x d
o d
o f '(x) >
1 +
- x -
—
< V l
+ x < 1 + — x, vai
f '(x) =
Y ^
0 vof
i X > 0
nen f(x) don
+ X
Do d
o f(x) >
f(0) =
0 va
i mo
i x ^ 0
Vl +
x
1 -
-x + — tre
n [0
; +co)
2
8
1
Ta c6: g'(x) =
g' don
biSn tren [0;
+oc), d
o d
o g'(x) = g'(0) =
0
Suy
ra g dong bien tren [0;
+00) ne
n g(x) >
a ^ + b^ + c^
+ d
^ + 2abcd
- (a
^ b^
+ a
V + a^
d ^ + b^
c ^ + b^d^ + c^d^) >
0
voi 4
so a b, c d duong
Giai
Khong mat tin
h ton
g quat, gi
a s
u a > b
^ c > d > 0
Xem ve trai l
a ha
m s
o f(a), a ^ 0
f'(a) = 4a-' +
2bcd
- 2a(b
^ + c^
+ d"
)
f "(a) = 12a- - 2(b- + c' + d') >
0 ne
n f' ddn
g bi6
n tre
n (0
; +co) :
28
Trang 29a > b => f'(a) > f •(b).Vi f (b) = 2b(b^ - c^) + 2bd(c - d) > 0 nen f(a) d6ng biSn
Bai toan 7: Cho x, y, z > O v a x + y + z = l
Chung minh: 0 < xy + yz + zx - 2xyz ^ —
-Khong mat tinh tong quat, gia su x > y > z > 0
-Sx-yf {y-zf {z-xf
thi f *(z) >0 nen f dong bien
Do do f(z) > f(0) = (x + yi^^^^ + +
-,z> 0
Trang 30= {x +
xy
(x + y)'
1
{x + yy-4xy Ixy
2xy J
Dau dang thuc xay ra khi v
a ch
i kh
i
{x +
-y = 2xy
z =
0
4xy + y
^=
0 [
x =
( 2±
V3
)y'
N G HdP
Gid su ham so
f c6 dqo ham
tren khodng (a: b)
khi do:
Niu f'(x) = 0
vai moi
x e (a; b) thi ham sofkhong doi
tren (a;
b)
Neil f '(x) >
0 vai moi x
e (a;
b) vd
f '(x) = 0 chi tai mot so
huu hgn diem cua
(a: b) thi ham
so dong bien tren
khodng (a:
b)
Neu f '(x) ^0 vai moi
x e (a: b)
vd f '(x) = 0
chi tai mot so
huu hgn diem cua
(a; h) thi hdm
so nghich bien tren
khodng (a:
b)
Neu hdm
so f dong bien
tren (a:
b) vd lien tuc
tren nua khodng [a;b);
(a;bj:
dogn.[a;b] thi dong bien
tren nua khodng [a:b);
(a;bj; dogn [a;b] tuang
ung
Tuang tu cho nghich
bien
Bai toa
n 1 : Ti
m khoan
g don
g bien, nghic
h bie
n cu
a ha
m so:
a) f(x) =
I
x^ + 3x
- 4
I
b) f(x) =
I
x
I
(x + 2)
Giai
x" + 3x
- 4 ,
X
<
-4 hay
X
^ 1
- X"
3x + 4, -
4 <
X <
1
2x + 3 ,x<
-4 hay
>l
-2x-3, -4<
x<
l
a) D
= R , y
Trang 31Vay ham so nghich bien tren (-00; -4), ( - ^ ; 1) va dong bien tren (-4;- ~ )' (1»
Vay ham so nghjch bien tren (-1;0) va dong bien tren (-co; -1), (0; +00)
Bai toan 2: T i m khoang dong bien, nghich bien ciia ham so:
a)y = 2 - 3 c o s x b) y = " V x ^ ( x - 5 )
Giai
a) Tap xac djnh D = R Ta c6 y' = 3sinx
Xet y ' > 0 <=> sinx >0<=> k 2 ; T < x < ; T + k 2 ; T , k e Z nen ham so dong bien
tren cac khoang ( k 2 ; r ; n + k 2 ; T ) , k e Z
Xet y ' < 0 sinx <0<=> ; T + k 2 ; T < x < 2 ' ; r + k 2 ; r , k G Z nen ham s6
nghjch bien tren cac khoang {n -^Vln^^n + k 2 ; r ) , k e Z
Vay ham so nghjch bien tren ( 0;2) va dong bien tren (-00; 0), (2; +co)
Bai toan 3: Chung minh:
Giai
a) Xet f(x) = sin^x + cos^x, D = R
f (x) = 2sinxcosx - 2cosxsinx = 0, V x
Trang 32Do do f(x) l
1
b) Xc
t f(x) = cosx + sinx ta
n —, D = (
; —)
-2 4
4
^, , X
2
X
= -sm
x + tan —(1 + cosx) = -smx + tan—.co
= -sin
x + sinx = 0 vai mo
i x
e (
- —
; —)
4 4
Suy ra rang
Do do f(x) = f(0) =
4 4
Bai toa
n 4 : Chun
+ cos^(
x +
y ) •
cosxcos(x +
~)
Gidi
Ta.co f'(x) = -2cosxsinx
- 2cos(
x + ^)sin(x
) + sin(2x
= 0, vo
i mo
i X
Do do
f han
g tre
n R
nen f(x) = f(0) =
* * + 2x^
- 2x'
* x^ - 3x^
^ + 3)(x^
- x
^ 2x
- 1) =
- 2
x
1 =
0 x' = (x + 1)
^ >
0
Do do x^ >
x^ >
1
^ X ^
1
32
Trang 33Do do nghiem cua phuong trinh - - 2x - 1 = 0 nSu c6 thi x > 1
Dat f(x) = x ^ - x ^ - 2 x - l , x > 1
f ' ( x ) = 5x^ - 2x - 2 = 2(x^ - 1) + 2x(x^ - 1 ) ^ 0
Do do f dong bien V i f ( l ) = -3 < 0 va f(2) = 23 > 0 nen f(x) = 0 c6 nghiem duy nhat Xo > 1
Vay phuomg trinh da cho c6 dung 2 nghiem
Bai toan 6: T i m cac gia t r i cua m de phuong trinh sau c6 dung mot nghiem
Gidi
Nhan xet ung voi moi nghiem Ichong am cua phuoTig trinh (*) c6 diing mot
nghiem cua phuong trinh da cho, do do phuong trinh da cho c6 dung mot nghiem
kiii va chi Idii phuong trinh (*) c6 dung mot nghiem ichong am
z - - 2 z + l = 2x
Bai toan 7: Giai he phuong trinh
Ta CO 2y = x^ - 2x + 1 = (x -1)^ > 0:
Gidi y>0 Tuong t u z, x ^ 0
Dat f(t) = t - 2t + 1, t > 0 thi f '(t) = 2(t - 1) nen f d6ng bien tren ( 1 ; +oo) va nghich bien tren (0; 1)
Dat g(t) - 2t, t ^ 0 thi g'(t) = 2 > 0 nen g d6ng biSn tren (0; +oo)
' f ( x ) = g ( y )
Ta CO he u ( y ) = g(z)
f ( z ) = g ( x )
Trang 34Gia su
- Neu
f(x) <
f(y) <
f(z)
=> g(y) <
g(z) <
g(x) =
> y < z < x nen
^ 4t +
1 =
0 ne
n cho
n nghiem: x
= y = z
= 2 + Vs
- N
k 0
< X <
1 th
i f(0) >
f(x) >
f(l) =
> 0 < f(x) <
1
nen
0 < g(y) <
1 =
> 0 < y < 1 ^ f(0) >
f(y) >
f(l)
0 < f(y) <
1 0 < g(z) <
1 =
^ 0 < z < 1
Do do
X
< y < z =^
f(x) >
f(y) >
f(z) =
> g(y) >
= y = z
tana
a b
, tanx
x-ta
nx
f( x)
= CO S- X_
-X X
- si
n x cos
- sin2x,
0 <
x <
^, g '(x) - 2- 2cos2
x = 2(1
- cos2x) >
0 ne
n g
d6ng biln: x > 0 =>
g(x) >
g(0) =
0
Do do f'(x) >
0 ne
n f d6ng bign tren [0;
-) V
i 0 < a < b < - ^ f(a) <
f(b): dpc
m
2 2
BAI T AP T ON
a) y = x
^ 2x2
- 5
ux
x-2
b)y=
^
7
X +X +
g (-1
; 0) va (1; +oo)
34
Trang 35b) Ket qua ham so dong bien tren khoang (2 - V? ; 2 + ) va nghich bien tren cac khoang (-co; 2 - V7 ), (2 + ; +co)
Bai tap 2: Tim khoang don dieu cua ham s6
a ) y = V ^ ( x - 3 ) b ) y = ^ i i
V l - x
HD-DS
a) Ket qua ham so ngliich bien tren khoang (0; 1) va dong bien tren khoang (1; +(»)
b) Ket qua ham so dong bien tren khoang (-oo: 1)
Bai tap 3: Chung minh rang ham so
Bai tap 5: Tim a de ham so: f(x) = ' ~ + 2cosa)x^ + 2xcosa + 1, a e (0; 2%)
dong bien tren khoang (1; +oo)
HD-DS
y' = x^ - (1 + 2cosa)x + 2cosa Ket qua y < a <
Bai tap 6: Giai phuong trinh,he phuong trinh
Trang 36a) + + 7
<
V^
9-r^
b)x^ + x^>
V l- 3x -4
9 b) Ka
qua x < -
^ sin
a si
n ft , ^
, n
a) > vC
T i 0 < a < b < —
a b
2
b)
x "* + y
" * ^ — va
i x, y thoa
e (0
; —) b) Du
a v
e the
o bil
n x
1
TIM ClTC TR
I
Dinh nghla
Cho ham
so f xdc dinh tren
tap hap
D (D crR) vd
dai cua ham so
f neu tSn tai
mot khodng (a; b)
tieu cua ham so
f neu ton tai
mot khodng (a; b)
Khi ddf
(Xo) duac
goi la gid tri cite tieu
cm ham sof kihieuycr-
Diem cue dai vd
diem cue tieu duac
goi chung
Id diem cue tri.Gid
tri cue
dai
vd gid tri cue
tieu duac goi chung
Id cue tri, neu
Xg Id
mot diem cue tri
cua hdm
so f thi diem
(Xo; f (Xo))
duac goi
Id diem cue tri
cua do thi hdm sof
36
o
Trang 37I
Dieu kien can de ham so c6 cue tri:
Gid sic ham so f dat cue tri tgi diem XQ
Khi do, neu f c6 dgo ham tgi Xo thif'(Xo) = 0
Dieu kien du de ham so cd cue tri: co hai ddu hieu:
- Cho y = f(x) lien tuc tren khodng (a;b) chua Xo, co dgo ham tren cdc khodng
(a;xo) vd (xn;b):
Neu f '(x) doi ddu tic dm sang duomg thif dgt cue tieu tgi XQ
Neuf '(x) doi ddu tit duang sang dm thif dgt cue dgi tgi XQ
- Choy =f(x) CO dgo ham cap hai tren khodng (a;b) chira
Xo.-Niu f '(xo) = 0 vdf "(xn) > 0 thif dgt cue tiiu tgi xo
Niuf '(xo) = 0 vdf "(xo) < 0 thif dgt cue dgi tgi XQ
Quy tdc 1
1 Timf'(x)
2 Tim cdc diem x, (i = 7, 2, ) tgi do dgo ham ciia ham so bang 0 hodc ham so lien tuc nhimg khong co dgo ham
S Xet ddu f'(x) Neu f'(x) doi ddu tit - sang + khi x qua diem x/ thi ham so dgt
cue tieu tgi jc„ cdn neu f '(x) doi ddu tit + sang - khi x qua diem X/ thi ham so dgt
cue dgi tgi x,
Quy tdc 2
1 Timf'(x)
2 Tim cdc nghiem x, (i = 1,2, ) ciiaphuang trinhf'(x) = 0
3 Timf"(x) vdtinhf'fxi)
Neu f"(Xi) < 0 thi ham so dgt cue dgi tgi diem X/
Neu f"(Xi) > 0 thi ham so dgt cue tieu tgi diem x,
Bai toan 1: Tim cue tri ciia cac ham so sau:
Trang 38-3) = -1 va dat cu
e til
i,
f(
.i) =
- 2
x +
2 >
0, Vx (do A' =
R , Idion
g e
o cu
e tri
Bai toa
n 2 : T
im cue t
a) y = x'
* 5x^
+ 4 b)
y = (x + 2)
- lO
x = 2x(2x^
- 5)
e tie
u ta
i x = ±
^ — , y
x 3)^
+ 3(
x +
2f (x-3)
^ = 5x(x + 2)(
x 3)^
-Ta
CO
y' =
0 x = -
2 hoa
c x = 0 hoac
-^
^
-108
; 0) v
a cu
e tie
u (0
; -108)
Bai toa
n 3 : T
im cue t
= x' + 3x-
4 b)
f(
x)
= X
(x + 2)
+3x-4 , x<
-4 hay
x >
1
BBT:
X
-x' -3x4-4, - 4
<x
<l
2x + 3 ,
x <
-4 hay
x >
1
-2x-3, -4<
x<
l
-0 0
-4 -3/2
+
CT
TT
38
Trang 39Vay ham so dat CD 3 25 ,CT(-4; 0), CT(1;0)
(x + 1)' Vay ham so dat cue dai tai x = -2, yco = -4 va dat cue tieu tai x = 0, yci = 0
Trang 40Bai toa
n 5 : T
im cue t
x +
x +
1 b)
y =
Gidi
2x + l
0 c
» x = -1
± V6
-1 + V 6
+00
y' + 0
-^
^ -0
0 +00 +0
0
Vay diSm
CD(1 V6 ; -
4 2
-^6 ), CT
(-1 + V
6 ; 2V6
-1
1
(x -5 )^
tung khoang
xac dinh, d
Bai toa
n 6 :
Ti
m cu
e tr
a) y= V x' -2
x +
5 b)
y
=V
^(
5)
x-Gidi
< 0 , Vx
9t 5
nen ham so nghich
ai
X
^ 0 thi y ' = ^
^(
x 5) ^ 5(
x 2 ).
^, =
Q ^ ^ =
2
3vx 3Vx
Bang bien thien
e da
i ta
i x = 0 , yc