- Ifng dung ciia tich phan: Tinh dien tich hinh phing, the tich khoi Iron xoay.. Tinh dien tich xung quanh cua hinh non tron xoay, hinh try tron xoay; tinh the tich khoi lang tru, kho
Trang 1Danh cho thi sinh Icfp 12 on tap va thi Dai hoc, Cao dang
Bien soan theo ngi dung va cau true de thi cua Bg Glao due - Dao tao
0
DVL.009154
NHA XUAT BAN DAI HQC QUOC GIA HA NOI
Trang 2N G U Y E N V A N N H O - LE B A Y - N G U Y I N V A N THO
T U LUA
TO^n HOC
^ Danh cho thi sinh I6p 12 on tgp va thi Dqi hoc - C a o d a n g
^ Bien soqn theo noi dung va c d u true d4 thi c u a Bp GD&DT
NHA XUAT BAN DAI HOC QUOC GIA HA NOI
Trang 3Jltue lue
Lifinoiddii ^
PH AN 1:
TH
I TU YE
N SIN
H D
^I H QC
- CA
n sin
h Da
i hoc , Ca
o ding , kho
i A
6
Dap an
- than
g die
m 8
De thi tuye
n sin
h Da
i hoc , Ca
o d^ng , kho
i B , D
14
r Da
p a
n thang diem
273
PHAN 2:
TH
I T OT N GH IE
P T RU NG H QC PHO T HO NG
n 1
316
De thi to
n 2
318
Trang 4Pfi^nl: THI TUY^py SINH a/^l HQQ, SAG BANG
K CMi TRUC DE THI TUYEN SINH DAI HOC, CAO DANG NAM 2009
I PHAN CHUNG CHO TAT CA THf SINH (7,0 di^m)
I
ciia ham so: Chieu bie'n thien cua ham so Cifc tri Gia tri
Idn nha't va nho nhat cua ham so' Tie'p tuyen, tiem can
(d\Jng va ngang) cua do thi ham so' Tim tren do thi nhi^ng
diem CO tinh chat cho trtfdc; ti/dng giao giCfa hai do thi (mot
trong hai do thi la du"5ng thing);
2,0
III
- Tim gidi han
- Tim nguyen ham, tinh tich phan
- Ifng dung ciia tich phan: Tinh dien tich hinh phing, the tich
khoi Iron xoay
1,0
IV
Hinh hoc khong gian (tong hcrp):Quan he song song, quan he
vuong goc cua di/dng thing, mSt phlng Tinh dien tich xung
quanh cua hinh non tron xoay, hinh try tron xoay; tinh the tich
khoi lang tru, khoi chop, khoi n6n tron xoay, khoi tru tron
xoay; tinh dien tich mSt cau va the tich khoi cau
1.0
n.PHANRlfiNG (3,0diim)
Thi sinh chi difdc l^m mot trong hai phan (phan 1 hoac phan 2)
I Theo chUtfng trinh Chudn:
VI.a - PhUcmg phdg too do trong mat phdng vd trong khong gian: 2,0
3
Trang 5Cdu Ngi dung
kien thiic ^ Diem
- Du'fJn
g tron, elip, ma
t cau
g, di/ftn
g thin
- dUcJn
g thang, ma
t phan
g v
a ma
t cau
VII.a
- So pMc
- To hap, xdc
suci't, thonf>
ke
- Bat ddn}> thvtc.
Cuc tri ciia bleu
thi'fc dgi
so
1,0
2 Theo chUOitg trinh
Nang cao:
Cdu NQi dung
kien thi'tc ,
Diem
Vl b
* PhUtfng phdp toa
do trong mat phdni*
vd trong khong gian:
- Xac
djnh to
a
dp cu
a diem , vecttf
- Dxiiing
trdn, h
a diTdn
g conic , ma
t cau
- Viet
phiTPng trin
h ma
t p hin
g, dtfcJn
g thin
g
- Tinh
m de
n difdn
g thang , ma
t
ph in
g ; khoang eac
h giffa ha
t phan
g v
a
mat cau
2,0
Vll b
- Sophi'/c
, • , ^ , , , , / , +
bx +
v ~
va mot ii'x + b'
so yen
to lien quan
- Su tiep xi'tc
ciia hai dudng cong
- He phU(fng trinh
mii vd Idgarit
- To h(/p, xdc
sud't, thong
ke
- Bat dang thUc.
Cuc tri ciia hieu
U CA
N LU
U Y:
npi dun
g giijr
a hai
a can
lifii y
mot s
o va
n de
nhU"sa
u :
I PHAN CHUNG CHO TAT CA T
ve d
o th
j , cung nhi
4 ,
Trang 6• Hc^m bac 3 : y-cuc'+ hx^ + cjc + J , (« ^ O)
• Ham bac 4 (dang trung phiTcfng): y - ax^ + hx^ + c , (a O)
• Ham phan thuTc dang : y = ifilA ^ ^ o, at/ - be ^ O)
cx^-d
* Khi khao sat tinh chat cua ham so , tinh loi, 16m va viec tim diem uo'n ciaa
do thi CO the bo qua khong can xet (neu can thi chi can tim diem uon cua ham bac 3 de suy ra tarn doi xiJng cua do thi , con ham bac 4 thi nen bo qua hoan toan phan nay)
* Cac bai loan ve sir tiep xuc cua hai diTfJng cong cung se khong diTdc de cap tdi trong phan chung nay
* Cac bai toan ve tiem can cung chi de cap den liem can dtfng va tiem can ngang
Cdu III:
* Viec uTng dung tich phan de tinh the tich cua khoi tron xoay chi c6 cac khoi
khi cho hinh phing quay quanh true Ox
II PHAN RIENG (3,0diem) u
1 Theo chittfitg trhih Chiidn:
Cdu Vila:
* Phan so phffc ehi c6 ctic bai toan c6 lien quan den cac phep toan ve so phffc va viec giai cac phUdng trinh bac hai co he so Ihffc , khong de cap den can bac hai cua so phuTc , cung nhu" viec giai phffdng trinh eo he so phffc va cac bai toan CO lien quan den dang lifdng giae eiia so phffc
2 Theo chUcfng trinh Ndng cao:
Cdu VIb:
Cac bai toan c6 lien quan den tie'p tuyen cua cac du'dng conic cung khong dc cap tdi trong cau true de thi mdi nay Nhff vay doi vdi cac dffdng conic chi can
on lai cac dang toan ve viet phifdng trinh ehinh tac , tim cac diem nlim trcn
conic thda tinh cha't nao do va cac bai toan ve mot so tinh chat dac trffng ci.i tifng du'dng conic ^
5
Trang 7cua Bg
THI TU V^
N SIN
H 96
1 HQC , Cfl O
OANG -
K H6|
fl
(Thcfi gian Idm bdi:
trong d
o m
la^tham s
o thiTc
j {x
+ 2)-3 + log^{x
-5)^ + log, 8
m so
y = yje^
+1 , tru
yz zx
xy
Trang 8II PHAN RIENG (3,0 diem)
Thi sink chi diMc lam mot trong hai phdn (phdn 1 hoqc phdn 2)
1 Theo chUcfng trinh Chudn: - ^
au VLa (2,0 diem) > i
1 Trong mat phang toa do Oxy, cho di/dng tron (C): + - bx + 5 = 0
Tim diem M thuoc true tung sao cho qua M ke difdc hai tiep tuyen cua (C)
ma goc giSa hai tiep tuyen do bang 60"
Viet phufcJng trinh tham so' cua dtfdng thang di qua diem M , cat va vuong goc
vdi dufdng thang fc?)
Cau VILa (1,0 diem) j
Tim he so cua trong khai trien thanh da thtfc ciia bieu thuTc:
P = lx^ +x-\f
2 Theo chitctng trinh ndngcao: , ' •
CSu VI.b (2,0 diem)
1 Trong mat phang toa do Oxy, cho di^dng tron [C): x^ + y^ - 6x + 5 = 0
Tim diem M thuoc true tung sao cho qua M ke di/dc hai tiep tuyen cua (C)
ma goc gii?a hai tiep tdyen do bang 60"
2 Trong khong gian vdi he toa dp Oxyz, cho dilm M(2 ; 1; O) va di/dng thang
Viet phufdng trinh chinh tic cua dtfcfng thang di qua diem M , cat va vuong
Cfiu VII.b (1,0 A\im)
Tim he so cua trong khai trien thanh da thuTc ciia bieu thtfc:
\
P = X^ +
A-7
Trang 9OAP A N- TH RN
G DI^
M
Cdu Dap an
a c
6 ha
m so' y = -.v
: D
= x
Sif bie
n thien:
• Chie
u bie
n thien: y'=
'x = -2
r v
x =
0 •
[.r
>0
< =>
y'>
Do do:
+ Ham
a (()
; +cc
)
+ Ham
y' = 0
«
0,50
CiTc tri: Ha
y = -oo
0,25
Bang bien thien:
0
y
\
Xo
2 ; 0)
0,25
Trang 10Phi/rtng trinh da cho tifcfng difdng vdi phi/dng trinh:
(2 sin jr - \/3) (V3 sin A- + cos A- j = 0
V(3i dieu kien do, ta c6:
Phifcfng trinh da cho tUdng dUtrng vcti phu'cJng trinh:
log2[(A- + 2)|A-5|]-log2 8
0,50
Trang 11-jt = 6
;j : = —
2
Do'i chie'
u v
di dieu kie
n (*), t
a dufd
c ta
t c
a cac
ghie
m
cu
a
phtfctng trin
h d
a cho la: x = 6 v
5 la die
n tic
h can tinh
Vi Ve'+
;ln8] ne
/'-I
Kh
i x = ln3 t
hi / = 2 , k
hi
v = ln8 t
hi t
= 3 0,25
i t -
i U i
t
-i
j
2r -l
2 '
+ l '
+ l ^ =
2 + ln-
en l
a tar
n gia
c de
c de
h vuon
n cu
a mat
au ngo
ai tie
p hin
h chop
1
tron
g do
H l
a trung die
m cu
a AB.
M
=p.V -\t°—
+ Tarn gia
c OCA
vuong t
ai G / „
Trang 12K i hieu R la ban kinh cua mat cau ngoai tiep hinh chop
Nhan tha'y: x^ -xy>xy , Vx,y&R
Do do: J:'^ + j " ^ > jry(jc + y ) , Vjc,y > 0
Suy ra triic tung khong c6 diem chung v d i difdng tron (C)
Vi vay qua mot diem bat k i tren true tung luon ke dtfdc hai
tiep tuye'n den (C)
0,25
X e t diem M[0;m) tuy y thuoc true tung
Qua M ke cac tiep tuyen MA va MB cua (C) (A,B la cac tiep diem) Ta c6: Goc giffa hai du'dng thang MA va MB bang
/\A/B = 6 0 " (1)
6 0 " o ^
[AMB = 120" (2)
0,25
Trang 13L
Vi yV
//la
phan giac cua
o A/
/ /?
-^ -^ sin
60" 3
Dc thay, khon
g c
6 tho
a (*)
r-l;
-2 + f
2r
~l ) + l (
-2+
/) + (-!).(-/) =
-Vi the
, MH =1 - :-~
3J
0,50
Suy ra
MH la
:
A- =
2 + /
V =
1 4/
-:.^-2t 0,25
VI
La
(1,0 diem)
Theo cong
)%
ct
r(
.v -l )%
+
c tr
'(
.v -i r.
.C tv '"
va
Q '.
(A
v-^l )^
Trang 14V i vay, he so cua trong khai tricn P thanh da thi?c la:
Goi H la hinh vuong goc ciia M ircn J, la c6 A/// la difrJng
He so' ciia v' trong khai iricn ciia C^,' (A - l / ' la: ~ C " Q ^
He so'ciia A' trong khai tricn ciia Q'.A" (A - 1)"^ la: + Q ' c ]
V i vay, he so ciia A ' trong khai tricn P lhanh da thuTc la:
-C^QSQ^.C^^ + IO
0,25
0,25
Trang 15KH 6| B.
D
(Th&i gian lam bai:
H (7 di^m)
Cau I ( 2, 0
di^m
) ' y = m so Cho ha ^"^^^
x-2
1 Kha
o sa
t sir bien thie
C + 5
| + log , 8 = 0 '
thing
x = yle - \
Tim ta'
t ca cac gi
p hi Td ng
trinh
j
;
;
x^ + 'ix^ -\<a[4x-^x-\^
d p
Oxyz , ch
o
d iT dn g
thing d
c6
p hiT dn
g
Trang 16j c - 1 y-1 z - 3
va mat phang ( P ) : 3A: - 2y - z + 5 = 0
2 1 4
1 Tinh khoang each givi& duTdng t h i n g J va mat p h i n g (P)
2 K i hieu I la hlnh chieu vuong goc cua d tren (P) V i e t phifdng trinh tham so'
cua dtfdng thang / j i ,
CSu V I L a (1, 0 Aiim )
r i m cac so thi/c x,y thoa man dang thiJc : x{3 + 5i) + y{l-2if =9 + l4i
2 Theo chumg trinh ndng cao:
Cfiu V L b ( 2,0 d i e m ) ^ - ' 1
Trong khong gian vdi he toa do Oxyz, cho difdng thang d c6 phtfcfng trinh
2 K i hieu / la hinh chieu vuong goc cua d tren (P) V i e t phi/dng trinh chinh t^c
Trang 17m ca
n dtfn
g
la dirdng thing ;c = 2 , mp
+ D
o th
i ci
2;
2)
(Ik
giao Ciia hai difcJn
g ti^
m can
) Ikm
tarn do'i xtfn
y -2x + m
c
it
C C) ta
tai 66
song song vdi nha
u
2x +
3
<=> — -2x +
a ma
n
dieukien
v '(
;C
|) = 3 ''(jC2)
<::>
2J
:'+(
6)j:
m 2m-
0,50
A =
6) +8(2m
+ 3)>
0,25
Trang 18II
(2,0 diem)
1 (1,0 diem)
PhiTdng trinh da cho ti/dng difdng vdi phiTdng trinh :
<=> sin jc + sin 4.x: = 1 + sin 4 J: o sin x 1
Trang 19IV
(1,0 diem)
Ki hie
u A
va V tiTcfng lirn
g la chieu ca
Suyra: h = A'A.sin60"=aj3
Do do,
A
V = h^^ifQ =
f{x) = {^x^ +
3x^
-I)(
[ l;
+o o)
Suy r
a : /(
A:)>
/(1) =
3 VA:>1 V
; 7 ; 3)eva M = (
2 ; 1
; 4) l
+ n = (
3 ;
2 ; l) la mot v6
Trang 20G o i d' la dtftJng th^ng di qua A va vuong goc v d i (P)
D o /i" = (3 ; - 2 ; 1) la mot vee td phap tuyen cua (P) nen n"
la m o t vee td chi phi/dng cua d' Suy ra , phi/cJng trinh cua d'
Trang 21u Vl.a
(1,0 diem)
; 4 )
Gpi d'
la dU ' cJ
2 ; l ) l
Irinh cua
d'
la- -
l_
7_
i
1
Goi A'
la giao diem ciia
J ' v('J
i (Pj , t
a c
c V A ' e / To
nghiem cua he:
-^
3 -
2 -
1
[3A:
-2v f
5 =
0
, 41
40 33
14 •
7 1
4
Hcfn nSa , v
0,50
Vl.b
(1,0 diem)
i
1 Suy
41 40
Dang lifPng giac cua
r la : ;
z^2
CO S—
=32 cos — f/.sm
3 JJ
0,50
20
Trang 22D HAI MUOI Dfe THI C6 idl C I A I
1
I, PHAN C H U N G C H O T A T C A T H I SINH (7 di^'m )
Cfiu I ( 2,0 di^m )
Cho ham so >• = - ( w + m x ^ + ( 3 W - 2 ) J : , trong do m la tham so thiTc
1 Khao sat sir bie'n thien va ve do thi ciia ham so' da cho, vdi m = 2
2 Tim tat ca cac gia tri cua tham so'm de ham so' da cho dong bie'n tren tap xac
dinh cua no
CSu II (2,0di^m)
1 Giai phiTcfng trinh: (2cos J: - l)(sinx + cos;c) = 1 (1)
2 Giai phi/cfng Irmh: i f t 3
Cho lang tru di^ng ABC.A'B'C c6 day la tarn giac deu Mat phang y4'BC tao
vdi day mot goc 3 0 ° v a t k m giac A'BC c6 dien tich bang 8 Tinh the tich
khoi lang tru
II PHAN RIENG (3,0 d i e m )
Thi sink chi dMc lam niQt trong haiphdn ( phdn 1 hoac phdn 2)
1 Theo chUcfitg trinh Chudn :
Cau VLa ( 2,0 diem )
1 Viet phiTdng trinh diTdng thang (A) di qua diem M{3; l ) v a cat true Ox, Oy
Ian lifdt tai B va C sao cho tam giac ABC can tai A vdi A (2 ; - 2 )
Trang 230) ,{x() > 0
Xa
c din
h
tpa dp diem
C tre
n tru
e Oz
de the tich tur die
n OABC
bang
8
CSu V IL
a (1 , 0 diem )
o 3
?
2 Theo
chtMng trinh ndng cao
:
CSu Vl.b ( 2,
a ton
g OA + OB
nho nhat
3 ), co
n din
h D nlm tre
'
CSu
V II
b
(1, 0 di§m )
o 3 ma cac chff s
MM aiai
Cfiu
I
\ Khi
m =
2 iKi
y = Y^+2x^+Ax
-c»
; h
m y = +
00
jr ->
^+
4x + 4=:(
x + 2)^
>
0, Vx
Trang 24Ham so dong b i e n tren khoang (-00 ;+oo), ham so khong c6 ciTc t r i
Do thi :
-o D i e m u-on: r V
y" = 2\ 4 '
-Ta thay >^"ddi da'u tH a m sang diTcfng
k h i X d i qua d i e m x = - 2 , nen do thi cua
1 Giai phi/dng trinh
( 1 ) <=> 2 sin cos jc + 2 cos^ J: - (sin X + cos A:) = 1
<=> sin 2 + 1 + cos2X - (sin A: + cos J:) = I
Trang 25< =>
72 sin
4
= x + + A:2;
u kien:
x + 2ji0
4-X
>0<:>
x + 6>0
-6<x<4 x^-2
(2)o31og
j^|;
c +
2|-3 = 31og
^ (4-A:
) +
31og, {x
+ 6)
4 4 ' 4
c:>logj^|j: + 2
lo
|g, =lo
-g, (4-x) + lo
"*
^ 4 « 4
lo
g, (4|
x + 2|) = log I [(4
t + 6)
4(
x + 2) = (4-jr)(
x + 6)
4{x + 2) = -{4-x){x +
6)
x^
+6JC-I6 = 0
2
<=>
X =
2 hay
x^-i
x = l
±V
So vdi
dieu kie
Da
t r = sinx
<5
f f
= cosx.t/
x ; D
ln
|-|t-2
|)
= l
n t-
Trang 26C f i u I V
Goi H la trung d i e m cua flC => /\// 1 flC => A'// 1 B C
Trang 27Cdchkhdc :
Xet ca
c vect
d a = (\
/ x ; ; b
^
'2
I '
Ta biet : a b <
o(
x + y)
4 I
= -(
II P HA
N RifiNG
f = 2y o
'-4
7 TTie o
chMiig trinh Chudn :
^
C§u VI.a ~ «
:
I
1 Da
t B(
b;
0) =
A) nO x, C(
0;
c) =
A) nO
a :
- + ^ =
1 , (be ^
A/
6 (A):=
> + (1
Tam giac
ABC ca
n ta i
A <=>AB = AC
<=>AEr = AC^
-
«(
2) '+
^-4 =
4 + (c + 2) '«
• Vd
i b = c + 4 :
(l )o c^
= 4 c>
2=
b-c+
2
b-2 = - c-
c = -2 => b = 2
• Vd i
b = -c:
(1) <»Z
? = 2
=>
c = -
Trang 28Vay C O hai di/dng thang can tim: •
Dat nhom hai chff so 2, 3 1^ «
+ TriTdc tien ta tim cac so' c6 6 chff so' khac nhau thoa yeu cau bai loan, trong do chff so a, c6 the b^ng 0 hoSc khac 0
Trang 292 Theo chUcfng trinh
n&ng cao:
Cflu Vl
b
1 Go
i (A) m dirdng
thing can tim
Gia suT (A) ci
t ti
a Ox tai A(a ; 0) \h
6 dan
g + ^ = 1 ''
-a b
A/
e (A)=
+ - = 1 =>
b =-
^ (doa
>0,b
a-4
Theo ba't ding th
u Tc Cauchy, t
a c6
: OA + OB>
2 J(
a 4)
4
min
(OA + OB) =
9, da
t diTd
c khi: a
=>
b =
3
Vay(A): ^ + ^ = 1
o x + 2y-
6 = 0
2 Da
t D(
0;
>'
;0)€
0>
;
Ta c6:
AB = (l;
1;
2) A
C = (O ; -
2 ; 4) , A
D = (-2
4;
0 -2
V =
[AB, AC]
.AD| = ^
|0.(
-2) +
-4)(
y 1) + (-2) 1 =
4
- 2
y
Theo de bai t
a c6:
V =5oi
|l-2y
| = 5o!
2yl=
l-15
2y = 1
l-5
y = -
7
y =
l-Vay c6 hai die
m D can flm 1
^ :
D, (
O ;-7
; O) , D
Trang 30cau VIỊ b , '
Neu goi M la so cac só tif nhien c6 ba chỉ so khac nhau va N la só cac só tif
nhien c6 ba chil so khac nhau chia het cho 3 diTcJc tao tif v4 = { 0 ; 1 ; 2 ; 3 ; 4 ; 5 } ,
thi so cac so can tim se la: M - Ậ
-So can t i m c6 dang âa2â; , a, + a2 + :3
Xet cac tap con gom 3 phan tijf cua tap A - {0;1;2;3;4;5} , ta thay chi c6
cac tap sau thoa dieu kien c6 tdng cac so chia het cho 3 la :
fi, = {0 ; 1 ; 2} , ^2 = {0 ; 1; 5} , ^ 3 - (0 ; 2 ; 4} , - { l ; 2 ; 3 }
B5={1;3;5} , = {2 ; 3 ; 4} , fl, - { 3 ; 4 ; 5}
+ Khi (3, ',0^ G B, de lap difcfc so thoa yeu cau ta thufc hien theo 2 bÚdc
- Chpn a , e B, \} c6 2 cdch
• Chpn hai so con l a i xep vao 2 v i t r i âiâ c6 2 ! cich
Vay trong triTdng hdp nay c6 2.2! = 4 so thoa yeu cau
+ Ttfdng l\i khi â e B2 hoSc e B3 m o i triTcJng hdp cung c6 4
s6'thoa yeu cau
+ K h i â ' " 3 ^ ; ; ; B-, m o i so l i mot giao hodn cua 3 phan tuT
nen mSi tri/dng hdp c6 3! so thoa yeu cau
Vay : /V = 3.4 + 4.3! = 12 + 2 4 - 3 6 so thoa yeu cau bai toan
Do do so cac so thoa yeu cau bai todn la: M - /V = 100 - 36 = 64 (so)
Trang 311 Kha
o sa
t sif bien thie
0 (1 )
2 Gia
i phiTdn
g trin
h : log , (x
-1)
^ + log
^ (2
x -1 ) = 2 (2) +
Cfiu II
I (1,
0 die
m ) '
haiphdn (phdn
1 hoacphdn
2y +
7 = 0 c AfiC n gia Vie'tphirdnglrinhcaccanhciia tar ^
m
Trang 322 Trong khong gian Oxyz cho tam giac ABC v d i A ( l ; 2 ; - l ) , B(2; - 1 ; 3),
C(-4; 7; 5) T i n h do dai duTcJng phan giac trong ke tit dinh B
CSu VII.a (1,0 6iim)
Co bao nhieu so tiT nhien c6 4 chiJ so chia het cho 4 tao b d i cac chOr so 1, 2,
3,4 trong hai trU'dng hcJp sau:
a) Cac chu" so co the triing nhau; b) Cac chu" so khac nhau
2 Theo chUffng trinh ndng cao:
Cau Vl.b (2,0 d i e m )
1 Viet phiTdng trinh diTdng lhang di qua diem A{27 : / j va ca't cac tia Ox, Oy
Ian lu'dt tai M va N sao cho do dai doan MN nho nhat
2 Cho cac vectcf a - (3 ; - I ;2) , Z)" = ( l ;] ; - 2 ) T\m vectd ddn vi dong phang
\6\ , b va tao vdi a goc 60"
Cau V n b (1,0 d i e m ) ^*
Cho cac chu* so 1, 2, 3, 4, 5 Tijf cac chfl" so da cho c6 bao nhieu each lap ra
mot so' gom 3 chiJ so' khac nhau sao cho so' tao thanh la mot so' chan be hdn
• Chieu bie'n thien:
' o G i d i han v6 ciTc, gidi han tai vo cifc va cac difdng l i e m can :
+ Ta c6: l i m y - -oo va l i m y = + Q O , do do di/dng thang x = - 1
-v->(-ir v ^ ( - i r
la tiem can diJng cua do thi ham so' da cho (khi v ("0 va khi
+ Ta c6: l i m y= Ifm v = l , nen dudng thang y = l la tiem can
ngang cua do thi ham so da cho (khi ) • + « va khi v - > - o o )
o Bang bie'n lW?n:
Trang 33+ Tac
o : 3' ' = -3
X
— CO
_
1 + 0
o Ch
= ~i;x = 0=>y
bai
toan
<:=>y'<0 ,VA-e(-oo;l)
<=
>i
-2<m <2
-m>l -2<m<2 *
Trang 35CS uI
a c
6 :
BD^ = DC'^ +
BC'^ IDC-.BC cosa
-oBD^ =2BC'^-2BC'^
cosa
O2A:
^
=2(x
'+
/z 2)
(l-cosor)
OOSOf COS
a
2/
r\
si n2
^
Dodo
V = x
^/
j = 2
cos«
CS
u
V
Trong mat phSn
g Oxy, t
a xe
t ca
c vcctd:
a =
1 — X ;
, b = y
;
y)
1 z; -
Ta biet
^ + '\
r '
= J81(x + y+ z)
^ + ril
>, 2.9(
x +
y + z)
ril
>
18.3
^x.y.z.-7=
-80
1
=Vl62-80 = V8
2 ^ ,
=l
3 •
' • 'H \ttL\
Cdch 2:
Ap dung bat dan
Trang 37Viet phU(m^
trinh canh
AB
Taco: B ^ BH => B(t;-it-ll)
, _ X A + X
B
_t
+ 2
^ _ y A + y B
_ -3 t- i8
Ms CM
t +
2 ^
^r -ai-is'i
+ 7 = 0 ot = - 4=
3y l
3 = 0
f
Viet phU(fnfi trinh canh
BC
Toa do diem
C = ACr\CM tho
a hp :
rx -3 y- 23 = 0
[x + 2
y +
7 =
0
PhiTdng trinhcanh
C:>7A: + 9>
' + 19 = 0
2.
Ta c6:
AB
= (
l ;
-3 ; 4 ) Af
i =
V26
5C = (-
la chan du'dng phan giac Irong cua goc
B
Theo tinh cha't cu
a du
'dng phan giac, t
a c
6 :
MA BA ^
^
= -
^ M
A = — MC
2 '
Do do :
36
Trang 38Vay trirdng hdp nay c6 4.4 = 16 so
Trang 39t ruT
c fng hdp cung c6
2+
2 =
6 so ,
2
Theo chiMng trinh ndng
cao :
Cfiu VLb I
1 Gi
a s\jf(A ) c^
t ti
a O
x ta i
M{m ; 0)v
a c^ttiaO
y ta
i M(
0; n ) , (m
CO dan
g : — + — =
-n =
m m-
27 (do
m >
0, n > 0 =>
m >
27)
Ta c6 : :<i'J
el
m
l, m- 27
;
Dat t- ni -2
7, t>
0.
Ta c6 :
-1^+541 +
729 + 1 + — + ^
t
(2
27 27^ — + t^ +
— t t
729 + 27
t + 27t + 73
0
Theo ba
f t d^n
g thiJ
c Cauchy , t
a c6 :
27 27
^ + 27t + 27t>33
729 -^.27t.27t=:243
Dod6: MN^>2
7 + 243 + 73
0 = 1000 =:>MN>10
=>minMN-10,datdufdckhi t = 3
m =
30, n = 10
Vay phiTdng tnn
h cu
a (A )
la :
^ + ^ =
1 ha y
i
e -(^x;y;z) ,
theo gia thie
t su
y r
a