1. Trang chủ
  2. » Ngoại Ngữ

Tiếng anh kỹ thuật 2_ thuật ngữ, ký hiệu, công thức, số liệu chuyên ngành kỹ thuật

230 256 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 230
Dung lượng 17,63 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The center of gravity is at the intersection of the line joining the centers of gravity of the tri- angles, and the middle line FG... 482 TRONG TAM CENTER OF GRAVITY Segment

Trang 1

`

ge 25 _ SỐ TAY

ENGINEERING ENGLISH

(With key to pronunciation - Alustrations)

Trang 2

g Ộsenda ẤEM dị ỔLOT Nor DAU: aul 4B

voub név CE vd aãi 888 tài sa8ek ,ậ đãi E

gilt ii sat ages wh ods

Mau cdu hoc fap va sử đây đền Anh ti eisai nã tng Hag tang! những năn:gì4iđây) :đễ, đáp ứng: phần nào nhủ sầu đố, skũng đât (bia soạw :' 6ềỪẶhy ¡ếng Ỉ A-Í Íậ sêẶ' Nội: dụng suấn

sách gom Phần mở dau, Phần thuật ngữ và Phan số liệu -

- Trong Phần mở dau chúng tôi giới thiậu lối phiên âm Quốo tế mới

nhất [dựa 0/1/1170) M041) 10) eda Daniel Jone 1992) duce

dùng để phiên âm các thuật ngữ kỹ thuật, giới thiệu sách doe cae thuật ngữ và câu thông thường trong khoa học ký thuật 1

- Phần sáo thuật ngữ được phân loại theo từng ohủ đẾ bao quất trong ngành eơ khắ, từ vẽ ký thuật, nguyên lý máy, Bến sáo phương pháp gia sông co khi Mỗi thuật ngữ Ếược trình bay băng tiếng Việt, tiếng

Anh có phiên âm kém theo hình minh họa Để tiện tra sứu, sắp thuật

ngữ và sác hình minh họa Ếược Sanh số thứ tự

- Phần số liệu gầm cáo hình vẽ, cáo bảng tiêu chuẩn, sáo sông thức - tắnh toán phổ biến trong các ngành kỹ thuật, phần nầy Ếược sắp xếp theo cáo mục: Nguyên lý máy, truyền động ồai, xắch, bánh răng, ổ lăn, cáo mối ghép

ứua quyển sách này, bạn đọc không những chỉ tra sứu sáo thuật ngữ tiếng Anh kỹ thuật mã oồn tra sứu các bảng tiêu chuẩn sẵn thiết về kắch thước, dung sai, lấp gháp, vật liệu v.v về mặt dữ liậu lan mat thuật ngữ gốc tiếng Ảnh

Biên soạn sách này chúng tôi dựa trên việo chuyan dich cd chon loc quyển The Concise Illustrated Ruseiẩn - English Dictionary of Mechanical Engineering cua Vladimir V Shvarts (Moscow Russian

Trang 3

IV

Language Publishers 1980); Dữ liệu Bược shọn lạo từ Machinery’s Handbook của Erik Oberg vi F D Jones tai bản lẫn thứ 17, vốn duge

xem là sách gối Öẩu eho kỹ sự eơ khí vì người lầm công táo kỹ thuật

Chúng tôi rất vai mững và sắm kích khi nhận ðược những ehỉ dẫn sửa ban doc xa gần, góp phần nang cao chat lượng oho những lần tái bản

NHÓM BIÊN SOẠN

Trang 4

V

KEY TO PHONETIC SYMBOLS

KỸ HIỆU PHÁT ÂM

Vowels and diphthongs Nguyên âm rả nguyên âm đơi

1 i: asinsee /Si⁄/ 11 3: asinfur /fa:(r)/

2 1 asinsit /stt/ 12 9 asinago /2'ga0/

3 e asinten /ten/ 13 er asin page /peIidz '4 œ asinhat /het/ 14 ao asin home /hàm/

5 a: asinarm /œm/ l5 ar asinfive /farv/ -

6 p asingot /gpt/ 16 ab asinnow = /nvv/

7 2: asinsaw /so⁄/ = 17 or asin join /dz2m

8 ư asinput /pot/- 18 1a asinnear /nro(r)/

9 u:asintoo /tu:/ 19 eo asinhair /hea(r)/

10.A asincup /kAp 20 co asin pure /pjuo(r)/

l p asinpen /pen 13 s asinso /Sa0/

2 b asinbad /bzd/ 14 z asinzoo /2u⁄

3 t asintea (/tU⁄ 15 f asinshe = /fi:/

4 d asindid /did/ 16 4 asin vision /’vi3n/

5 k asincat /kœU 17 h asinhow = /hav/

6 g asingot /got/ 18 m asinman /mzn/

7 tf as.in-chin Afin/ 19 n asin no /nav/

8 d3 asin June /dju:n/ 20 n asinsing /smy

9 f asinfal /:V 21.1 asinleg /leg/

10.v asin voice /vois/ 22.r asinred /red/

11.8 asinthin /O1n/ 23 j asinyes /jes/

12.6 asinthen /den/ 24 w asinwet /wet/

wo

/ dấu trọng âm ‹vd: about /a'bao

Trang 6

CƠ HỌC 474 MAT PHANG NGHIENG - CHEM

INCLINED PLANE - WEDGE

If friction is taken into account, then force P to pull body up is:

P= TW (u cosa+ sina)

Force F1 to pull body down is:

Py = W (@ cos a@— sin a) Force P: to hold body stationary:

P,= W (sin a—p cos œ)

in which z is the coefficient of friction

Neglecting friction: | With friction: Neglecting friction: } With friction:

+, Sina Coefficient of fric- A Coefficient of fric-

W=Px cos P=Wx sin (a+) | yy p xŠ- Pxcotal P= tan (œ+† ở)

h

O=Px=‡PXxcotưa 26

With friction: ¬ Coefficient of friction = w = tan ở

P=2Qtan(a+¢)

Trang 7

P required for moving a body on an inclined plane The

friction on the plane is not taken into account The

- 11w column headed “ Tension P in Cable per Ton of 2000

o ¢ = Pounds” gives the pull in pounds required for moving

a # T one ton along the inclined surface The fourth column

1 ý gives the perpendicular or normal pressure If the co-

“~ efficient of friction is known, the added pul? required

~_ ‘Tbe table below makes it possible to find the force]

Q X coefficient of friction = additional puil required

đêm Rise, Ft.| Angle a |Cable per sure @ om | Rise, Ft.| Anglea |Cable per sure O or | tpn [aie [areca] | net [alr be

Trang 8

—-—-——ø—-—-_—.—a† A pull of 80 pounds is exerted at the

<i — end of the lever, at W;

) im 12 inches and L = 32 inches ˆ

- balance the lever

EÐ:W =i:L Fx L=oWxil / 80% 12 960

| Fe = —— w= zo pounds

how long must Z be made to secure

La Xe WX? } Fxa FX L| equilibrium?

W+FP F’° W+F W Le 180%3 Coy 20

t - Total length FE of a lever is 25 inches

-¬->*+—-—-a——-—> A weight of go pounds is supported at

F F = 22X19 56 pounds

F= wx! W = txE and a= 5 feet, what should L cqual to Ƒ + i secure equilibrium?

Wxa Wxlil Fxa FXL 2200% §

W x2 FXL Let F= 12 tons; W = 4.5 tons;

= E W= i @=16 feet Find £ and §

5X 16

L Xa Wxil, Fxa FXL La TC S95 feats

| pounds; a= 4,6 = 7, and ¢ = 10 inches

&\ fp RA F Tf x = 6 inches, find F

When three or more forces act en 20X% 4+ 30X7+15 X10

„aWxsz†+Px?+Qxc above, how long must lever arm x be

Trang 9

477

KHỚP KHUỶU TOGGLE-JOINT

Toggle-joint — If arms ED and EH are

of unequal length:

Fa P= F

The relation between P and F changes

If arms ED and EH are equal: |

sponding to the angle found The coeffi-

cient is the ratio of the resistance to the force applied, and multiplying the force applied by the coefficient gives the resist- ance, neglecting friction

Coeffi- Coeffi- Coeffi- Coeffi-

Trang 10

475 l

BÁNH XE - RÒNG RỌC WHEELS AND PULLEYS

FXR=Wxr wound the lifting rope of a windlass is

R at the periphery of a gear of 24 inches FMR diameter, mounted on the same shaft

W = as the drum and transmitting power

r to it, if one ton (2000 pounds) is to be

one-half the veloc- ity of the force ap- plied at F

In the illustration is shown a com-

bination of a double and triple block

The pulleys each turn freely on a pin

as axis, and are drawn with different diameters, to show the parts of the rope more clearly There are 5 parts

of rope Therefore, if 200 pounds is

to be lifted, the force F required at the

end of the rope is:

rxXnX rs Let the pitch diameters of gears A,

B, Cand D be 30, 28, r2 and ro inches,

m=6; and r=5 Let Reet, and fo= 4 Then the force F required to lift a weight W of 2000 pounds, friction

being neglected, is:

Fu

Trang 11

| 479

RONG ROC VI SAI - VIS

DIFFERENTIAL PULLEY - SCREW

Waar

‘Force Moving Body on Horizontal Plane — F

tends to move B along line CD; @Q is the component which actually moves B; P is the pressure, due to

F, of the body on CD

Q= FX cosa: Pua V Fi— Qi

Screw —- F = force at end of handle or wrench;

R = lever-arm of F; r = pitch radius of screw; p =

lead of thread; Q = load Then, neglecting friction:

M Vu g=z#x

If » is the coefficient of friction, then:

For motion in direction of load Q which assists it:

it is a€ the geometric center The center of gravity of a uniform rdund rod, for

example, is at the center of its diameter halfway along its length; the center of

gravity of a sphere is at the center of the sphere For solids, areas, and arcs that are not symmetrical, the determination of the center of gravity may be made

experimentally or may be calculated by the use of formulas

‘The tables that follow give such formulas for some of the more important shap¢s

For more complicated and unsymmetrical shapes the methods outlined on page 313 may be used

Example: A piece of wire is bent into the form of a semi-circular arc of 10-inch radius How far from the center of the arc is the center of gravity located? _ Accompanying the third diagram on page 308 is a formula for the distance from the center of gravity of an arc to the center of the arc: ¢ = 2r +, Therefore, in thiscase, ›

8=2 Xa TÔ + 3.1416 = 6,366 inches.

Trang 12

ở of the center of gravity from side a is:

h (b+) , 2(z+b+c}

where & is the height perpendicular to đ

is equal to one-third the height perpendicular to

that side Hence, ¢= h+ 3

Circular Arc — The center of gravity is on the

line that bisects the arc, at a distance

2 2

a - _ Œ +48 ) from the center of the circle

For an arc equal to one-half the periphery:

the line joining the middle points of parallel lines

The trapezoid can also be divided into two tri-

angles The center of gravity is at the intersection

of the line joining the centers of gravity of the tri-

angles, and the middle line FG

Trang 13

Ayea of « Parallelogram — The center of gravity

is at the intersection of the diagonals

Any Four-sided Figure — Two cases are possible,

as shown in the illustration To find the center

of gravity of the four-sided figure ABCD, each of

the sides is divided into three equal parts A line is then drawn through each pair of division

points next to the points of intersection A, B, C,

and D of the sides of the figure ‘These lines form

& parallelogram EFGH; the intersection of the

diagonals EG and FA locates the required center

Part of Circle Ring — Distance 6 from center of

gravity to center of circle is:

(R* — r#) sin œ

(Rt—-r)œ Angle a is expressed in degrees

È = 38.197

Trang 14

482

TRONG TAM CENTER OF GRAVITY

Segment of an Ejlipse.— The center of gravity

of an elliptic segment ABC, symmetrical about one of the axes, coincides with the center of gravity

of the segment DBF of a circle, the diameter of

which is equal to that axis of the ellipse about 3 which the elliptic segment is symmetrical

+ C ‡ _ For the compleroent area ABC:

- ! 5 pherical Surface of Segments and Zones of

` Spheres - Distances ø and š which determine the

center of gravity, are:

cylinder (or prism) with parallel end surfaces, is

located at the middle of the line that joins the

centers of gravity of the end surfaces

The center of gravity of a cylindrical surface or

shell, with the base or end surface in one end, is found from:

ahi

o= Thad

The center of gravity of.a cylinder cut of by an

inclined plane is located by:

Trang 15

If the cylinder is bollow, the center of gravity

of the solid shell is found by:

H+— pe H*— }a

tance from the base equal to one-quarter of the

| height; ora = 3&4

| he center of gravity of the triangular surfaces forming the pyramid is located on the line joining the apex with the center of gravity of the base surface, at a distance from the base equal to one-

third of the height; or a = ‡ À

Cone —- The same rules apply as for the pyramid

For the solid cone:

of the end surfaces If A1= area of base surface,

| and 42 area of top surface,

Frustum af Cone — The same rules apply as for

‘the frustum of a pyramid For a solid frustum of 2) 4 circular cone the formula below is also used:

_ h{(R1!-+L + Rr + 3r?)

_— 4(Œ?*.t+rRr+r?)

‘ Ậ cal surface of a frustum of a cone is determined by:

Trang 16

484 TRONG TAM

CENTER OF GRAVITY

joining the center of gravity of the base with the middle point of the edge, and is located at:

a (25+)

Spherical Segment — The center of gravity of a

solid segment is determined by:

Spherical Sector — The center of gravity of a

solid sector is at:

a= § (1+ cosa) r =f (27—h)

Segment of Ellipsoid or Spheroid.— The center

of gravity of a solid segment ABC, symmetrical

m about the axis of rotation, coincides with the center

—p— of gravity of the segment DBF of a sphere, the

diameter of which is equal to the axis of rotation

Pareboloid — The center of gravity of a solid

paraboloid of rotation is at:

a=th

Center of Gravity of Two Bodies — If the weights

of the bodies are P and Q, and the distance between

their centers of gravity is 4, then:

Trang 17

485

MECHANICS

Center of Gravity of Figures of any Outline — If the figure is symmetrica!

about a center line, as in Fig 1, the center of gravity will be located on that line

To find the exact location on that Jine, the simplest method is by taking moments with reference to any convenient axis at right angles to this center line Divide the area into geometrical figures, the centers of gravity of which can be easily found

In this case, divide the figure into three rectangles KLMN, EFGH and OPRS

Call the areas of these rectangles 4, B and C, respectively, and find the center of gravity of each Then select any convenient axis, as XX, at right angles to the center line YF, and determine distances 2, 5 and c The distance y of the center

of gravity of the complete figure from the axis XX is then found from the equation:

gravity is determined by the equations:

x Aa + Bh +Ca Aa+t Bb+Ce

A+B+CO 7”"A+B+C

As an example, let A = 14 square inches, B = 18 square inches, and C = 20 square inches Let a= 3 inches, b= 7 inches, and ¢= 11.5 inches Let a: = 6.5 inches,

& = 8.5 inches, and ¢; = 7 inches Then:

pe EEK OS+IBXBS+20X7 _ a = 7.38 inches

14+ 18+ 20 4X 3+18X% 7+ 20X 11.5 398

¥ 144 184-20 sa 7.65 inches

In other words, the center of gravity is located at a distance of 7.65 inches from

the axis XX and 7.38 inches from the axis YY.

Trang 18

(Af = mass of body = weight 4.32.16)

† TT Prisms — With reference to axis A — A:

j L _ With refererce to axis 8 — :

an, 3 I=M (? + my

Trang 19

-MOMENT QUAN TINH

Trang 20

BAN KINH HO! CHUYEN

RADIUS OF GYRATION

Bar of Small Diameter

- ” Axis through center Cylinder

Axis through center

bent to Circular Shape

Axis, a diameter of the

Trang 21

Axis, diameter at mid- Cylinder Parallelepiped

length Axis at a distance Axis at distance from

Longitudinal Axis Axis through center Aik a A

Trang 22

B(R+sR+6A) 3 (Ea k~vettậr

| Sphere

Axis its diameter Ellipsoid

Axis its diameter Paraboloid

Axis through center

L

k= 0.6325 Bur Ry k=o 5773 r

Trang 23

_ MATERIALS —

SỨC BÊN VAT LIEU

Trang 24

Aweiion Moment of Section Modulus | Radius of Gyration

Trang 25

** 5 Btsinta) ieee) =o289 x 8 ff

tbsine | aaa Ranta

Trang 27

12a 4costa29° 6L 400s? 224° 48 cost 32§°

Trang 29

Ls t— 19 |

ai” == 19

|e a@~ 3 ale (@~h) 4

Trang 31

499

_ MOMENT QUAN TINH : MODUL MAT CAT

_ MOMENTS OF INERTIA, SECTION MODULUS etc., OF SECTION —

Trang 32

500

MOMENT QUAN TINH : MODUL MAT CAT

MOMENTS OF INERTIA, SECTION MODULUS etc., OF SECTION

Distance from Neutral

Section Area of Sect ion, Axis to Extreme Fiber,

Trang 33

Am"

MOMENT QUÁN TÍNH : MODUL MAT CAT

MOMENTS OF INERTIA, SECTION MODULUS etc OF SECTION

Trang 34

502

TINH CHAT CAC TIET DIEN KHUNG CAT

PROPERTIES OF SECTIONS FOR PUNCH AND SHEAR FRAMES

Trang 35

+1 + Z, = Section Modulus for Compression;

fog 7 2, = Section Moduius for Tension;

Trang 36

504

MODUL TIET DIEN CHU NHAT

SECTION MODULUS FOR RECTANGLES

Length | Section || Length | Section |{ Length | Section [| Length | Section

of Side | Modulus |] of Side [ Modulus |] of Side | Modulus || of Side | Modulus

MODUL TIET DIEN VA MOMENT QUAN TINH

CUA TRUC TRON

SECTION MODULUS AND MOMENTS OF INERTIA

Diam.) Modulus | of Inertia |] Di#™-|Modutue] of Inertia |] >18™-/Modulus| of Inertiz |

543 | 0.00037 ] 0.00003 32964 {| 0.0091 | 0.00207 S4 0.0413 | O.OT55O

He | 0.00065 | 0.00006 8iệa | o.oIIT Ì o.ooz7o 2363 | 0.0467 0.08825

In this and succeeding tables, the Polar Section Modulus fora shaft of given diameter

Trang 37

SECTION MODULUS AND MOMENTS OF INERTIA

FOR ROUND SHAFTS

Diam, aces of Inertia || 9#-| sodutus fof Inertia {| P#™-| Modulus lof Inertia

3.00 | 0.0981 | 0.0490 |] 1.50 | 0.3323 | 0.2485 |] 2.00 | 0.7854 | 0.7854

I1.OI | O.1OII | ©.OSIG || r.51 | 0.3380 | 0.2552 || 2.02 | 0.7972 | 0.8012

1.02 | 0.1041 | 0.0538 || 1.52 | 0.3447 | 0.2620 |] 2.02 | 0.8092 | 0.8172 4.03 | 0.1072 | 0.0552 |] r.53 | 0.3516 | 0 2689 || 2.03 | 0.8212 | 0.8335 1.04 | 0.1104 | 0.0574 I] x.54 | 0.3585 | 0.276r |] 2.04 | 0.8334 | o.8sor

r.0§ | 0.1136 | c.0596 || t.55 | 0.3655 |] 0 2833 || 2.05 | 0.8457 | 0.8669

3.06 | 0.1169 | 0.0619 || 1.56 | 0.3727 | 0.2907 || 2.06 | 0.8582 | 0 8839 1.07 | 0.1202 | 0.0643 || 1.57 | 0.3799 | 0.2982 || 2.07 | 0.8707 | 0.gor2 1.08 | 09.1236 | 0.0667 [| 1.58 [| 0.3872 | 0.3059 |] 2.08 | 0.8834 | 0.9788 1.09 | 0.1272 | 0.0692 || 1.59 | 0.3946 } 0.3137 || 2.09 | 0.8962 | 0.9366 1.10 | 60,1307 | 0.0718 |} 1.60 | 0.4021 | 0.3217 || 2.10 | o.go92 | 0.9547 1.21 | 0.1347 | 0.0745 | 1.65 | 0.40907 | 0.3298 }) 2.11 | 0.9222 | 0.9729 1.12 | 0.1379 | 0.0772 || 1.62 | 0.4173 | 0.3380 || 2.12 | 0.9354 | 0.9915 1.13 | 0.1416 | 0.0800 }} 1.63 | 0.4251 | 0.3465 |] 2.13 | 0.9487 | r.0103 z.¥4 | 0.1454 | 0.0829 ¡| 1.64 | 0.4330 | 0.3550 || 2.14 | 0.9621 | 1.02795 I.25 | 0.1493 | 0.0859 |] 1.65 | 0.4410 | 0.3638 || 2.15 | 0.9757 | 1.0488

1.36 | 0.1532 | 0.0888 fl 1.66 | 0.4490 | 0.3727 || 2.16 | 0.9894 {| 1.0685

1.T17 | O.IS72 | o.ogr9 || 1.67 | 0.4572 | 0.3828 I] 2.17 | 1.0032 | 1.0884 2.318 | o 1613 | 0.0951 |} 1.68 | 0.4655 | 0.3910 || 2.18 | r.orzx | 1.1086 1.19 | 0.1654 | 0.0984 || 1.69 | 0.4738 | 0.4004 |} 2.19 | r.0gzr | 1.1291 1.20 | 0, 1696 | o 1018 || 1.70 | 0.4823 | 0.4100 |f 2.20 | r.04gq | 1.1499 1.2E | 0.1739 | o 1052 || r.7r | 0.4908 [| 0.4797 || 2.21 | 1.os06 | 1.1709 1.22 | 0.1782 | 0.1087 |! 1.72 | 0.4995 | 0.4296 || 2.22 | 1.Oy41 | 1.1923

1.23 | 0, 1826 | 0.1123 |/ 1.73 | 0.5083 | 0.4397 || 2.23 |] 1.0887 | 1.2739

1.24 | 0.1871 | o 1160 |/ 1.74 | o.517r | 0.4499 |} 2.24 | 1.1034 | 1.2358 |

1.25 | o, 1917 | 0.1198 || 1.7S | o.s26t | o.4694 || 2.25 | x.1783 | 1.2580

1.26 | 0.1963 | 0.1237 || 1.76 | 0.5352 | 0.4710 || 2.26 | 1.1442 | 1.2806 1.27 | O.2OII | O.1277 || 1.77 | 0.5444 | o.4ð18 || 2.2y | 1.1483 | 1.3034 1.28 | o.2os8 | o.1317 | 1.78 | o.5536 | 0.4927 || 2.28 | 1.1636 | 2.3265 '1,.29 | 0.2107 | 0.1359 jl 1.79 | © 5630 | 0.5039 || 2.29 | r.3790 | 1.3499 | 1,30 | 0.2157 | 0.1402 |! 1,80 | 0.5726 | 0.5153 || 2.30 | 3.1945 | 1.3737

-4.31 | 0.2207 | 0.1445 |] 1.82 | 0.5821 | 0.5268 || 2.37 | x 2202 | 1.3977

1.32 | 0.2258 | 0, 1490 || 1.82 | 0.5918 | 0.5385 || 2.32 | 1.2250 | 1.4234 1.33 | 0.2309 ] 0.1535 |} 1.83 | 0.6016 | 0.5505 |} 2.33 | 1.2418 | 1.4468 1.34 | 0.2362 | o 1582 -|| 1.84 | o.6rrs | o.s626 || 2.34 | 2.2579 | 1.4728 1.35 | 0.2475 | 0 2630 || 1.85 | 0.6216 | 0.5749 || 2.35 | 3.2745 | 1.497%

1.36 | 0.2469 | 0.1679 || 1.86 [ 0.6317 | 0 5875 || 2.36 | 1.2904 | 1.5227 1.37 | 0.2524 } 0.1729 |} 1.87 | 0.6419 | 0.6002 || 2.37 | 1.3O6g | 1.5487 -2.38 | 0.2580 | 0.1780 || 4.88 | 0.6524 | 0.6132 || 2.38 | 1.3235 | r.S7SO 1,39 | 0.2636 | 0.1832 || 1.89 | 0.6628 | 0.6263 || 2.39 | 1.3403 | x.6016 1.40 | 0.2694 | 0.1886 |/ 1.90 | 0.6734 | 0.6397 || 2.4o | 1.4572 | 1.6286 1.41 | 0.2752 | 0.1940 || x.91 | 0.6840 | 0.6532 || 2.47 | x.3742 | 1.6559

1.42 | 6.2811 | 0.1995 || 1.92 | 0.6948 | 0.6670 || 2.42 | x 3924 | 1.6836 1.43 | 0.2870 | o.2os2 || 1.93 | 0.7057 | 0.6810 || 2.43 | 1.4087 | 1.7176

Trang 38

506

MODUI, TIẾT ĐIỆN VÀ MOMENT QUÁN TÍNH

CUA TRỤC TRON

SECTION MODULUS AND MOMENTS OF INERTIA

FOR ROUND SHAFTS

| Section | Moment Section | Moment Section | Moment

Diam | stodulus lot Inertia || O!8™-] Modutus lof Inertia || O*™-| modulus fot Inertia

2.51 | 1.5525 | 1.9483 || 3.o1 | 2.6773 | 4.9293 || 3.51 | 4.2455 | 7.4507

2.52 | I.57II | 1.9706 || 3.02 | 2.7042 [ 4.0831 || 3.52 | 4.2818 | 7.5360 2.53 | 1.5899 | 2.0z12 || 3.03 | 2.7310 | 4.1375 || 3-53 | 4.3784 [ 7.6220 2.54 | 1.6083 | 2.0432 || 3.04 | 2.758r | 4.1924 |] 3.54 4.3558 7.7087

2.55 | 1.6279 | 2.0755 |} 3-05 | 2.7855 | 4.2478 || 3.55 | 4.3922 | 7.7962

“2.56 | 1.647 | 2.1083 || 3.06 | 2.8130 | 4.3038 |] 3-56 | 4.4294 | 7.8845

2.57 | t.666§ | 2.1414 || 3.07 | 2.8406 | 4.3604 || 3.57 | 4.4669 | 7.9734

1 2.58 | 2.6860 | 2.1749 || 3.08 | 2.8685 | 4.4175 || 3.58 | 4.5045 | 8.0632 2.59 | r.7057 } 2.2088 Il 3.09 } 2.8965 | 4.4751 || 3-59 | 4-5434 | 8.1536 Ï

2.74 | 1.9975 | 2.7266 || 3.23 | 3.3083 } 5.3430 || 3.73 | 5.0948 | 9.5018 2.74 | 2.0195 | 2.7668 || 3.24 | 3.3392 | 5.4©94 |[ 4.74 | 5-1359 | 9.6047 © 2.75 | 2.o417 | 2.8o;4 || 3.35 | 3.37ot | 5.4765 || 3.75 | 5.1771 | 9.7972

2.76 | 2.0641 | 2.8484 || 3.26 | 3.4014 | 5.5442 |] 3.76 | 5.2187 | g.8112 2.77 | 2.0866 { 2.8899 || 3.27 | 3.4328 | 5.6126 H 3.77 | 5.2605 | 9.9160 2.78 | 2.1093 | 2.9319 || 3.28 | 3.4644 °{ 5.6815 | 3.78 | 5.3024 |10.0276 2.79 | 4.1321 | 2.9743 || 3.29 | 43.4061 | 5.7511 || 3.79 | 5-3444 |to.1286 2.80 | 2.1550 | 2.0172 |] 3.30 | 3.5280 | 5.8214 |! 3.80 | 5.3870 [10.2350

2.81 | 2.1783 | 3.0605 {| 3.3x | 3.5603 | 5.8923 }] 3.8x | 5.4297 [10.3436

2,82 | 2.2076 | 3.1043 || 3.32 | 3.5926 | 5.9638 || 3.82 | 5.4726 |1O.4526 2.83 | 2.2251 | 3.1486 || 3.33 | 3.6252 | 6.0363 [| 3.83 | °§ 5156 |z0 5624 1

| 2.84 | 2.2488 | 3.17933 || 3.34 | 3.6580 | 6.1088 || 3.84 | 5.5590 |r0 6732 2.85 | 2.2727 | 3.2385 |} 3.35 | 3.6909 | 6.1823 |] 3.85 | 5.6025 |to.7B48 2,86 | 2.2966 | 3.2842 || 3.36 [ 3.724: | 6.2564 |) 3.86 | 5.6462 }20.8970

2.87 | 2.3208 | 3.3304 || 3.37 | 3.7575 | 6.3322 || 3.87 | 5.6903 |r1.o1Iro

2.88 | 2.3452 | 3.3771 3-38 | 3.7909 | 6.4067 4.88 | 5.7345 |11.1280

2.89 | 2.3697 | 3.4242 || 3.39 | 3.8246 | 6.4829 i 3.89 | 5.7789 |xz 2400 2.90 | 2.3940 | 3.4779 || 3.40 | 3.8590 | 6.5597 |] 3.90 | 5.8240 |z1.356c

2.91 | 2.4192 | 3.5200 |} 3.41 | 3.8928 | 6.6372 || 3.92 | 5.8685 |z1.4730 2.92 | 2.4442 | 3.5686 || 3.42 | 3.9272 | 6.7154 || 3.92 | 5.0137 |r1.s9ro |

2.03 | 2.4695 | 3.6178 || 3.43 | 3.9617 | 6.7943 |] 3.93 | 5.9590 |x1.7100 | 2.94 | 2.4949 | 3.6674 || 3.44 | 3-9965 | 6:8739 || 3.94 | 6.oo46 |rt.820o 2.95 | 2.5204 | 3.7175 || 3.45 | 4.0314 | 6.9542 lÌ 4.95 | 6.osos |r1.g5oo

2.96 | 2.5461 | 3.7682 |/ 3.46 | 4.0666 | 7.0332 | 3-96 | 6.0966 |rz.o6ạẠo - 2.97 | 2.5720 | 3.8196 |! 3.47 | 4.1019 | 7.1168 |] 3.97 | 6.1429 [12.1930 2.98 | 2.5981 | s.8yrr |} 348 | 4.1375 | 7.1976 |} 3.98 | 6.1894 [12.3270 2.99 | 2.6243 | 3.9233 || 3.49 | 4.1732 7.2824 11 3.09 | 6.2361 12.4416 |

Trang 39

807 MODUL TIET DIEN VA MOMENT QUAN TINH

CUA TRUC TRON

SECTION MODULUS AND MOMENTS OF INERTIA

FOR ROUND SHAFTS

Section | Moment Section | Moment 3 Section | Moment

*) Modulus fof Inertia |] [#"- | Modulus lof Inertia | Diam | Modulus jof Inertia

6.2830 | 12.566 8.946 | 20.129 |] s.oo | 12.272 | 30.680 6.3304 | 12.692 9.006 | zo.3o8 || s.or | 12.345 | 30.926 6.3779 | 12.820 9.066 | 20.489 |] 5.02 [| 12.420 | 3x 173 6.4256 | 12.948 g.126 | 20.671 || 5.03 | 12.493 ] 31.423 6.4736 | 13.077 9.186 | 20.854 |] 5.04 | 12.568 | 31.673 6.5217 | 13.227 9.247 | 21.039 || 5.05 | 12.644 | 31.925 6.5701 | 13.337 g.308 | 21.224 |] 5.06 | 12.718 } 32.179

6.6188 | 13.469 9.370 | 21.4rr || 5.07 | 12.794 | 32.434

6.6677 | 13.692 || 4.58 | 9.431 | 22.599 |] 5.08 | 12.870 | 32.691

6.7169 | 13.736 || 4.59 | 9.493 | 24.788 [| 5.09 | 12.946 | 32.949

6.7660 | 13.871 1] 4.60 | 9.556 | 21.979 || 5.10 | 13.023 | 33.209 6.8159 | 14.007 [| 4.62 | 9.618 | 22.170 {| 5.12 | 13:099 | 33.470 6.8657 | 14.143 || 4.62 | 9.682 | 22.363 |} 5.12 | 13.177 | 33.733

6.9164 | 14.28x [| 4.63 | 9.744 | 22.557 i] 5.23 | 13.254 | 33.997 6.0663 | 14.420 || 4.64 | 9.807 | 22.753 || 5.14 | 13.332 | 34.263

7.0169 | 14.560 Í| 4.6s | 9.870 | 22.950 || S.15 | 13.410 | 34.530

7.o677 | 14.701 || 4.66 | 9.934 | 23.148 || 5.16 | 13.488 | 34.799 7.1188 | 14.843 || 4.67 | 9.998 | 23.347 i| 5.17 | 13.567 | 35.070

7.1702 | 14.985 jf 4.68 | 10.063 | 23.548 || 5.78 | 13.645 | 35.342 7.2217 | 15.129 {| 4.69 | 10.127 | 23.750 |} §.29 | 13.725 | 35.615 7.2740 | 15.274 |f 4.70 | 10.193 | 23.953 [| 5.20 | 13.804 | 35.892 7.3256 |] 15.420 If 4.72 | 10,258 | 24.157 || 5.22 | 13.884 | 36 x68 7.3779 | 15.568 |] 4.72 | 10.323 | 24.363 [| 5.22 | 13.964 | 36: 446

7-4305 | 15.715 || 4.73 | 10.389 | 24.570 || 5.23 | 14.045 | 36.726 7-4833 | 15.865 [| 4.74 | 10.455 | 24.779 || §.24 | 14.125 | 37.008

7-5364 | 16.075 |} 4.75 | 10.522 | 24.989 || 5.25 | 14.206 | 37.291 7.5898 | 16.366 || 4.76 ] 10.588 | 25.200 || 5.26 | 14.287 | 37.576 7:6433 | 16.319 |) 4.77 | fo.65§ | 25.412 || 5.27 | 14.369 | 37.863 7-6972 | 16.472 || 4.78 | 10.722 | 25.626 || 5.28 | r4.45x | 38.151 7.7813 | 16.626 j} 4.79 | 10.790 | 25.841 || 5.29 | 14.534 | 38.440

7.8060 | 16.782 || 4.80 | 10.857 | 26.058 1] 5.30 | 14.616 | 38.732

7.8602 | 16.998 || 4.81 | 10.925 | 26.275 [| 5.32 | 14.609 | 39.025 7.9149 | 17.096 I] 4.82 | 10.094 | 26.495 |] 5.32 | 14.782 | 39.320 7.9701 | 17.255 || 4.83 | 12.062 | 26.778 f] 5.33 | 14.866 | 39.617

8.0254 | 17.415 || 4.84 | jt.131 | 26.937 || 5.34 | 14.949 | 39.915

8.oBio | 17.576 |] 4.85 | Ir.200 | 27.160 || sý.35 | 1s.O34 | 40.215 8.1369 | 17.738 || 4.86 | rr.zôg | 27.385 || 5.36 | rs.rr8 | 40.516 8.1930 | 17.902 || 4.87 | 12.339 | 27.613 || 5.37 | rg.202 | 40.819 8.2494 | 18.066 || 4.88 | 11.409 | 27.839 [| 5.38 | 15.288 | 4x 124 8.3060 | 18.231 |] 4.89 | 11.479 | 28.067 | 5.39 | t5.373 | 42.432 8.3630 | 18.398 3) 4.90 | rz 550 | 28.298 || s.4o | 15.459 | 41.739 8.4200 | 18.566 || 4.91 | rr.621 | 28.530 |] 5.4z | 15.545 | 42.049 8.4775 | 18.735 {| 4.92 | rr.692 | 28.763 || 5.42 | r5.632 | 42.362

8.535r | 18.905 || 4.03 | 11.763 | 28.997 || 5.43 | 15.728 | 42.674 8.5930 | 19.077 I 4.94 | 12.835 | 29.233 || 5.44 | 15.805 | 42.990 8.6513 } 19.249 || 4.95 | Ir.907 | 209.471! |} 5.45 | 15.893 | 43.307

8.7097 | 19.423 || 4.96 ] rz.979 | 29.720 || 5.46 | 15.980 | 43.626 8.7685 | 19.598 |] 4.97 | 12.052 | 29.950 |] 5.47 | 16.068 | 43.946 8.8274 | 19.773 || 4.98 | 12.124 | 30.192 || 5:48 | 16.157 | 44.268 8.8867 | 19.950 || 4.99 | 12.198 | 30.435 |{-5.49 | 16.245 | 44.592

Trang 40

TIEU CHUAN M¥ CHO THEP XAY DUNG TIET DIEN U

AMERICAN STANDARD STRUCTURAL CHANNELS

These channels are commonly designated

by nominal depth, group symbol, and weight | 4 x

: tạp 9LI13.4 wa: min T | ‡

t Data from American Institute of Steel Construction Manual, Fifth Edition, 19so

_ *Car and Shipbuilding Channel; not an American Standard

Meaning of symbols: {= moment of inertia; Z = section modulus; r = radius of

Ngày đăng: 16/07/2016, 09:12

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w