1. Trang chủ
  2. » Luận Văn - Báo Cáo

mot so sai lam thuong gap cua hoc sinh khi giai toan

15 251 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 535,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

I.Lí do chọn tiểu luận:Khi giải một bài toán phương trình, bất phương trình ở trường THPT học sinh thường mắc phải những sai lầm.. Thường là sai lầm do thực hiện các phép biến đổ

Trang 1

MỤC LỤC

Trang

Trang phụ bìa

MỞ ĐẦU

Trang 2

I.Lí do chọn tiểu luận:

Khi giải một bài toán phương trình, bất phương trình ở trường THPT học sinh thường mắc phải những sai lầm Thường là sai lầm do thực hiện các phép biến đổi, qua các cách hiểu sai về công thức, do tự suy luận mà không xác định hết các trường hợp của bài toán,…Qua thực tế giảng dạy nhiều năm tôi nhận thấy rất rõ yếu điểm này của học sinh vì vậy tôi mạnh dạn chọn tên tiểu luận : “ Một số sai lầm thường gặp của học sinh khi giải toán phương trình ở trường THPT”

Nhằm giúp học sinh khắc phục được những yếu điểm nêu trên từ đó đạt được kết quả cao kh giải các bài toán phương trình, bất phương trình nói riêng và đạt kết quả cao trong quá trình học tập nói chung

II Mục đích nghiên cứu:

-Nghiên cứu những sai lầm mà học sinh có thể gặp trong quá trình giải toán -Nghiên cứu khả năng của giáo viên trong việc giải quyết những sai lầm của học sinh trong quá trình giải toán

-Thiết kế một số kiểu sai lầm của học sinh trong quá trình giải toán

III.Đối tượng nghiên cứu:

-Học sinh THPT

-Sách giáo khoa, sách giáo viên, các loại sách tham khảo

IV Câu hỏi nghiên cứu:

Một số sai lầm thường gặp của học sinh khi giải toán phương trình, bất phương trình ở trường THPT

V Nhiệm vụ nghiên cứu:

-Nghiên cứu những sai lầm, nguồn gốc những sai lầm của học sinh trong quá trình giải toán

-Nghiên cứu cách dạy học sinh như thế nào để không mắc những sai lầm trong khi giải toán

VI Phương pháp nghiên cứu:

Trang 3

-Nghiên cứu, phân tích sách giáo viên, sách giáo khoa THPT và các sách tham khảo môn Toán

-Nghiên cứu qua nội dung các bài kiểm tra, bài giải của học sinh trên lớp môn toán

VII Cấu trúc tiểu luận:

Mục lục

Mở đầu

Chương I: Cơ sở lý luận

Chương II: Nội dung

Chương III: Kết luận

Tài liệu tham khảo

Chương I: CƠ SỞ LÝ LUẬN

Ở trường THPT dạy toán là dạy hoạt động toán học Đối với học sinh ta có thể xem giải toán là hình thức chủ yếu của hoạt động toán học Dạy học giải toán có vai trò đặc biệt quan trong trong dạy học môn toán Ở nhà trường phổ thông, các bài

Trang 4

toán là phương tiện có hiệu quả và không thể thay thế được trong việc phát triển tư duy, hình thành kỹ năng,…

Tuy nhiên, thực tiễn dạy học cho thấy chất lượng dạy học ở trường phổ thông có lúc, có chỗ còn chưa tốt; biểu hiện lúc giải toán của học sinh còn mắt những sai lầm Nguyên nhân quan trọng là do giáo viên chưa chú ý mọt cách đúng mức trong việc phát hiện, uốn nắng và sửa chữa nhưng sai lầm cho học sinh ngay trong giờ học toán và vì điều này nên ở học sinh gặp phải tình trạng: Sai lầm nối tiếp sai lầm

Nhiều nhà khoa học đã nhấn mạnh đến vai trò của việc sửa chữa sai lầm cho học sinh trong việc giảng dạy toán

Ví dụ:

-G.Polya viết: “Con người phải biết học ở những sai lầm và thiết sót của mình”

-A.A.Stôliar nhấn mạnh: “Không được tiết thời gian (trong giờ dạy học) để phân tích trên giờ học các sai lầm của học sinh”

-Viện sĩ A.N.Kôlmôgôrôv khẳng định: “Năng lực bình thường của học sinh trung học đủ để các em nắm được toán học ở trường phổ thông nếu có sự hướng dẫn tốt của thầy giáo”

Vậy ta có thể khẳng định rằng các sai lầm của học sinh trong giải toán là cần

và có thể khắc phục được

Về những công trình nghiên cứu đối với sai lầm của học sinh: Có tài liệu phân ra các dạng sai lầm theo các chủ đề môn toán chửng hạn: Lần lượt đi qua những sai lầm khi xét bài toán liên quan đạo hàm, sai lầm khi xét các loại hệ phương trình, bất phương trình, sai lầm khi tìm giá trị nhỏ nhất, giá trị lớn nhất, sai lầm khi giải toán đại số tổ hợp…

Theo cách này thì tác giả đã trình bày trên mỗi chủ đề là những ví dụ điển hình để làm bật lên được những sai lầm khá phổ biến của học sinh khi học kiến thức thuộc chủ đề ấy, cuối cùng thì trình bày phương pháp khắc phục, sửa chữa các sai lầm đó

Đặc điểm nổi bật của cách trình bày này là: Nếu đọc kỹ thì sẽ giúp người đọc hình dung ra được ở mỗi chủ đề cụ thể thì học sinh có thể mắc phải những sai lầm này, sai lầm kia

Tuy nhiên nó cũng có một nhược điểm là: Các chủ đề thì nhiều lắm, các dạnh bài toáncũng rất nhiều nên rất khó có thể liệt kê được hết

Chương II: NỘI DUNG

Bài 1: Giải phương trình: cos 2x+ 1 sin 2 + x = 2 sinx+ cosx ( )1

*Dự kiến sai lầm:

Ta có:

Trang 5

( ) ( )

2

cos 2 cos sin cos sin cos sin

1 sin 2 cos sin 2sin cos cos sin

Điều kiện để căn thức có nghĩa là:

4

x

x

π π

( )1 cos sin 0 ( ) ( )1'

cos sin cos sin 2 0 1''

⇔ 



4

( )1'' ⇔ cosx− sinx+ cosx+ sinx = 2

Ta có:

2

Bunhiascopki

Dấu “ = ” xảy ra ⇔ cosx= ⇔ = 1 x k2 , π k Z

Vậy phương trình có nghiệm là:

4

x= − +π kπ; x k= 2 ,π k Z

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

+ Sai lầm khi giải hệ:

0 0

A B A

 ≥

 Nhiều học sinh nhằm tưởng:

+ Hướng khắc phục:

Khi giải hệ phương trình có dạng . 0

0

A B A

 ≥

 ta phải xét hai trường hợp biết đổi như sau:

Trường hợp 1: A≥ 0 và B có nghĩa

Trường hợp 2:  ≥B A>00

*Bài giải đúng:

………

Bài 2: Giải phương trình: (9 −x2) 2 − =x 0 ( )*

Trang 6

*Dự đoán sai lầm: ( 2) 9 2 0 3

2

x x

Vậy phương trình có ba nghiệm: x = -3; x = 3; x = 2

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

-Nguyên nhân sai lầm: Sai lầm ở chỗ quên tìm miền xác định của phương trình nên

đã không loại nghiệm x = 3.

-Hướng khắc phục: Đối với bài toán giải phương trình bất kì, trước hết ta phải tìm miền xác định của phương trình đó

*Bài giải đúng:

Miền xác định: D= −∞( ; 2]

( )

2 2

3

2

x

x

=

− =

Vậy phương trình có hai nghiệm: x = -3; x = 2.

Bài 3: Tìm m để phương trình có nghiệm duy nhất: x− = 1 m x− 2 ( )2

*Dự đoán sai lầm 1:

Phương trình:

Phương trình (2) có nghiệm duy nhất tương đương phương trình (2’) có nghiệm duy nhất

2

Vậy m = ½ thì phương trình có nghiệm duy nhất

*Nguyên nhân sai lầm và hướng khắc phục sai lầm 1:

Nhắc học sinh khi gặp phương trình dạng: 2

0

A

*Dự đoán sai lầm 2:

2

1

1

 Phương trình (2) có nghiệm duy nhất tương đương phương trình (2’) có nghiệm duy nhất thỏa điều kiện x≥ 1

2

1

2

m

VN b

a

Vậy không có giá trị m thỏa yêu cầu bài toán

*Nguyên nhân sai lầm và hướng khắc phục sai lầm 2:

Học sinh đặt được điều kiện nhưng học sinh đã không hiểu: Phương trình (2) có nghiệm duy nhất thì phương trình (2’) không có 2 nghiệm thỏa điều kiện x≥ 1

*Bài giải đúng:

Trang 7

( ) ( )

2

1

1

 Phương trình (2) có nghiệm duy nhất tương đương phương trình (2’) có 1 nghiệm duy nhất thỏa điều kiện x≥ 1

Xét 3 trường hợp:

1

2

m

VN b

a

+Trường hợp 2: x1 < < 1 x2 ⇔a f 1( ) < ⇔ > 0 m 1 +Trường hợp 3: 1 ( )

1

1

m

Vậy: m≥ 1

Bài 4: Tìm Max, Min của hàm số: y =Sin2006x+Cos2006x

*Dự đoán sai lầm:

Ta có:

2 2

1 1

0 0

2006 2006

2006 2006

=

= +

≤ +

=

=

≥ +

=

Max

Min

y x

Cos x Sin y

y x

Cos x Sin y

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

=

=

=

0

0 0

Cox

Sinx

y Min , vô lí vì Sin2x + Cos2 = 1 → dấu bằng không xảy ra ⇒ điều kiện 2 không thỏa.



=

=

=

1

1

2006

x Cos

x Sin

y Max , vô lí vì Sin2x + Cos2 = 1

*Bài giải đúng:

y= (Sin2x) 1003 + (Cos2x) 1003

y' = − 1003 ( 1 −t) 1002 + 1003t1002 = 0

(1 )

t t

− =

y( 0 ) = 1 ; 1002

(1) 1 ;

 ÷

 

Bài 5: Tìm Max, Min của

2

2

+ +

+

=

Cosx Sinx

Cosx y

*Dự đoán sai lầm:

4

1 2

1 1

1 2

1 ) 1

+ +

≥ + +

+ +

Cos Sinx

Cosx y

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

Trang 8

=

=

= +

=

1 1

0 1

4

1

Cosx Sins

Cosx

y Min , Vơ lí vì dấu bằng khơng xảy ra

*Bài giải đúng:

TXĐ : ℜ

2

2

+ +

+

=

Cosx Sinx

Cosx y

(*) , 0 2 2 )

1

+

Để có Max, Min thì (*) phải só nghiệm x, điều này tương đương với:

2 2

2 + (y− 1 ) ≥ ( 2y− 2 )

Chú y: ASinx+BCosx=C ,cónghiệm⇔ A2 +B2 ≥C2

Bài 6: Giải hệ phương trình



+

=

=

) 2 ( 1 2

) 1 ( 1 1

3

x y

y

y x x

*Dự đốn sai lầm:

Xét hàm số ( ) = −1 t≠ 0

t t t

1

t

= + > ⇒ tăng với ≠ ( 1 ) ⇔ f(x) = f(y) ⇔x= y

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

Vì hàm f (t) gián đoạn tại t = 0, nên khơng thể dùng tính đơn điệu

*Bài giải đúng:

Hệ

+

=

=

=

+

=

=





 +

1 2

1 1

1 2

0

1 1 ) (

3

xy y

x x

y

xy y

x

+

=

=

+

=

=

1 2

1

1 2

0

3

3

x y xy

x y

y x

=

=

+

=

=

=

=

= +

 + +

=

= +

=

2

5 1 2

5 1 1

0 2

3 2

1 2

1 1

0 1 2 0

2 2

2 3

y x

y x

y x

VN x

x xy

x x

y x

Bài 7 : Tìm m để hàm số

m x

m x y

+

= đờng biến trên ( 1 , +∞ )

*Dự đốn sai lầm:

) (

2

=

m x

m y

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

Trang 9

Không giải xm, ∀x∈ ( 1 , +∞ )

*Bài giải đúng:

) (

2

=

m x

m y

0 1

0 )

, 1 ( ,

0 2

+∞

m

m x

m x m

Chú y:

0

0 0

B

A

2

B

A

Bài 8: Giải phương trình: (x2 − 3x) 2x2 − 3x− 2 ≥ 0

*Dự đoán sai lầm:

0 2 3 2 ) 3





2 1 3 2

1 2

0 3

0 2 3 2

0 3

2

2

x

x x

x

x x

x x

x x

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

0

0 0

B

A B

Sai lầm bởi vì nếu B = 0 thìbất phương trình đúng với mọi A, mà không cần A≥ 0

*Bài giải đúng:

+Cách 1: (x2 − 3x) 2x2 − 3x− 2 ≥ 0



>

=

0 3 2

0 2 3 2

0 2 3 2

2 2 2

x x

x x

x x

=



<

>

=

=

2 1 3 2

0 3

2

1 2

2

1 2

x x x

x x

x x

x x

Chú y:

>

=

0 0

0 0

2

A B

B B

+Cách 2: Coù theå xeùt daáu :

Vậy nghiệm là:

=

2 1 3 2

x x x

*Áp dụng giải các bài tập:

1) ( 2x− 5 ) 2x2 − 5x+ 2 ≥ 0

Trang 10

2) 3 4 3 1 (log 2 1 ) 0

3 1

3) − 3x2 + 2x+ 1 (log3 x− 27 )( 2x − 4 ) ≥ 0

4) log 2 2 145 59 0

5

x

Bài 9: Giải bất phương trình: 0

4 2

1

x

x

*Dự đoán sai lầm:

3 3

1 0

4 2

0 1 0

4 2

1

1

>

>

x

x x

x

x x

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

>

0

0 0

B

A B

A

Sai lầm bởi vì nếu A = 0 thì bất phương trình đúng với mọi B, mà không cần B> 0

*Bài giải đúng:

>

=

>

>

=

>

>

=

1 3

1 1 0

4 2

0 1

0 1 0

4 2

1

1

x x

x

x x

x x

x x

Chú y:

>

>

=

0 0

0 0

2

B A

A B

A

n

Bài 10: Giải bất phương trình: x2 +x− 2 + x2 + 2x− 3 ≤ x2 + 4x− 5

*Dự đoán sai lầm:



− +

− +

− +

5

1 5

1

3 1

2 1

0 5 4

0 3 2

0 2

2 2 2

x

x x

x

x x

x x

x x

x x

x x

Bpt ⇔ (x− 1 )(x+ 2 ) + (x− 1 )(x+ 3 ) ≤ (x− 1 )(x+ 5 ) , ( 1 )

x x

x

x x

x x

x x

x

x x x

x x

x

≤ + +

+

≤ + + + +

+

≤ + + +

+

≤ +

− + +

3 2 2

5 3

2 2 5 2

5 3

2

5 1 3

1 2

1

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

AB = A B sai khi A, B đều âm

*Bài giải đúng:

Điều kiện: 

≥ 5

1

x x

Trường hợp 1: x = 1, thế vào (1) : 0 ≤ 0 đúng ⇒x= 1 nhận

Trường hợp 2: x > 1

5 1 3

1 2

1 )

1

( ⇔ xx+ + xx+ ≤ xx+

Trang 11

1 3

2 2

5 3

2 2 5 2

5 3

2

>

≤ + +

+

≤ + + + +

+

≤ + + +

x x

x x

x x

x x

x x

x

vì nghieäm Voâ

Trường hợp 3: x≤ − 5

5 3

2 )

1

( ⇔ −x− + −x− ≤ −x

5 3

2 2

5 3

2 2

5 2

− +

x x

x x

x x

x x

vì nghieäm Voâ

Vậy nghiệm của bất phương trình là: x = 1

Chú y:

=

0

0 ,

0

0 ,

.

B

A B

A

B

A B

A B

A

neáu neáu

*Áp dụng giải các bài tập:

1) x2 −8x+15+ x2 +2x−15 ≤ 4x2 −18x+18

2) x2 −3x+2+ x2 −4x+3≥2 x2 −5x+4

Bài 11: Giải phương trình:

) 1 ( , 1 3 2

2 3

*Dự đoán sai lầm:

Lũy thừa 2 vế của (1), ta có:

1 ) 3 2 2 (

3 2 2 3 3 2

2 + − + 3 − 3 − 3 − + 3 − =

x

3

2 ( 2)(2 3) (2 )

1

x

x

=

Vậy nghiệm là: 

=

= 1

2

x x

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

Phương trình (2) là phương trình hệ quả của phương trình (1) Do đó khi giải ra nghiệm ta phải thử lại

*Bài giải đúng:

Thử lại, bằng cách thế x = 2, x = 1 lần lượt vào (1), ta chỉ nhận một nghiệm x = 2.

*Áp dụng giải các bài tập:

1)

5

6 , 3 , 0 , 9 2 2

2) 3 x+ 34 − 3 x− 3 = 1 , ÑS :30 , − 61

Bài 12: Giải phương trình:

x

*Dự đoán sai lầm:

Trang 12

Điều kiện: 3

3 1 0

3

0 2 1

0 6 5

2

>

>

>



>

>

>

+

x x

x x

x

x x

1

2

x

1

2

x

*Nguyên nhân sai lầm và hướng khắc phục sai lầm:

• Sai lầm 1: Đặt điều kiện không đúng

• Sai lầm 2: Sử dụng công thức không đúng

Chú y: 2

a a

k

n

*Bài giải đúng:

Điều kiện:



>

>

≠ +



>

>

>

+

1 2 3 0

3 1

0 6 5

0 3

0 2 1

0 ) 6 5

x x x x

x

x x

x

x

x x

1

2

x

=

=

=

=

=

=

= +

3 5 3 2

1 2

2

1 2

2

1 2

3 2

1 3

2 3

2

1 6

5

2

x

x x

x

x x

x x

x

x x

x x

x x

x

Vậy nghiệm của phương trình là:

3

5

=

x

4 1 3 4

1 2

4

log 2

*Dự đoán sai lầm:

Điều kiện:

<

<

>

+

>

>

+

4 6

2 0

) 6 (

0 ) 4 (

0 ) 2 (

3 3 2

x

x x

x x

4 1 3 4

1 3

4

Trang 13

2 x : nghieäm

=

=

=

− +

+

= +

+

= +

+

=

 +

, 2 8

0 16 6

) 6 )(

4 ( 4 ).

2 (

) 6 ( ) 4 ( 4 ) 2 (

) 6 ( ) 4 ( log 4

1 : ) 2 ( log

2

3 3

3 3

3 3

4 1

3 3 4

1

x x

x x

x x x

x x x

x x x

*Nguyên nhân sai lầm và hướng khắc phục sai lầm: Công thức m

a

chỉ đúng khi m nguyên, bài trên giải sai bởi vì

2

3

=

m không phải là số nguyên

*Bài giải đúng:

Điều kiện:

<

<

4 6

2

x x

Pt 3log 2 3 3log (4 ) 3log ( 6)

4

1 4

1 4

2 2

log 2 1 log (4 ) log ( 6) log 2 4 log (4 )( 6) 2 4 (4 )( 6)

= ∨ = −

Vậy nghiệm của phương trình là: x= 2 ∨x= 1 − 33

Chương III: KẾT LUẬN

-Qua những vấn đề đã trình bày, tôi nhận thấy rằng để học sinh giải bài tập ở những dạng đã trình bày trên, giáo viên khi dạy những công thức cần nhấn mạnh cho học sinh khắc sâu kiến thức

-Tuy nhiên để tiết học đạt kết quả tốt nhất thì cần phải có sự kết hợp của nhiều phương pháp và nhiều ví dụ minh họa cho công thức, phương tiện trong giảng dạy sao cho có hiệu quả nhất

Trang 14

-Không thể có một phương pháp dạy học cụ thể nào là vạn năng, người thầy phải biết sử dung các phương pháp dạy học một cách hợp lý để cho quá trình dạy học đạt kết quả cao nhất

TÀI LIỆU THAM KHẢO

1.Sách giáo khoa THPT hiện hành_NXB Giáo Dục

2.Sách giáo viên THPT hiện hành_NXB Giáo Dục

Ngày đăng: 30/06/2016, 14:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w