“Truy ng u th c liên h
i ph ơ ”
:
ơ ơ 2
0 ax bxc A x trong x D
A(x)<0, x D) nh A(x)>0 x D
ơ
ơ
1 : G ơ 3 2 2x 3x 17x 26 2 x 1 x 1 ơ ơ
3 2 2 2 1 1 2 2 3 18 27 0 1 3 3 2 9 9 0 1 2 1 3 2 9 9 0 1 2 x x x x x x x x x x x x x x x x Do 1 2 1 2 9 9 3 2 3 0, 1 1 2 1 2 x x x x x x x x x ơ
t :
2x 3x 17x 30 2 2 x 1 0
Trang 2 2 2
1 2
x
ơ
ơ 2 2 2 9 10 1 2 x x x - Khi ta t 2 x 1 x 1 x 1 2
ơ 1 2 3 2 9 9 0 1 2 x x x x x
A(x)= 1 2 2 9 9 1 2 x x x x ơ x 1 ơ
1) ơ 2
2 7 2 3 x x x 2) ơ 3 2 2 3 2 3 x x x x 3) ơ 3
3 2 0 x x x 2 ơ 2
2x 5x 1 x 2 4 x (TH&TT) ch - ơ
ơ
x 2;4
ơ
ơ
ơ -
x 2;4 - 1 4 3 1 4 x x x 1
0 2;4 1 4 x x
3 1 2 1 2 x x x 1
0 2;4 1 x 2 x
3 2 2 2 1 2 1 x x x x x 2
2 1
x
x x
Trang 3L i
2 x 4 ơ ơ ơ
2
3
3
x
x x
x
x
x
ơ
- t ô ơ
ơ
ơ
ơ :
1) ơ 4x 1 2 x 2 3x 1
2) ơ 2
x x x x
x x x x
3 ơ 3 2
x x x
x 1 ơ ơ ơ
Trang 4
2 3
3
3
3
2
2
x
x
x
x
- t
1 x 1 x 1 x 1 1 3
2 x 6 3 3 2
x x
ơ
10x 2 4x 1 3x 1
x x x x
x x x x
5x 3 x 1 2 x 3 x 3x 5
ơ ơ ơ
Trang 5
3
2
3
3
3
1
1 0
x
x
ơ
- t : x
2
2 x 1 x 3 -
2
1 x ơ
1) ơ 3 2 2 3 2x x x 1 x 2x x 1 2x 2 2) ơ 2 2 3x 4 2x 3 1 x x 2 x 3 3) ơ 3 2 2 5 13 6 2 3 3 2 3 1 x x x x x x x 5 ơ 2
1 2 6 7 7 12 x x x x x x ch ơ
ơ
ơ
ơ - , x 2
Trang 6 x 2 x 1 x 2 2
x x
2 0
mx n x -
1
3
m
m n
m n
n
ơ
2
3x 21x 36 3 x 1 x 2 3 x 6 x 7 0
3x 1 x 2 3x 6 x 7
x x x x x x x x
L i
x 2 ơ ơ ơ
x x x x x x x x
2
2
2
2
x
ơ x=2
ơ
3x 14x 13 x 1 4x 5 2 x 5 x 3
5x 3x 1 2 x 17x 28 3 x 13 2x 1
Trang 76: ơ
x 2 x 1 4x 5 2x 3 6x 23 x 1 x 1 t t 0 ơ
3 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 6 17 4 1 2 1 4 1 2 1 1 2 3 4 8 0 2 4 1 2 3 4 8 0 2 1 1 4 2 3 4 8 0 2 1 1 2 4 3 4 8 0, 0 2 1 1 t t t t t t t t t t t t t t t t t t t t t t t t t t t t t Do t t t t t
ơ
t
t
ơ
ơ :
1) ơ x 3 x 1 x 1 x 1 x 2 0
Trang 82) ơ 8x 13 4x 7 12x 35 2x 2 2x 3
3) ơ 4x 12 3x 8 x 6 4x 13 x 2
** n :
ơ ơ
ơ
ơ
ơ
ơ ơ
ơ
-
N ơ 2
4 x 2 22 3 x x 8 TH&TTT11 / 396 ơ 2
2 4 2 5 2 5 & 4 / 388 x x x x x TH TTT ơ 2 3 14 1 2 1 2 9 4 2 4 x x x x x ơ 2
Trang 9ơ 2 2
6 x 1 x 1 x 2 x 1 3 x x 2 TH&TTT4 / 419
ơ 3
x x x
ơ 2
x x x x x (
x x x x x x
“ n nh
u trong tim ng “
e D ơ !
ỉ !