Khảo sát sự biến thiên và vẽ đồ thị C của hàm số 1.. Tìm điểm M thuộc đồ thi C sao cho khoảng cách từ M đến đến trục Oy bằng 2 lần khoảng cách từ M đến đường tiệm cận ngang của đồ thị hà
Trang 1
SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH
TRƯỜNG THPT LÝ TỰ TRỌNG
ĐỀ THI THỬ THPT QUỐC GIA LẦN 1 NĂM 2015 – 2016
Môn thi: TOÁN ( Thời gian làm bài: 180 phút, không kể thời gian giao đề )
Đề thi này có 01 trang
Câu 1 (2,0 điểm) Cho hàm số 2 1
1
x y x
(1)
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2 Tìm điểm M thuộc đồ thi (C) sao cho khoảng cách từ M đến đến trục Oy bằng 2 lần khoảng cách từ M đến đường tiệm cận ngang của đồ thị hàm số (1)
Câu 2 (1,0 điểm) Giải phương trình: 2 cos cos 2x x 2 2sin2xcos 3x
Câu 3 (1,0 điểm) Tính nguyên hàm:
2
x
Câu 4 (1,0 điểm)
4
log (2 3 1) log ( 1)
2 Tìm giá trị lớn nhất và nhỏ nhất của hàm số 2
8ln
y xx trên đoạn [1;e]
Câu 5 (1.0 điểm) Một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng Lấy ngẫu
nhiên cùng lúc ra 4 quả cầu từ hộp đó Tính xác suất sao cho 4 quả cầu được lấy ra có đủ 3 màu, có đúng một quả cầu màu đỏ và có không quá hai quả cầu màu vàng
Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết ABa AD; 2a, tam giác
SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy Gọi I là trung điểm của SD Tính thể tích khối
chóp S.ACD và khoảng cách giữa hai đường thẳng AI và SC
Câu 7 (1,0 điểm) Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD biết 3
2
AB AD Gọi F là
điểm thuộc đoạn thẳng BC sao cho 3
4
BF BC Đường tròn (T) ngoại tiếp tam giác ABF có phương trình
Đường thẳng d đi qua hai điểm A, C có phương trình
3x11y Tìm 2 0
tọa độ đỉnh C biết điểm A có hoành độ âm
Câu 8 (1.0 điểm) Giải hệ phương trình:
3
2
3 3
x y
Câu 9 (1.0 điểm) Cho a b c là ba số thực dương thỏa mãn , , a b c 1 Tìm giá trị nhỏ nhất của biểu
thức:
2 2
2
a P
_ HẾT _
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm