Chương I : Chuyển động thẳng đều.Chương II : Chuyển động thẳng biến đổi đều.Chương III : Chuyển động tròn đều.Chương IV : Các định luật Newton.Chương V : Các lực cơ học.Chương VI : Ứng dụng các đl Newton và các lực cơ học.Chương VII : Cân bằng vật rắn.Chương VIII : Định luật bảo toàn động lượng.Chương IX : Định luật bảo toàn năng lượng.Chương X : Thuyết ĐHPT và chất khí lý tưởng.Chương XI : Nội năng của khí lý tưởng.
Trang 11 – Bài tập Vật lý THPT.
BÀI TẬP VẬT LÝ THPT -Vật Lý Khối 10
Chương I : Chuyển động thẳng đều.
Chương II : Chuyển động thẳng biến đổi đều.
Chương III : Chuyển động tròn đều.
Chương IV : Các định luật Newton.
Chương V : Các lực cơ học.
Chương VI : Ứng dụng các đl Newton và các lực cơ học.
Chương VII : Cân bằng vật rắn.
Chương VIII : Định luật bảo toàn động lượng.
Chương IX : Định luật bảo toàn năng lượng.
Chương X : Thuyết ĐHPT và chất khí lý tưởng.
Chương XI : Nội năng của khí lý tưởng.
Chương I Chuyển động thẳng đều.
Lúc 6 giờ sáng, một người đi xe đạp từ A về B với vận tốc 15 (km/h)
a) Lập phương trình chuyển động của xe đạp
b) Lúc 10 giờ thì người đi xe đạp ở vị trí nào ?
ĐS : x = 15t ; x = 60 (km)
Hai xe A và B cách nhau 112 (km) và chuyển động ngược chiều nhau Xe thứ nhất có vận tốc 36 (km/h), xe thứ hai có vận tốc 20 (km/h) và cùng khởi hành lúc 7 giờ
a) Lập phương trình chuyển động của hai xe
b) Thời điểm nào để hai xe gặp nhau
b) Xác định khoảng cách giữa hai xe sau 1,5 (h) và sau 3 (h)
c) Xác định vị trí gặp nhau của hai xe
ĐS : x 1 = 40t, x 2 = 20 + 30t ; 5 km, 10 km ; Cách A 80 km
Hai bến sông A và B cách nhau 24 (km), dòng nước chảy theo hướng AB với vận tốc 6 (km/h) Một ca
nô chuyển động đều đi từ A về B hết 1 (h) Hỏi ca nô đi ngược từ B đến A hết mấy giờ ?
ĐS : 2 (h)
Một ca nô trong nước yên lặng chạy với vận tốc 30 (km/h) Ca nô đó chạy trên dòng sông nước chảy từ bến A trên thượng lưu đến bến B dưới hạ lưu mất 2 (h) và đi ngược lại mất 3 (h) Tìm :
a) Khoảng cách giữa hai bến sông
b) Vận tốc của dòng nước so với bờ sông
ĐS : 72 (km) ; 6 (km/h)
Trang 22 – Bài tập Vật lý THPT.
Một chiếc thuyền chuyển động đều xuôi dòng từ A đến B cách nhau 6 (km) dọc theo dòng sông rồi lại quay về A mất tất cả 2,5 (h) Biết vận tốc của thuyền trong nước yên lặng là 5 (km/h) Tính vận tốc dòng nước và thời gian thuyền đi xuôi dòng
ĐS : 1 (km/h) ; 1(h)
Một chiếc thuyền đi từ A đến B trên một dòng sông rồi lại quay về A Biết vận tốc của thuyền trong nước yên lặng là 12 (km/h), vận tốc của dòng nước so với bờ sông là 2 (km/h), khoảng cách AB = 14 (km) Tính thời gian đi tổng cộng của thuyền
ĐS : 2,4 (h)
Chương II Chuyển động thẳng biến đổi đều.
Một ô tô chạy trong thời gian t = 5 (h) Trong t1 = 2 (h) đầu, ô tô chạy với vận tốc trung bình là v1 = 75 (km/h), trong t2 = 3 (h) còn lại với vận tốc trung bình là v2 = 50 (km/h) Tính vận tốc trung bình của ô tô trong suốt thời gian chuyển động
1 2
2v v v
v v
=
Một đoàn tàu đang chạy với vận tốc 72 (km/h) thì hãm phanh, sau 5 (s) thì dừng hẳn lại
a) Tìm gia tốc của đoàn tàu
b) Quãng đường mà đoàn tàu đi được kể từ lúc hãm phanh
ĐS : a = -4 (m/s 2 ) ; s = 50 (m)
Một đoàn tàu đang chuyển động với vận tốc 36 (km/h) thì xuống dốc, nó chuyển động nhanh dần đều với gia tốc 0,1 (m/s2) và đến cuối dốc vận tốc của nó đạt tới 72 (km/h)
a) Tính thời gian đoàn tàu chuyển động trên dốc
b) Tính chiều dài của dốc
ĐS : v 0 = 12 (m/s) ; a = -0,6 (m/s 2 )
Hai xe đạp khởi hành cùng lúc và đi ngược nhiều nhau Người thứ nhất khởi hành ở A có vận tốc ban đầu là 18 (km/h) và lên dốc chậm dần đều với gia tốc 20 (cm/s2) Người thứ hai khởi hành tại B với vận tốc ban đầu là 5,4 (km/h) và xuống dốc nhanh dần đều với gia tốc 0,2 (m/s2) Biết khoảng cách AB = 130 (m)
a) Thiết lập phương trình chuyển động của hai xe
b) Sau thời gian bao lâu hai xe gặp nhau ?
c) Vị trí hai xe gặp nhau ? Mỗi xe đi được quãng đường dài bao nhiêu ?
Trang 33 – Bài tập Vật lý THPT.
ĐS : x 1 = 5t - 0,1t 2 , x 2 = 130 – 1,5t – 0,1t 2 ; t = 20 (s) ; xe (1) : 60 (m), xe (2) : 70 (m)
Một vật rơi tự do trong giây cuối cùng nó đi được đoạn đường 63,7 (m) Tính :
a) Thời gian bắt đầu rơi cho đến khi chạm đất
b) Vật đã đi được đoạn đường dài bao nhiêu ?
ĐS : t = 7 (s) ; h = 240 (m)
Chương III Chuyển động tròn đều.
Một bánh xe quay đều 100 vòng trong thời gian 2 (s) Hãy xác định :
a) Chu kỳ, tần số
b) Vận tốc góc của bánh xe
ĐS : T = 0,02 (s), n = 50 (Hz) ; ω = 314 (rad/s)
Thực hiện các tính toán cần thiết để trả lời các câu hỏi sau đây :
a) Một đĩa tròn bán kính 60 (cm) quay đều với chu kỳ là 0,02 (s) Tìm vận tốc dài của một điểm nằm trên vành đĩa
b) Một ô tô qua khúc quanh là một cung tròn bán kính 100 (m) với vận tốc dài 10 (m/s) Tìm gia tốc hướng tâm tác dụng vào xe
ĐS : v = 188,4 (m/s) ; a ht = 1 (m/s 2 )
Chương IV Các định luật Newton.
Một lực F truyền cho một vật có khối lượng m1 gia tốc bằng 8 (m/s2), truyền cho vật có khối lượng m2 gia tốc bằng 4 (m/s2) Nếu đem ghép hai vật làm thành một thì lực đó truyền cho vật ghép gia tốc bao nhiêu ?
1 2
a a a
=+ = 2,7 (m/s 2 )
Thực hiện các tính toán cần thiết để trả lời các câu hỏi sau đây :
Một lực F = 3 (N) tác dụng vào vật có khối lượng m = 15 (kg) Hỏi vận tốc của vật sau 10 (s) Ma sát không đáng kể
Cần tác dụng một lực là bao nhiêu vào vật có khối lượng m = 2 (kg) để có gia tốc a = 5 (cm/s2)
Thực hiện các tính toán cần thiết để trả lời các câu hỏi sau đây :
a) Tính lực hấp dẫn giữa hai tàu thuỷ có khối lượng 5000 (tấn) ở cách nhau 1 (km) nếu xem chúng là chất điểm
b) Tính khối lượng của trái đất biết bán kính trái đất R = 6400 (km) và gia tốc trên mặt đất g0 = 9,8 (m/s2)
ĐS : F hd = 1,67.10 -4 (N) ; M = 6.10 24 (kg)
Thực hiện các tính toán cần thiết để trả lời các câu hỏi sau đây :
Phải treo một vật có khối lượng bằng bao nhiêu vào lò xo có độ cứng k = 100 (N/m) để nó dãn ra 1 (cm) Lấy g = 10 (m/s2)
Trang 4Ô tô chuyển động thẳng đều.
Ô tô chuyển động nhanh dần đều với gia tốc 2 (m/s2)
ĐS : F k = 980 (N) ; F k = 2980 (N)
Một ô tô bắt đầu chuyển động nhanh dần đều Lực kéo của động cơ xe là F = 2500 (N) Sauk hi đi được quãng đường 200 (m), vận tốc xe đạt 72 (km/h) Sau đó, xe chuyển động đều thêm 450 (m) nữa thì tắt máy và đi thêm thời gian 5 (s) mới dừng Biết hệ số ma sát giữa bánh xe và mặt đường trên toàn đường đi
là μ Tính :
a) Lực kéo xe trên đoạn đường chuyển động đều
b) Vận tốc xe sau khi đi được 1/7 quãng đường
c) Vận tốc trung bình của xe trên toàn bộ quãng đường
Chương VI : Ứng dụng các đl Newton và các lực cơ học.
Thực hiện các tính toán cần thiết để trả lời các câu hỏi sau :
Một xe có khối lượng m = 500 (kg) chạy trên đường ngang Lực kéo xe có độ lớn Fk = 1000 (N), mọi sức cản và ma sát không đáng kể Tính gia tốc của xe
Một vật khối lượng m = 200 (g) bắt đầu chuyển động nhanh dần đều trên đường ngang và đi được 80 (cm) trong 4 (s) Biết lực ma sát có độ lớn Fms = 0,02 (N) Tính lực kéo vật
ĐS : a = 2 (m/s 2 ) ; F k = 0,04 (N)
Một vật khối lượng m = 100 (kg) sẽ nén lên đáy của thiết bị dùng để nâng lên cao ở mỏ một lực là bao nhiêu ? Nếu thiết bị đó :
Được nâng lên cao theo phương thẳng đứng với gia tốc a = 20 (cm/s2) cũng theo phương đó
Chuyển động đều Lấy g = 9,8 (m/s2)
ĐS : Q = 1000 (N) ; Q = 980 (N)
Một vật trượt không vận tốc đầu từ đỉnh mặt phẳng nghiêng dài 10 (m) cao 6 (m), hệ số ma sát giữa vật
và mặt phẳng nghiêng là 0,1 Tìm gia tốc của vật Sau bao lâu vật đến chân dốc ? Vận tốc ở chân dốc Lấy
g = 9,8 (m/s2)
ĐS : a = 4,05 (m/s 2 ) ; t = 2,22 (s) ; v = 8,99 (m/s)
Một ô tô khối lượng m = 2,5 (tấn) chuyển động với vận tốc không đổi 54 (km/h), bỏ qua ma sát Tìm lực nén của ô tô lên cầu khi đi qua điểm giữa cầu trong các trường hợp :
Cầu vồng xuống với bán kính 50 (m)
Cầu vồng lên với bán kính 50 (m) Lấy g = 9,8 (m/s2)
ĐS : Q = 35750 (N) ; Q = 13250 (N)
Hai vật khối lượng lần lượt là m1 = 0,2 (kg), m2 = 0,3 (kg) được nối với nhau bằng sợi dây không dãn
và đặt trên mặt bàn ngang, ma sát không đáng kể Ta tác dụng vào m1 lực kéo Fk = 1 (N) song song với mặt bàn Tìm :
Gia tốc chuyển động của các vật
Lực căng dây nối giữa hai vật
ĐS : a = 2 (m/s 2 ) ; T = 0,6 (N)
Trang 55 – Bài tập Vật lý THPT.
Cho cơ hệ như hình Biết m1 = 1,5 (kg), m2 = 1 (kg), khối lượng ròng rọc và dây treo không đáng kể, bỏ qua ma sát Hãy tìm :
Gia tốc chuyển động của hệ
Lực căng của dây nối các vật Lấy g = 10 (m/s2)
ĐS : x = 20t, y = 5t 2 ; (40,20) (m) ; s = 80 (m) ; v = 44,72 (m/s)
Chương VII : Cân bằng vật rắn.
Các thanh nhẹ AB, AC nối với nhau và với tường nhờ các bản lề Tại A có treo trọng vật P = 1000 (N) Tìm lực đàn hồi của các thanh nếu α = 300, β = 600
Trang 66 – Bài tập Vật lý THPT.
Thanh OA = 60 (cm) có trọng lượng P = 40 (N) được đặt ngang nhờ bản lề tại O và dây treo AD Tại B (AB = 20cm) người ta đặt vật nặng P1 = 60 (N) Biết α = 450
a) Tìm mômen của Pur đối với O
b) Tìm mômen của 'Puur đối với O
c) Tìm lực căng của dây AD
Chương VIII : Định luật bảo toàn động lượng.
Một khẩu đại bác nằm ngang khối lượng ms = 1000 (kg), bắn một viên đạn khối lượng md = 2,5 (kg) Vận tốc viên đạn khi ra khỏi nòng súng là vd = 600 (m/s) Tìm vận tốc của súng
ĐS : v s = -1,5 (m/s)
Một xe khối lượng m1 = 30 (tấn) chuyển động trên đường thẳng với vận tốc v1 = 1,5 (m/s) đến mắc vào
xe thứ hai đang đứng yên có khối lượng m2 = 20 (tấn) Tính vận tốc xe khi móc vào nhau
ĐS : v = 0,9 (m/s)
Một người có khối lượng m1 = 50 (kg) nhảy từ một chiếc xe có khối lượng m2 = 80 (kg) đang chuyển động theo phương ngang với vận tốc v = 3 (m/s) Biết vận tốc nhảy đối với xe là v0 = 4 (m/s) Tính vận tốc xe sau khi người ấy nhảy :
a) Cùng chiều
b) Ngược chiều
ĐS : v’ 2 = 0,5 (m/s) ; v’ 2 = 5,5 (m/s)
Chương IX : Định luật bảo toàn năng lượng.
Động năng của vật rơi tự do tăng theo quy luật nào với thời gian rơi, với quãng đường đi ? Sau mấy giây rơi tự do thì vật với khối lượng 1 (kg) có động năng 200 (J) Lấy g = 10 (m/s2)
ĐS :
2 2.2
d
mg
Thực hiện các phép tính cần thiết để trả lời các câu hỏi sau :
a) Tính công cần thiết để nâng đều một vật có khối lượng m = 50 (kg) theo phương thẳng đứng lên độ cao
Trang 7 Một xe trượt băng khối lượng m = 80 (kg), trượt từ trên núi xuống Sau khi đã thu được vận tốc 5 (m/s)
nó tiếp tục chuyển động trên đường ngang Tính lực ma sát tác dụng lên xe trên đoạn đường ngang nếu biết xe đó dừng lại sau khi đã đi được 40 (m)
ĐS : Fms = 25 (N)
Thực hiện các phép tính cần thiết để trả lời các câu hỏi sau :
a) Một máy bay có khối lượng 2 (tấn) đang bay với vận tốc 360 (km/h) Tính động năng của máy bay khi đó
b) Một vật có khối lượng 2 (kg) ở cách mặt đất 10 (m) Tính thế năng của vật này Lấy g = 10 (m/s2)
ĐS : W d = 10 7 (J) ; W t = 200 (J)
Người ta ném một vật nặng 400 (g) thẳng đứng lên cao với vận tốc ban đầu v0 = 2 (m/s)
Tìm động năng ban đầu của vật Vật lên cao nhất là bao nhiêu đối với điểm khởi hành Ở độ cao nào thì thế năng của vật bằng 2 lần động năng ( bỏ qua sức cản không khí )
Một vật m = 1 (kg) từ độ cao h = 240 (m) rơi xuống đất với vận tốc ban đầu v0 = 14 (m/s)
Tính cơ năng tại lúc rơi Tính vận tốc vật chạm mặt đất Sau khi đến mặt đất, vật đi sâu vào đất một đoạn
s = 0,2 (m) Tính lực cản trung bình của đất tác dụng lên vật Coi ma sát không khí là không đáng kể và g
Một ống tiêm có piston tiết diện S1 = 4 (cm2) và kim tiêm tiết diện S2 = 1 (mm2) Ấn vào piston với lực
F = 5 (N) thì nước trong ống tiêm phụt ra với vận tốc bao nhiêu ? Biết ρ = 1000 (kg/m3), bỏ qua ma sát và trọng lực
ĐS : v 2 = 5 (m/s)
Trang 88 – Bài tập Vật lý THPT.
Chương X : Thuyết ĐHPT và chất khí lý tưởng.
Một trái banh dung tích 2000 (cm3) chứa không khí ở áp suất 2 (atm) Người ta đá trái banh nên dung tích còn lại 500 (cm3) Tính áp suất của không khí trong banh lúc đó Xem nhiệt độ là không đổi
ĐS : P 2 = 8 (atm)
Trong một bình kín chứa khí ở nhiệt độ 270C và áp suất 2 (atm) Khi nung nóng đẳng tích, khí trong bình lên đến 870C thì áp suất của khí lúc đó là bao nhiêu ?
ĐS : P 2 = 2,4 (atm)
Thực hiện các phép tính cần thiết để trả lời các câu hỏi sau :
Tính thể tích của một khối khí ở 54,60C, biết ở nhiệt độ 00C khối khí có thể tích 20 (cm3) Quá trình thay đổi nhiệt độ xem như áp suất không đổi
Một khối khí có thể tích 600 (cm3) ở nhiệt độ -330C Hỏi ở nhiệt độ nào khối khí có thể tích 750 (cm3) Biết áp suất không đổi
O
Chương XI : Nội năng của khí lý tưởng.
Một vật nặng 300 (g) ở -200C được bỏ vào nhiệt lượng kế bằng đồng có khối lượng 100 (g), chứa 280 (g) nước ở 150C Tính nhiệt độ sau cùng của hệ thống Biết nhiệt dung riêng của vật là 0,1 (cal/g độ), của đồng 0,09 (cal/g độ), của nước 1(cal/g độ)
ĐS : t = 11,7 0 C
Một khối khí có áp suất P = 100 (N/m2), thể tích V1 = 2 (m3), nhiệt độ t1 = 270C được nung nóng đẳng
áp đến nhiệt độ t2 = 870C Tính công của khí thực hiện được
ĐS : A = 40 (J)
Mỗi giờ nồi supde của một máy hơi nước công suất 10 (kW) tiêu thụ 10 (kg) than đá Hơi nước đi vào xylanh có nhiệt độ 2000C và đi ra là 1000C
Tính hiệu suất lý tưởng của một máy hơi nước
Tính hiệu suất thực tế, biết năng suất toả nhiệt của than đá là 36.106 (J/kg)
ĐS : H = 21 % ; H = 10 %
Trang 9Chương V : Những đl cơ bản của dòng điện kđ.
Chương VI : Dòng điện trong các môi trường.
Chương VII : Từ trường.
Chương VIII : Cảm ứng điện từ.
Chương I : Chất rắn.
Người ta muốn lắp một cái vành bằng sắt vào cái bánh xe bằng gỗ có đường kính 100 (cm) Biết rằng đường kính của vành sắt nhỏ hơn đường kính bánh xe 5 (mm) Vậy phải nâng nhiệt độ của vành sắt lên bao nhiêu để có thể lắp vào vành bánh xe ? Biết hệ số nở dài của sắt là α = 12.10-6 (K-1)
ĐS : 419 0 C
Hai thanh một bằng sắt và một bằng kẽm ở 00C có chiều dài bằng nhau, còn ở 1000C thì chiều dài chênh lệch nhau 1 (mm) Tìm chiều dài hai thanh ở 00C Biết hệ số nở dài của sắt bằng 1,14.10-5 (K-1) và của kẽm bằng 3,4.10-5 (K-1)
Trang 1010 – Bài tập Vật lý THPT.
Tính độ cao của cột chất lỏng dâng lên trong hai trường hợp sau :
a) Nước trong ống mao dẫn có đường kính 0,5 (mm)
b) Rượu êtylic trong ống mao dẫn có đường kính 0,25 (mm)
Biết σn = 7,3.10-2 (N/m), σr = 2,2.10-2 (N/m), khối lượng riêng của rượu êtylic là 800 (kg/m3), của nước là
103 (kg/m3) Lấy g = 10 (m/s2)
ĐS : h 1 = 5,84 (cm) ; h 2 = 4,4 (cm)
Một ống mao dẫn có đường kính trong 0,4 (mm) được nhúng vào nước :
a) Tính trọng lượng của cột nước dâng lên trong ống
b) Tính áp suất ở điểm giữa cột nước
Biết suất căng mặt ngoài của nước 7,3.10-2 (N/m), áp suất của khí quyển bằng 760 (mmHg)
ĐS : P = 91,7.10 -6 (N) ; P 0 = 757,2 (mmHg)
Chương III : Hơi khô và hơi bão hoà.
Một phòng có kích thước 4(m) x 10(m) x 3(m) Nhiệt độ không khí trong phòng là 250C, độ ẩm tương đối của không khí bằng 60 % Tính lượng hơi nước trong phòng ?
150 Tính lực tương tác điện giữa hai quả cầu Tính sức căng của dây treo tại vị trí góc lệch 150 Tính điện tích Q Cho g = 10 (m/s2)
Đặt hai điện tích điểm q1 = -4.10-6 (C), q2 = 10-6 (C) tại 2 điểm A, B cách nhau 8 (cm) Xác định vị trí M
để tại đó cường độ điện trường bằng 0
Trang 1111 – Bài tập Vật lý THPT.
Một proton đặt trong điện trường đều E = 2.106 (V/m) ( Eur nằm ngang)
Tính gia tốc của nó
Tính tốc độ của proton khi nó đi dọc theo đường sức một khoảng l = 0,5 (m)
Biết khối lượng proton m = 16,7.10-28 (kg) và bỏ qua trọng lực
ĐS : E = 1730 (V/m)
Hai điện tích điểm q1 = 6,6.10-9 (C), q2 = 1,3.10-9 (C) có cùng dấu và đặt cách nhau một khoảng r1 = 40 (cm) Cần thực hiện một công A1 bằng bao nhiêu để đưa chúng lại gần nhau đến lúc cách nhau một khoảng r2 = 25 (cm) Cần thực hiện một công A2 bằng bao nhiêu để đưa chúng ra rất xa nhau (r3 = ∞)
Trang 12- Người ta treo hai quả cầu nhỏ có khối lượng bằng nhau m = 0,01 (g) bằng những sợi dây có độ dài l =
50 (cm) (có khối lượng không đáng kể) Khi hai quả cầu nhiễm điện bằng nhau về độ lớn và cùng dấu, chúng đẩy nhau và cách nhau r = 6 (cm) Tính điện tích của mỗi quả cầu Nhúng cả hệ thống vào trong rượu có ε = 27 Tính khoảng cách R1 giữa hai quả cầu
K
1 2 +
N
P
Q +
Trang 13
Muốn đo cường độ lớn nhất 0,6 (A) phải mắc shunt S2 bằng bao nhiêu vào ampe kế ?
Muốn dùng điện kế G để đo hiệu điện thế cực đại bằng 120 (V) phải làm thế nào ?
Mắc hai điện trở R1, R2 vào nguồn điện có hiệu điện thế U không thay đổi So sánh công suất tiêu thụ trên các điện trở này trong các trường hợp :
Có ba tụ C1, C2, C3 Nếu mắc chúng nối tiếp, bộ tụ có điện dung là 1(μF) Nếu mắc chúng song song,
bộ tụ có điện dung là 11 (μF) Biết C1 = 2 (μF) Tính điện dung C2 , C3
ĐS : C 2 = 3 (μF) ; C 3 = 6 (μF)
Một bàn là dùng điện 220 (V) Có thể thay đổi cách mắc cuộn dây điện trở trong bàn là này để dùng điện
110 (V) mà công suất không thay đổi không ?
ĐS : Cắt đôi dây điện trở rồi đem 2 nửa đó ghép song song
Chương V : Những đl cơ bản của dòng điện kđ.
a) Một dây kim loại dài 1 (m), đường kính 1 (mm) có điện trở 0,4 (Ω) Tính chiều dài của một dây đồng chất đường kính 0,4 (mm) khi dây này có điện trở 125 (Ω)
b) Một dây kim loại dài 1 (m), tiết diện 1,5 (mm2) có điện trở 0,3 (Ω) Tính điện trở của một dây đồng chất dài 4 (m), tiết diện 0,5 (mm2)
ĐS : l 2 = 5 (m) ; R 2 = 0,4 (Ω)
Một thỏi đồng có khối lượng 176 (g) được kéo thành dây dẫn có tiết diện tròn, điện trở của dây dẫn bằng 32 (Ω) Tính chiều dài và đường kính tiết diện của dây dẫn Biết khối lượng riêng của đồng là 8,8.103 (kg/m3) và điện trở suất của đồng bằng 1,6.10-8 (Ω m)
Trang 14C R I
R ≥ Trường hợp nào xảy ra dấu “=”.
Có n điện trở khác nhau mắc song song : R1 = R, R2 = R
2 , …… , Rn =
R
n Hãy xây dựng biểu thức tính
điện trở tương đương Rtđ Khi n rất lớn, cho nhận định về giá trị của Rtđ ?
Volt kế đo được hiệu điện thế từ 0 đến 2,5 (V)
Ampe kế đo cường độ dòng điện từ 0 đến 2,5 (A)
ĐS : Rp = 49 (Ω) ; Rs = 0,02 (Ω)
Một bếp điện gồm hai dây điện trở R1, R2 Nếu dùng riêng R1 thì thời gian đun sôi ấm nước là t1 = 15 (phút) Nếu dùng riêng R2 thì thời gian đun sôi nước là t2 = 30 (phút) Tính thời gian đun sôi ấm nước khi : a) R1 và R2 mắc nối tiếp
b) R1 và R2 mắc song song
ĐS : t = t 1 + t 2 = 45 phút ; 1 2
1 2
t t t
t t
=
Cho mạch như hình R = 4,5 (Ω) Tụ phẳng C có khoảng cách giữa hai bản cực là d = 0,2 (cm) và cường
độ điện trường bên trong là E = 2250 (V/m)
Tính suất điện động E của nguồn, biết điện trở của nó là r = 0,5 (Ω)
Trang 15a) Cho R4 = 10 (Ω) thì Ampere kế chỉ bao nhiêu ?
b) Điều chỉnh R4 để Ampere kế chỉ số 0 Tính trị số R4 khi đó
a) Tính điện trở của dây dẫn AB
b) Dịch con chạy C tới vị trí sao cho