Hỏi trong các phương trình trên phương trình nào là phương trình một ẩn.. Phương trình một ẩn là phương trình có dạng A = B; trong đó vế trái A và vế phải B là hai biểu thức của cùng một
Trang 2ài cũ
Cho phương trình x(x - 2) = 0 Hỏi x = 0; x = 2 có phải là nghiệm của phương trình hay không?
Hỏi hai phương trình x - 2 = 0 và x(x - 2) = 0 có tương đương với nhau hay không? vì sao?
Thế nào là phương trình một ẩn ? Cho các phương trình: 4x + 8 = 0;
6t - 6 = t; y + t = 0; 3x2 + 6y3 = 0; 4x3 + 5x2 + 6x = 0 Hỏi trong các phương trình trên phương trình nào là phương trình một ẩn
Với x = 0 ta có: 0.(0 - 2) = 0.(-2) = 0 Vậy x = 0 là một nghiệm của phương trình
Với x = 2 ta có: 2(2 - 2) = 2.0 = 0 Vậy x = 2 là một nghiệm của phương trình
Hai phương trình x - 2 = 0 và x(x - 2) = 0 không tương đương với nhau vì
x = 0 thoả mãn phương trình x(x - 2) = 0 nhưng không thoả mãn phương trình x - 2 = 0
Phương trình một ẩn là phương trình có dạng A = B; trong đó vế trái A và
vế phải B là hai biểu thức của cùng một biến
Các phương trình một ẩn là: 4x + 8 = 0; 6t - 6 = 0; 4x3 + 5x2 + 6x = 0
Trang 31 Định nghĩa phương trình bậc nhất một ẩn:
Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0,được
gọi là phương trình bậc nhất một ẩn
Ví dụ: 2x -1 = 0;
2 - 3x = 0;
3 - 5y = 0;
PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN VÀ CÁCH GIẢI
Bài tập 7 Sgktr 10: Hãy chỉ ra các phương trình bậc nhất một ẩn trong các phương trình sau và hệ số a,b của các phương trình bậc nhất một ẩn đó: a) 1 + x = 0
b) x + x2 = 0
c) 1 - 2t = 0
d) 3y = 0
e) 0x - 3 = 0
Là phương trình bậc nhất một ẩn, với a= 1, b= 1
Là phương trình bậc nhất một ẩn, với a= 3, b= 0
Là phương trình bậc nhất một ẩn, với a= -2, b= 1
Không phải là phương trình bậc nhất một ẩn vì nó không có dạng ax + b = 0
Tuy có dạng ax + b = 0 nhưng a = 0, không thoả mãn điều kiện a ≠ 0
a = 2; b = - 1
a = - 3; b = 2
a = -5; b = 3
Trang 42 Hai quy tắc biến đổi phương trình
Tìm x biết: x + 2 = 0
3
x 0 4
Trong một đẳng thức số, khi chuyển một số hạng từ vế này sang
vế kia thì phải đổi dấu số hạng đó
a) Quy tắc chuyển vế:
Trong một phương trình, ta có thể chuyển một hạng tử từ vế này
sang vế kia và đổi dấu hạng tử đó.
?1
0,5 - x = 0
x
4
-x = - 0,5
x = 0,5
x + 2 = 0
x = - 2
Giải:
Giải các phương trình
a) x - 4 = 0
x = 4
Trang 52 Hai quy tắc biến đổi phương trình
PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN VÀ CÁCH GIẢI
a) Quy tắc chuyển vế:
Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó
b) Quy tắc nhân với một số
x = - 2 Tìm x biết:
hoặc 0,1 x : 0,1 = 1,5 : 0,1
x = 15
hoặc x = 10 : (-2,5)
x = - 4
Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0.
Trong một phương trình, ta có thể chia cả hai vế với cùng một số
khác 0.
x = - 1 2
a) 0,1 x = 1,5
?2
0,1 x 10 = 1,5 10 x = 15
b) -2,5 x = 10
- 2,5x (-0,4) = 10 (-0,4)
x = - 4 Giải các phương trình
Trang 6Bài 1: Hãy chỉ ra các phương trình bậc nhất một ẩn trong các phương trình sau và chỉ ra các hệ số a, b của phương trình bậc nhất một ẩn:
a) 2x – 3 = 0 b) 1 – 5x = 0 c) 5 – 0x = 0
d) – y = 0 e) z² - z = 0 f) 3x + y = 0
Giải:
a) 2x – 3 = 0 là phương trình bậc nhất một ẩn, với a = 2, b = -3 b) 1 – 5x = 0 là phương trình bậc nhất một ẩn, với a = - 5, b = 1.
c) 5 – 0x = 0 Tuy có dạng ax + b = 0 nhưng a = 0, không thoả mãn điều kiện a ≠ 0 nên không phải là phương trình bậc nhất một ẩn.
d) – y = 0 là phương trình bậc nhất một ẩn với a = - 1, b = 0 e) z² - z = 0 không phải là phương trình bậc nhất một ẩn vì
không có dạng ax + b = 0.
f) 3x + y = 0 không phải là phương trình bậc nhất một ẩn vì có hai ẩn
Trang 7Bài 2: Không giải phương trình, hãy xét xem các cặp phương trình sau có tương đương không?
a) 8x + 1 = 4 - 16x và 2x + = 1- 4x b) 4 + 3x = 2x + 1 và 2x – 1 = 2 + 3x
1 4
Giải:
a) Hai phương trình 8x+1=4-16x và 2x+ =1-4x
tương đương, vì ta nhân hai vế của phương trình thứ hai với 4 thì được phương trình thứ nhất.
b) Hai phương trình 4 + 3x = 2x + 1 và 2x – 1 = 2 + 3x tương đương, vì ta thêm vào hai vế của phương trình thứ hai với 2 thì được phương trình thứ.
1 4
Trang 8+ Làm các bài tập 6; 8; 9 Sgk trang 10
* Nhiệm vụ về nhà
Trang 9Ch©n thµnh c¶m
¬n c¸c thÇy c« vµ c¸c em häc sinh !