Tính chính xác đến 4 chữ số thập phân diện tích tam giác ABH... Biết cạnh hình vuông ABCD có độ dài bằng 3 +1 cm, tính diện tích đa giác KLMN... Giải: Giải trên máy tính Casio fx-570MS
Trang 1CÁC DẠNG TOÁN HÌNH HỌC
- @ -
Bài 1
Cho tam giác ABC vuông tại A Từ A kẻ AH vuông góc với BC (H thuộc BC) Tính độ dài cạnh AB (chính xác đến 2 chữ số thập phân), biết rằng diện tích tam giác AHC là S=4,25c 2
m , độ dài cạnh AC là m=5,75cm
(Bài 10 đề thi HSGMT Toàn quốc năm 2009, môn Toán 9 THCS)
Giải bằng máy tính Casio fx-500MS
Dựng đường cao HD của tam giác HAC
Ta có tam giác ABC đồng dạng với tam giác DHC suy ra:
DH DC
⇔ AC DH. 2S HAC
AB
Xét tam giác HAC:
Ta có: DC.DA=HD 2
⇔DC.(AC-DC)=
2 2
4S HAC AC
⇔D 2
C -AC.DC+
2 2
4S HAC
AC =0 (*)
Giải phương trình (*) ẩn DC
Chọn chương trình giải phương trình bậc hai: Ấn 1 2
Nhập 1 -5.75 4×4.25 ÷5.72 5 2
Ta được hai nghiệm: x = 5.340840587 , 1 x = 0.409159412 2
Thế các nghiệm trên vào (1)
Trở về MODE COMP: Ấn 1
Ấn 5.340840587
Trang 2Ghi vào màn hình: 2×4.25÷Ans
Ấn Kết quả: 1.59
Ấn 0.409159412 Kết quả: 20.77
Kết luận: AB= 1.59cm hoặc AB= 20.77cm
Bài 2
Tính diện tích tam giác
Hình chữ nhật ABCD có độ dài các cạnh AB = m, BC = n Từ A kẻ AH vuông góc với đường chéo BD
a Tính diện tích tam giác ABH theo m, n
b Cho biết m = 3,15 cm và n = 2,43 cm Tính (chính xác đến 4 chữ số thập phân) diện tích tam giác ABH
(Trích đề thi HSGMT Toàn quốc năm 2009, môn Toán 9 THCS)
Giải:
Giải bằng máy tính Casio fx-500MS
a Tính S ABH theo m, n
Trong tam giác vuông ABD có:
2
AB HB BD
HD=
2
AD BD
1
2
ABH
S AH HB , 1
2
ADH
S AH HD
⇒
ABH
ADH
S HD AD n
Trang 3⇔ 2 2
0
ABH ADH
n S m S (1)
ABH ADH ABD ABCD
2
ABH ADH
m S m S m n (2)
Cộng (1) và (2) vế theo vế ta được: 2 2 1 3
2
ABH
⇔
3
2 2 2
ABH
m n S
b Áp dụng với m = 3,15 và n = 2,43
Nhớ 3.15 vào A: ấn 3.15
Nhớ 2.43 vào B: ấn 2.43
Ghi vào màn hình: A B÷(2(3 A2B2))
Ấn Kết quả: S ABH= 2.399376279
Bài 3: Tính diện tích đa giác KLMN
Cho hình vuông ABCD, lấy các điểm K,L,M,N sao cho các tam giác KAB, LBC, MCD, NAD
là các tam giác đều Biết cạnh hình vuông ABCD có độ dài bằng 3 +1 cm, tính diện tích đa giác KLMN
(Trích đề thi HSGMT An Giang 2008-2009, THCS)
Giải bằng máy tính Casio fx-500MS
Dễ thấy tứ giác KLMN là hình vuông
Trang 4KL=2KB cos(BKL)=2ABcos 90 60
2
=2AB cos15
Diện tích đa giác KLMN: S KLMN=KL =(2AB cos152 ) 2
(Chọn đơn vị đo góc là độ)
Ghi vào màn hình: (2( 3 +1)cos15) 2
Ấn Kết quả: SKLMN= 27.85640646 cm2
Bài 4: Cho lục giác đều ABCDEF Biết độ dài BE = 3,12345 cm
Tính diện tích đa giác BCDEF
(Trích đề thi HSGMT An Giang 2008-2009, THCS)
Giải bằng máy tính Casio fx-500MS
Ta có tổng số đo góc trong lục giác là: 18 0
0 (6-2)=7200
⇒ Số đo góc ở mỗi đỉnh của lục giác đều là: 72 0
0 ÷6=1200
Dễ thấy tam giác ABF cân tại A và tứ giác BCEF là hình chữ nhật
Vì AF//BE nên các góc AFB=FBE=300
Ta có: BF=BEcos300,EF=BEsin300
BCDEF BCEF CDE
=BF×EF+1
2CD×DE×sinD
=BE ×sin30o×cos30o+2 1
2×F
2
E ×sin120 0
=BE ×sin30o×cos30o+2 1
2×B
2
E ×sin230 ×sin120 0 0
=BE ×sin32 0 (cos30 0 +0 1
2×sin3
0
0 ×sin120 ) 0
Dùng máy tính:
Ghi vào màn hình: 3.123452sin30(cos30+sin30×sin120÷2)
Trang 5Ấn kết quả: S BCDEF=5.28055371
Bài 5: Tính gần đúng số đo góc IBC (độ, phút, giây)
Cho tam giác ABC có góc A=8 0
2 và AB =AC Gọi I là trung điểm của AC Tính gần đúng số đo góc IBC (độ, phút, giây)
Giải:
Giải trên máy tính Casio fx-570MS ( các máy tính khác tương tự)
Gọi M là trung điểm của BC
Vì tam giác ABC cân nên M cũng là chân đường cao hạ từ A của tam giác ABC.
Không mất tính tổng quát ta giả sử độ dài của AB và AC là AB = AC =1 cm
Ta có: BC=2BM=2ABsinBAM̂=2sin41o (cm)
Áp dụng định lí cos cho tam giác ABI, ta có:
BI2 =AB2 +AI2 -2AM×AI×cosBAĈ
Thay số và dùng máy tính ta tính được:
BI = 1,053957731 (cm)
Áp dụng định lí cos cho tam giác BIC, ta có:
cosIBĈ=
2
BI IC
Thay số và dùng máy tính ta tính được:
cosIBĈ=0,933707789⇒IBĈ=20o58,46,66,,
Vậy IBĈ=20o58,46,66,,
Bài 6:
Tính BD và CD ( chính xác đến 4 chữ số thập phân)
Cho tam giác ABC có AB=4,81;BC=8,32 và AC=5,21, đường phân giác trong góc A là AD Tính BD và
CD ( chính xác đến 4 chữ số thập phân)
( Trích đề thi HSMT Casio TPHCM, 2004-2005)
Giải:
Giải trên máy tính Casio fx-570MS ( các máy tính khác tương tự)
Đặt x=BD⇒CD=8,32-x
Ta có: AD là đường phân giác trong góc A
8,32 5, 21
4,81 8,32 5, 21 4,81
x
Dùng máy tính ta tính được: x=3,993932136⇒BD=3,993932136;CD=4,326067864
Vậy BD=3,993932136;CD=4,326067864
Trang 6Bài 7: Cho tam giác ABC vuông tại A
Cho tam giác ABC vuông tại A Biết AB=5,2538m, góc Ĉ=40o25, Từ A vẽ đường phân giác AI và trung tuyến AM ( I và M thuộc BC)
a) Tính độ dài của các đoạn thẳng AI, AM
b) Tính tỉ số diện tích tam giác AIM và diện tích tam giác ABC
( Trích đề thi HSGMT Sóc Trăng lớp 9 2008-2009)
Giải:
Giải trên máy tính Casio fx-570MS ( các máy tính khác tương tự)
a) Kẻ AH⊥BC(H∈BC)
Ta có: BAĤ=α =40o25,;AIĤ=85o25,;AMĤ=80o50,
AH=ABcos40o25, =5,2583.cos40o25,
0 ,
5, 2583 os40 25
sin sin 45 40 25
AI
I
0 ,
0 ,
5, 2583 os40 25 sin sin 2 40 25
AM
I
Dùng máy tính ta tính được:
AI = 4,016248663 m
AM = 4,055193785 m
b) Tỉ số diện tích hai tam giác:
AIM
ABC
S BC
Ta có: IM=HM-IH=AH(cot80o50, -cot85o25,)=5,2583.cos40o25,.(cot80o50, -cot85o25,)
0 ,
sin 40 25
AB
sin 40 25
0 ,
5, 2583 os40 25 cot 80 50 cot 85 25
5, 2583 sin 40 25
AIM
ABC
c S
S
=sin40o25,.cos40o25,.(cot80o50,
-cot85o25,)
Dùng máy tính ta tính được AIM
ABC S
S =0,040082662
Trang 7Vậy a) AI = 4,016248663 m
AM = 4,055193785 m
b) AIM
ABC
S
S =0,040082662
Bài 8:
Tính MD?
Cho hình chữ nhật ABCD Điểm M nằm trong hình chữ nhật có MA=1930,MB=1945,MC=2009 Tính MD?
Giải:
Giải trên máy tính Casio fx-570MS ( các máy tính khác tương tự)
Qua M kẻ các đường thẳng vuông góc với AB và Bc lần lượt cắt AB tại H, BC tại P, CD tại K, DA tại Q.
Đặt a=HM,b=KM,c=PM,d=QM
Ta có: b2 -a2 =20092 -19452;c2 -d2 =19452 -19302
Trừ vế theo vế hai đẳng thức trên, ta được:
(b2 +d2)-(c2 +a2)=20092 +19302 -2×19452
⇒M 2
D -MB2 =20092 +19302 -2×19452
⇒M 2
D =20092 +19302 -19452
Dùng máy tính ta tính được: MD=1994,481386
Vậy độ dài của MD là 1994,481386 (đvđd)
Bài 9:Tính AB, AC
Cho tam giác ABC vuông tại A Phân giác của góc A cắt BC tại D Biết BD=3,178; BC = 8,916 Tính
AB, AC.
Giải:
Giải trên máy tính Casio fx-570MS ( các máy tính khác tương tự)
Đặt x=AB,y=AC
Trang 8Theo đề bài ta có:
3,178
8, 916 3,178
8, 916
x y
x y
5, 738 3,178
5, 738
8, 916 3,178
Dùng máy tính ta tính được: x=4,319832473⇒y=7,799622004
Vậy x=4,319832473; y=7,799622004
Bài 10
Diện tích phần hình tròn nằm phía ngoài tam giác ABC
Tam giác ABC có AB = 31.48 cm, BC = 25.43 cm, AC = 16.25 cm
Viết quy trình bấm phím liên tục trên máy tính cầm tay và tính chính xác
đến 02 chữ số sau dấu phẩy giá trị diện tích tam giác, bán kính đường tròn
ngoại tiếp và diện tích phần hình tròn nằm phía ngoài tam giác ABC
(Cho biết công thức tính diện tích tam giác: S= ,
4
abc
R
(Trích đề thi HSGMT Toàn quốc năm 2008, môn Toán THCS)
Giải bằng máy tính Casio fx-500MS
Nhớ 31.48 vào A, 25.43 vào B, 16.25 vào C
Tính p=
2
a b c
Ghi vào màn hình: (A+B+C)÷2
Ấn
1 Tính S ABC= p p a p b p c và nhớ vào D:
Ghi vào màn hình: (Ans(Ans-A)(Ans-B)(Ans-C))
Ấn Kết quả: SABC= 205.64 cm2
2 Từ
ABC
ABC
Ghi vào màn hình: ABC÷4÷Ans
Trang 9Ấn Kết quả: R= 15.81 cm
3 Diện tích phần hình tròn nằm ngoài tam giác ABC:
S=Sht-S ABC=π 2
R - S ABC (Sht là diện tích hình tròn bán kính R, SABC là diện tích tam giác ABC)
Ghi vào màn hình: πAns2-D
Ấn Kết quả: 580.09 cm2
Bài 11
Tam giác ABC vuông tại A có cạnh AB = a = 2,75 cm, góc C = α = 37∘ 25` Từ
A vẽ các đường cao AH, đường phân giác AD và đường trung tuyến AM
a) Tính độ dài của AH , AD , AM
b) Tính diện tích tam giác ADM
(Kết quả lấy với 2 chữ số ở phần thập phân)
(Trích bài 7: Đề thi toán Casio toàn quốc khối THCS - 13/03/2007)-Fx570ES
Giải:
Hướng giải bài toán:
AH = AB SinB
AD = sin
sin
AB ADB
ABD
AM = 1
2 BC =
1
2 sin
AB ACB
SADM = 1
2 (AD AM) Sin( DAM )
Lưu các giá trị vào các biến nhớ của máy FX570ES:
AB vào biến nhớ A (Bấm 2,75 SHIFT STO A)
Trang 10Góc (BCA) vào biến nhớ C (Bấm 37∘25` SHIFT STO C)
Gọi phép tính:
A Sin(90∘ - C) , ta được kết quả: AH = 2.18
.sin 90
c
, ta được kết quả: AD = 2.20 ( Bấm SHIFT STO B → lưu vào biến nhớ
B)
1
2 sin
A
c , ta được kết quả: AM = 2.26 ( Bấm SHIFT STO D → lưu vào biến nhớ D)
1
2 (BD) Sin( 45∘ - C ) , ta được kết quả: SADM = 0.33
Kết quả : {AH = 2,18 cmAD = 2,2 cmAM =2,26 cmSADM = 0,33 cm2
Bài 12: Cho Δ ABC có AB = 3,5cm ; AC = 4,5cm
Cho Δ ABC có AB = 3,5cm ; AC = 4,5cm và góc A = 90∘ Kẻ đường cao AH
và đường phân giác AI của tam giác ABC (H, I thuộc BC)
1) Tính độ dài BC, AH, BH, BI
2) Tính diện tích của Δ ABC
viết kết quả chính xác đến 0,01)
(Trích bài 7: Đề thi toán Casio khối THCS - Quận Tân Phú - TP HCM -
2007/2008)-Fx570ES)
Giải:
Hướng giải:
BC AB AC (ĐL Pitago)
ΔABH đồng dạng ΔCBA ⇒ BH =
2
AB
BC
Trang 11BI AB
IC AC (vì AI là phân giác) ⇒ BI AB
IC BI AC AB
AB BC BI
AB BH
Giải trên máy FX570ES, lưu giá trị của:
AB vào biến nhớ A (Bấm 3.5 SHIFT STO A)
AC vào biến nhớ B (Bấm 4.5 SHIFT STO B)
Gọi phép tính:
A B → ta được kết quả: BC = 130
biến nhớ C )
2
A
C → ta được kết quả: BH = 2,15 cm ( Bấm SHIFT STO D → lưu vào biến nhớ D)
A C
BA → ta được kết quả: BI =
7 130
A D → ta được kết quả: AH = 2,76 cm
2) Gọi phép tính: 1
2AB → ta được: SΔABC =
63
8 = 7,88 cm2
Bài 13: Cho hình thang vuông ABCD (hình)
Cho hình thang vuông ABCD (hình) Biết rằng AB = a = 2.25cm; góc(ABD) = α
= 50∘ , diện tích hình thang ABCD là S = 9,92cm2 Tính độ dài các cạnh AD,
DC, BC và số đo: góc(ABC), góc(BCD)
(Trích bài 6: Đề thi toán Casio khối THCS-01/03/2005)-Fx570ES
Giải:
Sừ dụng các biến đổi sau:
AD = a.tgα
S(ABCD) = 12 (AB + DC)AD ⇒ DC = 2S
AD - AB
Trang 12BC = 2 2
AD DCAB
Góc(BCD) = arcsin( AD
BC )
Góc(ABC) = 180∘ - góc(BCD)
Cách tính trên máy Fx 570ES:
Lưu vào máy:
2.25 lưu vào A (bấm: 2.25 SHIFT STO A)
50 lưu vào B (bấm: 50 SHIFT STO B)
9.92 lưu vào C (bấm: 9.92 SHIFT C)
Ta có:
AD = Atan(B) = 2.681445583 (cm) (bấm SHIFT STO D )
tan
C
A B - A = 5.148994081 (cm) (bấm SHIFT STO X)
D X A = 3.948964054 (cm) (bấm SHIFT STO Y)
Góc (BCD) = SHIFT SIN (DY) = 42.76750528∘ = 42∘46`3,02`` (bấm SHIFT STO M) Góc (ABC) = 180∘ - M = 137,2324947∘ = 137∘13`56,98``
Trang 13Bài 14: Giải tam giác
1 Cho tam giác ABC có ba góc nhọn Chứng minh rằng tổng của bình phương cạnh thứ nhất
và bình phương cạnh thứ hai bằng hai lần bình phương trung tuyến thuộc cạnh thứ ba cộng với nửa bình phương cạnh thứ ba
Chứng minh theo hình vẽ
2 Bài toán áp dụng:
Tam giác ABC có cạnh AC = b = 3,85cm; AB = c = 3,25cm và đường cao AH = h = 2,75cm
a Tính các góc A, B, C và cạnh BC của tam giác
b Tính độ dài của trung tuyến AM (M thuộc BC)
c Tính diện tích tam giác AHM
(góc tính đến phút, độ dài và diện tích lấy kết quả với 2 chữ số thập phân)
(Trích đề thi HSGMT Toàn quốc năm 2007, lớp 9 THCS)
Giải bằng máy tính Casio fx-500MS
1 Chứng minh AB +A2 C2=2AM +2 1
2B
2
C
Kẻ AH vuông góc với BC, H thuộc C
Ta có: AB +A2 C2=AH2+BH2+AH2+HC2
=2AH2+(BM-HM) +(CM+HM2 ) 2
=2AH2+BM -2BM.HM+H2 M +C2 M +2CM.HM+H2 M 2
Do M là trung điểm của BC nên BM=CM=1
2BC
Trang 14⇒ AB +A C =2AH +2HM +2B M
=2A 2
M +1
2B
2
C (đpcm)
2
a Xét tam giác ABC:
sinB=h
c ⇒ B^=arcsin
h c
Tính góc B và nhớ vào B:
Ấn kết quả: B^=57o47`
sinC=h
b ⇒ C^=arcsin
h b
Tính góc C và nhớ vào C:
Ấn kết quả: C^=45o35`
A^=180-B^-C^
Ghi vào màn hình: 180-B-C
Ấn kết quả: A^=76o37`
b Tính BC nhớ vào A:
BC=ABcosB^+ACcosC^
Ghi vào màn hình: 3.85 cos B + 3.25 cos C
Ấn
Từ câu 1 ta suy ra: AM=
Ghi vào màn hình: (3.852÷2+3.252÷2-A ÷4) 2
Ấn kết quả: ma=2.83cm
Trang 15c HM=1
2BC-BH=
1
2BC-ABcosB^
SAHM=1
2AH.HM=
1
2AH.(
1
2BC-ABcosB^) Ghi vào màn hình: 2.75÷2×(A÷2-3.25cosB)
ấn kết quả: SAHM=0.59cm2