Tóm tắt lý thuyết bài Tứ giác nội tiếp 1.. Định nghĩa Một tứ giác có bốn đỉnh nằm trên một đường tròn gọi là tứ giác nội tiếp đường tròn gọi tắt là nội tiếp đường tròn 2.. Định lí Trong
Trang 1Đáp án và Giải bài 53, 54, 55, 56, 57 trang 89; Bài 58, 59, 60 trang 90 SGK Toán 9 tập 2: Tứ giác nội tiếp – Chương 3 hình học.
A Tóm tắt lý thuyết bài Tứ giác nội tiếp
1 Định nghĩa
Một tứ giác có bốn đỉnh nằm trên một đường tròn gọi là tứ giác nội tiếp đường tròn (gọi tắt là nội tiếp đường tròn)
2 Định lí
Trong một tứ giác nôị tiếp, tổng số đo hai góc đối diện bằng 1800
ABCD nội tiếp đường tròn (O)
⇒
3 Định lí đảo
Nếu tứ giác có tổng số đo hai góc đối diện bằng 1800 thì tứ giác đó nội tiếp được đường tròn
Bài trước: Giải bài 44,45,46, 47,48,49, 50,51,52 trang 86,87 SGK Toán 9 tập 2: Cung chứa góc
B Hướng dẫn giải bài tập trong SGK Bài Góc nội tiếp Toán 9 tập 2 phần hình học trang 89,90
Bài 53 trang 89 SGK Toán 9 tập 2 – Hình học
Biết ABCD là tứ giác nội tiếp Hãy điền vào ô trống trong bẳng sau (nếu có thể)
Đáp án và hướng dẫn giải bài 53:
Trang 2– Trường hợp 1:
Ta có A +∠A + C∠A + = 180o => C∠A + = 180o – A= 180∠A + o – 80o = 100o
B +
∠A + D ∠A + = 180o => D =∠A + 180o – B= 180∠A + o – 70o = 110o
Vậy điểm C∠A + =100o , D =∠A + 110o
– Trường hợp 2:
A +
∠A + C∠A + = 180o => A =∠A + 180o – C∠A + = 180o – 105o = 75o
B +
∠A + D ∠A + = 180o => B =∠A + 180o – D= 180∠A + o – 75o = 105o
– Trường hợp 3:
A +
∠A + C∠A + = 180o => C =∠A + 180o – A = 180∠A + o – 60o = 120o
B +
∠A + D ∠A + = 180o => Chẳng hạn chọn B = 70∠A + o ; D= 110∠A + o
– Trường hợp 4: D =∠A + 180o – B= 180∠A + o – 40o = 140o
Còn lại A +∠A + C∠A + = 180o Chẳng hạn chọn A =∠A + 100o , B =∠A + 80o
– Trường hợp 5: A = 180∠A + o – C =∠A + 180o – 74o = 106o
B = 180
∠A + o – D ∠A + = 180o – 65o = 115o
– Trường hợp 6: C∠A + = 180o – A∠A + = 180o – 95o = 85o
CB=
∠A + 180o – D =∠A + 180o – 98o = 82o
Vậy điền vào ô trống ta được bảng sau:
Bài 54 trang 89 SGK Toán 9 tập 2 – Hình học
Tứ giác ABCD có ABC +∠A + ADC∠A + = 180o Chứng minh rằng các đường trung trực của AC, BD, AB cùng đi qua một điểm
Trang 3Đáp án và hướng dẫn giải bài 54:
Ta có Tứ giác ABCD có tổng hai góc đối diện bằng 180o ( ABC +∠A + ADC∠A + = 180o)nên nội tiếp đường tròn tâm O, ta có
⇒ OA = OB = OC = OD = bán kính (O)
⇒ O thuộc các đường trung trực của AC, BD, AB
Vậy các đường đường trung trực của AB, BD, AB cùng đi qua O
Bài 55 trang 89 SGK Toán 9 tập 2 – Hình học
Cho ABCD là một tứ giác nội tiếp đường tròn tâm M, biết DAB∠A + = 80o, DAM∠A + = 30o, BMC∠A + = 70o
Hãy tính số đo các góc MAB,∠A + BCM,∠A + AMB,∠A + DMC,∠A + AMD,∠A + MCD∠A +
và BCD.∠A +
Đáp án và hướng dẫn giải bài 55:
Ta có: MAB= DAB∠A + ∠A + – DAM∠A + = 80o – 30o = 50o (1)
– ∆MBC là tam giác cân (MB= MC) nên BCM∠A + =( 180o – 70o )/2 = 55o (2)
– ∆MAB là tam giác cân (MA=MB) nên MAB∠A + = 50o (theo (1))
Vậy AMB =∠A + 180o – 2 50o = 80o
BAD =1/2
∠A + sđBCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)
=> sđBCD = 2 BAD∠A + = 2 80o = 160o
Mà sđBC = BMC∠A + = 70o (số đo ở tâm bằng số đo cung bị chắn)
Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ BD)
Trang 4Suy ra DMC∠A + = 90o (4)
∆MAD là tam giác cân (MA= MD)
Suy ra AMD∠A + = 180o – 2.30o = 120o (5)
∆MCD là tam giác vuông cân (MC= MD) và DMC∠A + = 90o
Suy ra MCD∠A + = MDC∠A + = 45o (6)
BCD
∠A + = 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD
Bài 56 trang 89 SGK Toán 9 tập 2 – Hình học
Xem hình 47 Hãy tìm số đo các góc của tứ giác ABCD
Đáp án và hướng dẫn giải bài 56:
Tam giác ABF có A + B + F = 180∠A + ∠A + ∠A + 0
A = 180
⇔ ∠A = 180 ∠A + 0 – B – F∠A + ∠A +
=1800 – B -20∠A + 0 = 160 – B (1)∠A +
Tam giác ADE có A + D + E = 1800∠A + ∠A + ∠A +
A = 180
⇔ ∠A = 180 ∠A + 0 – D – E = 180∠A + ∠A + 0 – D – 40∠A + 0 =1400 - D (2)∠A +
Công (1) và (2) ta có 2 A = 1600 – B + 140∠A + ∠A + 0 – D = 300∠A + 0 – ( B + D)∠A + ∠A +
Mà ( B + D) = 180∠A + ∠A + 0 nên 2 A =300∠A + 0 – 1800 = 1200 A =60⇔ ∠A = 180 ∠A + 0
Từ (1) B = 160⇒ ∠A + 0 – A = 160∠A + 0 – 600 = 1000
Từ (2) D = 140⇒ ∠A + 0 – A = 140∠A + 0 – 600 = 800
Ngoài ra A + C = 180∠A + ∠A + 0 nên C = 180∠A + 0 – A = 180∠A + 0 – 600 = 1200
Bài 57 trang 89 SGK Toán 9 tập 2 – Hình học
Trong các hình sau, hình nào nội tiếp được một đường tròn:
Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân ? Vì sao?
Trang 5Đáp án và Hướng dẫn giải bài 57:
Hình bình hành nói chung không nội tiếp được đường tròn vì tổng hai góc đối diện không
bằng 180o.Trường hợp riêng của hình bình hành là hình chữ nhật (hay hình vuông) thì nội tiếp đường tròn
vì tổng hai góc đối diện là 90o + 90o = 180o
Hình thang nói chung, hình thang vuông không nội tiếp được đường tròn
Hình thang cân ABCD (BC= AD) có hai góc ở mỗi đáy bằng nhau A =∠A + B,∠A + C =∠A + D; mà∠A + A ∠A +
+ D∠A + = 180o (hai góc trong cùng phía tạo bởi cát tuyến AD với AB// CD),suy ra A +∠A + C∠A + = 180o Vậy hình thang cân luôn có tổng hai góc đối diện bằng 180o nên nội tiếp được đường tròn
Bài 58 trang 90 SGK Toán 9 tập 2 – Hình học
Cho tam giác đều ABC Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC
và DCB =1/2 ACB.∠A + ∠A +
a) Chứng minh ABDC là tứ giác nội tiếp
b) Xác định tâm của đường tròn đi qua bốn điểm A, B, D, C
Đáp án và Hướng dẫn giải:
a) Theo giả thiết, DCB∠A + = 1/2 ACB∠A + = 1/2 .60o = 30o
ACD =
∠A + ACB +∠A + BCD∠A + (tia CB nằm giữa hai tia CA, CD)
=> ACD∠A + = 60o + 30o = 90o (1)
Do DB = CD nên ∆BDC cân => DBC =∠A + DCB∠A + = 30o
Từ đó ABD∠A + = 60o + 30o = 90o (2)
Từ (1) và (2) có ACD∠A + + ABD∠A + = 180o nên tứ giác ABDC nội tiếp được
b) Vì ABD∠A + = 90o nên ABD là góc nội tiếp chăn nửa đường tròn đường kính AD, tâm O là trung điểm∠A + của AD
Tương tự ACD = 90∠A + o, nên ACD là góc nội tiếp chắn nửa đường tròn đường kính AD.∠A +
Vậy tứ giác ABCD nội tiếp trong đường tròn đường kính AD với tâm O là trung điểm của AD
Trang 6Bài 59 trang 90 SGK Toán 9 tập 2 – Hình học
Cho hình bình hành ABCD Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C Chứng minh AP = AD
Đáp án và Hướng dẫn giải bài 59:
Do tứ giác ABCP nội tiếp nên ta có: BAP +∠A + BCP∠A + = 180o (1)
Ta lại có: ABC +∠A + BCP∠A + = 180o (2) (hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: BAP∠A + = ABC∠A + Vậy ABCP là hình thang cân, suy ra AP = BC (3) nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD
Bài 60 trang 90 SGK Toán 9 tập 2 – Hình học
Xem hình 48 Chứng minh QR // ST
Đáp án và hướng dẫn giải bài 60:
Ta có tứ giác ISTM nội tiếp đường tròn nên: S∠A + 1 + M∠A + = 180o
Mà M∠A + 1 + M∠A + 3 = 180o (kề bù)
nên suy ra S∠A + 1 = M∠A + 3 (1)
Tương tự từ các tứ giác nội tiếp IMPN và INQS ta được
M
∠A + 3 = N∠A + 4 (2)
Trang 7∠A + 4 = R∠A + 2 (3)
Từ (1), (2), (3) suy ra do đó QR // ST