1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Giải chi tiết đề thi học kì 1 môn Toán 12 Sở GD & ĐT Đồng Nai 2015

5 505 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 13,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Thời gian làm bài 90 phút.. Các em tham khảo chi tiết dưới đây... Gọi M,N tương ứng là trung điểm của hai cạnh AB và CD.. Gọi T là hình trụ tròn xoay sinh ra bởi hình vuông ABCD quay qu

Trang 1

Đề thi học kì 1 môn Toán lớp 12 có đáp án của Sở GD & ĐT Đồng Nai năm học 2015 – 2016 Thời gian làm bài 90 phút Các em tham khảo chi tiết dưới đây.

Xem thêm: Đề kiểm tra học kì 1 lớp 12 môn Địa có đáp án

Sở GD & ĐT Đồng Nai

Đề Thi Học Kì 1

Môn: Toán – Lớp 12

Thời gian làm bài 90 phút

Câu 1 (1,5 điểm) Khảo sát sự biến thiên và vẽ đồ thị hàm số:

*Giải*

Tập xác định: D = /R

y’ = x³ – 4x = x(x² – 4)

⇔ y’ = x³ – 4x = x(x² – 4)

y’ = 0

⇔ y’ = x³ – 4x = x(x² – 4) x(x² – 4 ) = 0⇔ y’ = x³ – 4x = x(x² – 4)

Bảng biến thiên:

Hàm số đồng biến trên các khoảng (-2;0) và (2; +∞) , nghịch biến trên các khoảng (-∞; -2) và (0;2) Đạt cực đại tại x=0 và ycđ = 1, Đạt cực tiểu tại các điểm x= +-2 và yct = -3

Điểm đặc biệt:

Đồ thị:

Trang 2

Đồ thị hàm số

Câu 2: ( 1 điểm) Tìm giá trị lớn nhất của hàm số: y= x³ + x² trên đoạn [-2; -1]

**Giải**

Hàm số xác định và liên tục trên đoạn [-2; -1] ,

ta có y’ = 3x² +2x ; y’ = 0 ⇔ y’ = x³ – 4x = x(x² – 4) 3x² +2x = 0

Ta có: y(-2) = -8 + 2 = -4; y (-1) = -1 + 1 = 0

Câu 3 ( 1,5 điểm) 1) Tính Tìm tiệm cận ngang của đồ thị hàm số: y = 6x 2) Tính đạo hàm của hàm số: y = log2 (2x + x2)

** Giải **

Tìm tiệm cận ngang của đồ thị hàm số:y = 6x

là trục hoành: y = 0

2) y = log2 (2x + x2)

Câu 4 ( 2 điểm) 1) Giải phương trình 4x+3 – 2x = 0

Trang 3

2) Tìm các số thực thỏa: log2 (3 – x) < 3

** Giải **

1) 4x+3 -2x = 0

4

⇔ y’ = x³ – 4x = x(x² – 4) 3 22x – 2x = 0

2

⇔ y’ = x³ – 4x = x(x² – 4) x (64.2x – 1) = 0

64.2

⇔ y’ = x³ – 4x = x(x² – 4) x – 1 = 0 2x = 1/64 = 2⇔ y’ = x³ – 4x = x(x² – 4) -6 ⇔ y’ = x³ – 4x = x(x² – 4) x = -6

Vậy nghiệm của phương trình là: x = -6

2) log2 (3 – x) < 3 (1) ; điều kiện: 3 –x > 0 x < 3 (*)⇔ y’ = x³ – 4x = x(x² – 4)

Bất phương trình (1) tương đương với:

log2 (3 – x) < log2 8 3 – x < 8 x > -5⇔ y’ = x³ – 4x = x(x² – 4) ⇔ y’ = x³ – 4x = x(x² – 4)

So với điều kiện (*), ta có:

Vậy x (-5; 3) là các số thực x cần tìm.∈ (-5; 3) là các số thực x cần tìm

Câu 5 ( 1,5 điểm) Cho hình vuông ABCD có AB = 2a , với a là số thực dương Gọi M,N tương ứng là

trung điểm của hai cạnh AB và CD Gọi (T) là hình trụ tròn xoay sinh ra bởi hình vuông ABCD quay

quanh đường thẳng MN.

Tính theo a diện tích xung quanh của hình trụ (T).

Tính theo a thể tích khối trụ tròn xoay giới hạn bởi hình trụ (T)

** Giải **

hình trụ (T)

Ta có: Đường sinh của hình trụ: l = BC = 2a

Đường cao của hình trụ: h = MN = 2a

Bán kính đáy: r = MB = AB/2 = a

Trang 4

Diện tích xung quanh của hình trụ (T): Sxq = 2 πrlrl = 4 πaa2 (đvdt)

Thể tích của khối trụ (T): V = Πrr 2 h = 2 Πra 3 (đvtt)

Câu 6 ( 2 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, hai mặt phẳng (SAB) và (SAD)

cùng vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60º , biết

AB = a , AD = 2a , với là số thực dương.

Tính theo a thể tích khối chóp S.ABCD

Tính theo a khoảng cách từ điểm B đến mặt phẳng (SCD)

** Giải **

Hình chóp S.ABCD

Thể tích khối chóp S.ABCD

VS.ABCD = 1/3 SA.SABCD

Diện tích hình chữ nhật ABCD:

SABCD = AB.AD = 2a²

AB là hình chiếu vuông góc của SB trên mặt phẳng (ABCD)

⇒ góc giữa SB và (ABCD) là góc SBA = 60º

Tam giác SAB vuông tại A, ta có:

2) Khoảng cách từ điểm B đến mặt phẳng (SCD)

AB // CD AB // (SCD)⇒

d (B, (SCD)) = d (AB, (SCD)) = d (A, (SCD))

Gọi H là hình chiếu vuông góc của A trên SD

Trang 5

AH

⇒ ⊥ SD

SA (ABCD) ⊥ SA⇒ CD ⊥ lại có AD CD⊥ CD

⇒ (SAD)⊥ CD⇒ AH⊥

Ta có AH SD và AH⊥ CD⊥ AH⇒ (SCD)⊥

Do đó: AH = d(A,(SCD)) = d (B,(SCD))

Tam giác SAD vuông tại A, ta có:

Trên đây là đề thi cơ bản với học sinh lớp 12

**** Hết ****

Ngày đăng: 06/04/2016, 02:35

HÌNH ẢNH LIÊN QUAN

Đồ thị hàm số - Giải chi tiết đề thi học kì 1 môn Toán 12 Sở GD &#038; ĐT Đồng Nai 2015
th ị hàm số (Trang 2)
Hình trụ (T) - Giải chi tiết đề thi học kì 1 môn Toán 12 Sở GD &#038; ĐT Đồng Nai 2015
Hình tr ụ (T) (Trang 3)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w