Cuo'n 1: Sir dung phuong phap luong giac hoa giai Toan Cuon 2: Sii dung phuong phap vecto giai Toan Cuon 3: Su dung cac phep bien hinh giai Toan Cuon 4: Su dung phuong phap toa do giai
Trang 1T h s T o a n hoc - K s T i n hoc L E H O N G DUG - C h i i bieii
Trang 2Cuo'n 1: Sir dung phuong phap luong giac hoa giai Toan
Cuon 2: Sii dung phuong phap vecto giai Toan
Cuon 3: Su dung cac phep bien hinh giai Toan
Cuon 4: Su dung phuong phap toa do giai Toan
Cuon 5: Sir dung phuong trinh tham so Duong thiing, Duong tron,
Eh'p va Hypebol giai Toiin
Cuon 6: Sir dung phuong phap dat in phu giai Toan
Cuon 7: Su dung phuong phap di6u kien can va du giai Toan
Cuon 8: Su dung phuong phap ham so va do thi giai Tosin
Cuon 9: Sir dung gidfi han giai Toan
Cuon 10: Su dung dao ham giai Toan
Cuon 11: Sir dung may ti'nh giai Toan
Muc tieu cua bp tai lieu tham khdo nay la cung cap cho cue Thdy, Co gido nipt bp bdi gidng cintyen sdu cd chat hd/ng va cho cac em hpc sinli Trung hpc phu thong yeu thicli mdn Todn mot bp tai lieu hoc tap bo ich
Bp tai lieu ditac viet tren mot tit tudng liodn todn mdi me, c6 tinh sit
pham, CO tinh long h(/p cao, tan dung ditcrc day di'i the manh ciia cac
phuong phdp ddc biet de giai Todn
Bp tai lieu nay chac cliaii phu hpp vdi nhieu ddi titpiig ban dpc tit cdc Thdy, Co gido den cdc em Hpc sinh lap 10, 11, 12 va cdc em chud'n bi dit thi mdn Todn Tot nghiep PTTH hodc vuo cdc Trudng Dai hpc
Trang 3Cuon
Sir uiJNG iMiifoi\ iMiAi' niv.ii KIEN CAIM V A nt o i i i ro/iiv
r//;'c/ ///a//// 3 chi'i de:
Chii de I: Sir diiiig phiraiig phap dieu kien can va dii giJi bai loan ve tinh
chat duy nhat nghiem
Chii del: Siidung phuang phap dieu kien can va du gitii bai loan ve tinh
chat nghiem
Chi'i de3: Sir dung phuang phtip dieu kien can va du giiii bai toiin ve tinh
chat tham so
inieii id (III lic't plncang phap gidi cho 9 dang loan tan dung dupe day du
ihe inanli cita phii'o'ng phap dlcit kien can vd dt'i
Tdi Cling xin bay id tai day long biet on sdu sac td'l sif gli'ip do' dong
vien llnli than cita lial nginyi Thdy ind Idl rat ini/c kinli Irpng, gdin GS.TS
Trail Maiili Titan ngtiyen Fhd Gidiii doc Trung Tdiii KHTN & CNQG, Nhd
gido I fit lit Ddo Thieii Klidi iigityen Hleu trudng TrUdng FTTH Hd Ndl
-Ainslerdaiii
Citdl ciing, cito dii dd rat cd gang, ninfng thai khd Irdnh klidi iihuiig
thlcit sol bdi nhifng hleu blel vd kinli nghlein con liaii cite, id't inong nlidn
dupe iiltilng y kien dong gop c/tiy bdu cita ban dpc gdn xa Mpl y kien dong
gap xIn lien he tiri:
Dia chi: Nhom lac gia Cu Mon - Nha sach Toan TMPT Cir Mon
So 20 - Ngo 86 - Duong To Ngoc Van - Quan Tay Ho - Ha Noi Dien thoai: (04) 7196671
bat phuang tiinh 10
Bai toan 2 Giai bai toan duy nhat nghiem cho he phuang trlnh,
he bat phuang trlnh 33
C H U D ^ 2
SU DUNG PHUONG PHAP DIEU KIEN CAN VA DU (ilAI BAI TOAN VE TINH CHAT N(,HIEM Bai toan 1 Giai bai toan ve tinh chat cac nghiem
cho phuang trlnh 66
Bai toan 2 Giai bai toiin ve tap nghiem 77 Bai toan 3 Giai bai toan ve phuang trlnh ha qua 92
Bai toan 4 Giai bai toan vi hai phuang trlnh tirang duang 95
Bai toan 5 Su dung do thi 126
CIIU Y)t 3
Sir DUNG PHUONG PHAP DIEU KIEN CAN VA DU (ilAI BAI TOAN VE TINH CHAT THAM SO Bai toan 1 Phuang trlnh nghiem diing vai gia tri
xiic dinh ciia tham so 102
Bai toan 2 He nghiem diing vol gia tri xac dinh cua tham so 105
TAI LIEU THAM KHAO 110
Trang 4C H U D E I
GIAI BAI TOAN V E TINH DUY NHAT NGHIEM
M 6 D A U
Trong chu de nay se minh hoa each sir dung phuong phap dieu kien can va dii giai bai toan duy nhat nghiem cho phuong trinh, bat phuong trinh, he phuong trinh va he bat phuong trinh dugc chia thanh hai dung:
Dgiigl: Giai bai toan duy nhat nghiem cho phuong trinh, "bat
phuong trinh chua tham so
Dang 2: Giai bai toan duy nhat nghiem cho he phuong trinh, he bat
phuong trinh chua tham so
Trang 5CO iii>hiem duy nlid't"
ta lliirc hien theo cac budfc sau:
Btioc 1: Dat dieu k i e n de cac bieu thirc trong (1) c6 nghla
BiioT 2: Dieu kien can: Gia sir (1) c6 nghiem la x = x,„ k h i do:
a Dua tren tinh chat doi x u n g ciia cac bieu thiic glai t i c h
trong (1), ta di khang dinh k h i do x = cpCx,,) cung la nghiem cua (1)
b D o do, de he c6 nghiem duy nhii't can c6:
x„ = (p(x„) =^ Gia t r i ciia x,, (2)
c Thay (2) vao (1) ta xac dinh dugc dieu k i e n can cho
tham so m de (1) c6 nghiem duy nhat, gia sur meD,„
Bu(>c3: Dieu kien dir V o i meD,„, ta d i k i e m tra lai tinh duy nhat
nghiem cho (1)
T h o n g thuong trong buoc nay, ta chi phai xet cac phirong
trlnh, bat phuong trinh cu the (thuong la k h o n g c6 tham so
hoac neu c6 t h l da duoc don gian d i nhieu) Ket qua ciia
budrc nay cho phep ta loai d i k h o i tap D,„ cac gia t r i k h o n g
thich hop ciia m
Buoc 4: Ket hop ba buoc giai tren ta t u n duoc dap so
II V i DU MINH HOA
Trudc tien chung ta m i n h hoa cac v l du sir dung tinh chat ham chSn
de xac d i n h dieu kien can, tuc la xuat phat tii' nhan xet:
• Gia su phuong trinh c6 nghiem x,, khang d i n h r i n g no cung se
m x ^ - 2 ( m - l ) x f , + m - 1 = 0
o m( - X,,)' - 2 ( m - 1)( - X,,)' + m - 1 = 0 tuc la - x„ cQng la nghiem cua phuang trinh
V a y de phuong trinh c6 nghiem duy nhat dieu kien la:
- x„ = x„ x„ = 0
K h i do:
(1) c ^ m - 1 = 0 » m = 1
D o c h i n h la dieu k i e n can de phuong trinh c6 nghiem duy nhat
Dieu kien du: V o l m = 1, ta c6:
x"* = 0 » X = 0 la nghiem duy nhat cua phuong trinh
Vay, v 6 i m = 1 phuong trinh c6 nghiem duy nhat
Trang 62 Nhu viiy, de tim dieu kien cua tham so sao ciio phuong trinh triJng
phuong:
ax"* + bx^ + c = 0 (1)
CO ngliiem duy nhat, bang phuong phap dieu kien can va dii dugc thirc
hien Iheo Ciic buoc:
Biiocl: Dieu kien can:
Giai sir (1) c6 ngliiem x,„ suy ra - x„ cQng la nghiem ciia
phuong trlnh Vay de phuong tiinh c6 nghiem duy nhat
dieu kien la:
- x„ = x„ <=> x„ = 0
Khi do:
(l)c:>c = 0
Do chinh la dieu kien can de phuong tiinh c6 nghiem duy nhat
Bia'rc 2: Dieu kien dir Thirc hien viec thu lai vdi c = 0
Vi du 2: Tim m de phuong tiinh sau c6 nghiem duy nhat:
V l - x ^ + 2 N / I - X 2 = m (1)
Gicii
Dieu kien can: Nhan xet rang neu phuong trlnh c6 nghiem x,„ thl cQng
nhan - x,, lam nghiem
Do do phuong trlnh c6 nghiem duy nhat thl dieu kien can la
x„ = - x„ » x„ = 0
Khi do:
1 + 2 = m « m = 3
Do chinh la dieu kien can de phuong tiinh c6 nghiem duy nhat
Dieu kien dir V6i m = 3, khi do phuong tiinh c6 dang:
Vay, phuong tiinh c6 nghiem duy nhat khi va chi khi m = 3
Vi du 3: Tun m de bat phuong tiinh co nghiem duy nhat:
V x 2 - 2 m < m x ' ^ (1)
Gicii Dieu kien rein: Nhan xet rang neu phuong tiinh c6 nghiem x,„ thl cung
nhan - x„ lam nghiem
Vay (1) CO nghiem duy nhat khi
X„ = - X „ <::i>X„ = 0
Khi do:
( ! ) « V - 2 m <Oc:>m = 0
Do chmh la diSu kien can de phuong tiinh c6 nghiem duy nhat
Dieu kien dir Gia su m = 0, khi do (1) c6 dang:
4^ < 0 c : > x = 01a nghiem duy nhat ciia bat phuong tiinh
Vay, voi m = 0 bat phuong tiinh c6 nghiem duy nhat
Vi du 4: Tim m de bat phuong tiinh sau c6 nghiem duy nhat:
log 2 , ( 2 - V x - + r ) > ( m - 1 ) ' (1)
Gicii Dieu kien can: Gia sir (1) c6 nghiem la x = x„ suy ra - x„ cung la
nghiem cua (1)
Vay (1) CO nghiem duy nhat khi x„ = - x„ <=> x„ = 0 • Thay x„ = 0 vao (1), ta duoc:
log , 1 > (m - 1 )^ « (m - 1)- < 0 <=> m = 1
Do chinh la dieu kien can de phuong tiinh c6 nghiem duy nhat
Dic'u kien dir Voi m = 1, khi do (1) c6 dang:
log2(2-Vx- + l) >C » 2 - Jx^ + 1 > 1 o VX- + 1 <1
<=> x- + 1 < 1 <=> x^ < 0 <=> X = 0 la nghiem duy nhat
Vay, voi m = 1 bat phuong tiinh c6 nghiem duy nhat
Vi du 5: Tim m de bat phuong tiinh sau c6 nghiem duy nhat:
Gidi Dieu kien can: Gia sir (1) c6 nghiem la x = x„ suy ra - x„ cDng la
nghiem cua (1)
Trang 7V a y ( 1 ) C O nghiem d u y nhat k h i
Thay x„ = 0 vao ( I ) , ta duoc:
1 > 1 + m^ « m^ < 0 » m = 0
D o c h i n h la dieu k i e n can de phuong trinh c6 nghiem duy nhat
Dieu kien du: Gia sir m = 0, k h i do (1) c6 dang:
^ > 1 » 2'^' < I Ixl < 0 o X = 0 la nghiem duy nhat
Vay, voi m = 0 phuong i i l n h cc nghiem duy nhat
V i d i i 6: T i m m de phuong trinh:
V m - c o s x = c o s 2 x (1)
CO n g h i e m d u y nhat thuoc ( - - , - )
Gicii
Dieu kien van: Gia su (1) c6 nghiem la x = x,„ tiic la:
V' " - c o s x , | = cos2x„ ^m-co.s(-x„) = cos2{ - x„)
^ - x,| cung la nghiem CLia (1)
la n g h i e m duy nhat ciia phuong t r i n h
Vay, v o i m = 2 phuong trinh c6 n g h i e m duy nhat
V i d u 7: T i m m de phuong t r i n h sau c6 nghiem duy nhat:
X - - 2mcosA + 2 = 0
Gicii Dieu kien can: N h a n xet rang neu phuong t r i n h c6 n g h i e m x,„ t h i cung
D o c h i n h la dieu kien can de phuong trinh c6 n g h i e m d u y nhat
Dieu kien dii: V o i m = 1, k h i do phuong trinh c6 dang:
x^ - 2co.sx + 2 = 0 <x> x ' = 2(cosx - 1)
V i :
VT = x^ > 0 ] lo)>xl<l •
VP = 2(co,sx-l) < 0
D o do phuong t r i n h c6 nghiem k h i va chi k h i
2 ( c o s x - l ) = 0 Vay, phuong t r i n h c6 nghiem duy nhat k h i va chi k h i m = 1
Chii y: N h u vay, thong qua viec danh gia t i n h ch5n ciia cac bieu thirc
giiii tich trong phuong t r i n h , bat phuong t r i n h chiing ta da thitc hien
duoc yeu cau " Tim dieu kien ciia tliam so de phifcfng trinh, bat phmng trinh c6 nghiem duy nhat"
Cac V I d u tiep theo vSn voi yeu cau nliir trcn xong de t i m dieu kien can chung ta su dung cac phep bien d o i dai so de thong qua nghiem x„
lam xua't hien nghiem (p(x„)
V i d i i 8: T i m m de phuong t r i n h :
x"* + m x ' + 2inx^ + m x + 1 = 0 (1)
CO n g h i e m duy nhat
Gidi
N h a n xet r i n g x = 0 k h o n g phai la nghiem ciia phuong t r i n h
Dieu kien can: G i a i sii (1) c6 n g h i e m x^^^O, suy ra
x^ + m x,^ + 2 m xfi + mx,, + 1 = 0
1 s
Trang 81 + m — +2m~ +m~ + - L =o
+ m + 2 m + m — + 1 = 0
tiic la — cung la nghiem cua phuofng trinh
V a y de phucfng trinh c6 nghiem duy nhat dieu kien la:
2 2
<=> ( X - 1 )^(2x^ + 3x + 2) = 0 <=> X = 1 la nghiem duy nhat
V a y , m = - ^ phuang trinh c6 nghiem duy nhat
Chii y:
1 Yeu cau tien hoan loan c6 the dugc thuc hien bang phuong phap dat
an phu, cu the:
Nhan xet r i n g x = 0 khong phai la nghiem ciia phuang trinh Chia ca
hai ve cua phuang trinh cho x V O , ta dugc:
gt nghiem thoa man Itl > 2 - De nglu ban doe ticlani
N h u vay, de t i m dieu kien cua tham so sao cho phuang trinh hoi y:
Bia'fc 2: Dieii kien vein:
Giai su (1) C O nghiem x,,, suy ra — cung la nghiem c i a
phuang trinh Vay de phuang trinh c6 nghiem duy nhat dieu kien la:
1
— = x,| » X|| = ±1 => Gia tri tham so
I Do chinh la dieu kien can de phuang tiinli c6 nghiem duy nhat
BIIOC 3: Dieu kien dir Thuc hien viec t h u lai
du 9: T\m m de phuang trinh:
Isinx - ml + Icosx - ml = v 2 (1)
C O dung mot nghiem thugc (0, - )
Gicii
Dieu kien ran: Gia su (1) c6 nghiem la x = x,, suy ra
Isinx,, - ml + Icosx,, - ml = yfz
<=> lcos( ^ - x„) - ml + lsin( ^ - x„) - ml = V2
- - X|, cung la nghiem ciia (1)
V a y (1) C O nghiem duy nhat k h i
Trang 9Thay x„ = ^ vao (1), la duac:
(1) « Isinx - N/2 I + Icosx - V2 I = N/I
o sinx + cosx - -Jl - gicii tmmg ti( nhinren
V a y , vdi m = 0 hoac m = >/2 phuong trlnh c6 d i i n g 1 n g h i e m thuoc
=> y - X|| cung la nghiem cua (1)
Vay (1) C O nghiem duy nhat k h i
A p d u n g bat dang thiic Cosi, ta dugc:
V T = -y/igx + ^cot gx >2^^/tgx.ycoTgx^ = 2
Do do:
x e ( ( ) , " )
(2) « > ^/tgx - T c o t g x = ! <=> tgX = 1
4
la n g h i e m d u y nhat cua phuang t r l n h
V a y , voi m = 0 phuang trlnh c6 nghiem duy nhat
V i d i i 1 1 : T i m m de phuong trlnh sau c6 nghiem duy nhat;
Gicii Die II kien can: Gia su phuang trlnh (1) c6 nghiem la x = x,, suy ra
2 - x,| cung la n g h i e m cua (1)
V a y (1) C O nghiem duy nhat k h i x„ = 2 - x„ » x„ = 1
Thay x„ = I vao {!) ta dugc m - 4 •
D o c h i n h la dieu k i e n can de phuang t n n h c6 n g h i e m duy nhat
Dieu kien di'i
Trang 10Do do:
<=> X = 1 la nghiem duy nhat cua phuong trlnh
Viiy, voi m = 4 phuang trinh c6 nghiem duy nhat
Vi du 12: T u n a, b, c de phuang trinh sau c6 nghiem duy nhat:
=> a + b - X|| cung la nghiem cua (1)
Vay (1) CO nghiem duy nha't khi
, a + b
X|, = a + b - x„ <=> x„ = •
Thay x„ = vao (1), ta dugc:
c = la - bl
D o chinh la dieu kien can de phuang trinh c6 nghiem duy nhat
Diet! kien di'i
Gia sir c = la - bl, k h i do (1) c6 dang:
Ix - al + Ix - bl = la - bl « Ix - al + Ix - bl = l(x - a) - (x - b)l
• Neu a ;^ b (ta gia su k h i do a < b), khi do:
(2) <^ a < X < b, tuc la (2) khong c6 nghiem duy nhat
• Neu a = b, k h i do:
( 2 ) c : > ( x - a ) - < 0
o X = a la nghiem duy nhat ciia phirong trinh
V a y , voi c = 0 va a = b phuong trinh c6 nghiem duy nhat
Chii y: Bai toan tren la dang tong quat va phuang phap duqc ap dung de
giiii cho mot lap cac bai toan g o m 1 va 2 tham so (thong thuong cac bai
thi dai hoc chi g o m mot tham so) Cac em hoc sinh can nam vilng cac
buoc thuc hien de ap dung trong m 6 i bai toan cu the
Vi du 13: T i m m de phuong trinh sau c6 nghiem duy nhat:
Gicii
Oicu kien can: Giai sii (1) c6 nghiem x,„ ta c6:
mx„(2 - x„) = lx„ - 11 « m [ 2 - (2 - x„)](2 - x„) = 1(2 - x„) - 11
tiic la 2 - x„ cung se la nghiem cua phuang trinh
Vay de phuang trinh c6 nghiem duy nhat dieu kien la
2 - x„ = x„ o x,| = 1
K h i do:
(1) « m = 0
D o chinh la dieu kien can de phuang trinh c6 nghiem duy nhat
Dieu kien di'i: V o i m = 0, ta c6:
(1) <=> Ix - 11 - 0 « X = 1 la nghiem duy nhat cua phuang trinh
Vay, vdi m = 0 phuang trinh c6 nghiem duy nhat
Vi du 14: T i m m de phuang trinh sau c6 nghiem duy nhat:
1
3IX-21 = 2m - 1
Gicii Dieu kien cc'in: Gia su phuang trinh c6 nghiem la x = x,, suy ra
=> 4 - X|, cung la nghiem cua (1)
Vay phuang trinh c6 nghiem duy nhat k h i x„ = 4 - x„ « x„ = 2
Thay x„ = 1 vao pliuang trinh, ta duac m = 1
D o chinh la dieu kien can de phuang trinh c6 nghiem duy nhat
Dieu kien du: Gia su m = 1, khi do phuang trinh c6 dang:
— ! — = 1 Ci> 3'" = 1 » Ix - 21 = 0 <=> X = 2 la nghiem duy nlia't
Vay, voi m = 1 phuang trinh c6 nghiem duy nhat
Vi du 15: T i m m de phuong trinh sau c6 nghiem duy nhat:
2 m x , 2 - x , ^ 3 l x - l l + ,ii_
Giiii Dieu kien cc'iu: Giai su phuong trinh c6 nghiem x,,, ta c6:
2 n i x „ ( 2 - x „ ) _ ^Ix,,-!! + j-j^ < ^ 2 " i ( 2 - x „ ) | 2 - ( 2 - X | , ) | _ 3 l ( 2 - X o ) - l l + tiic la 2 - X|, cLiiig se la nghiem cua phuong trinh
Trang 11V a y de pliuang trinh c6 nghiem duy nhat dieu kien la
D o chfnh la dieu kien con de phuong trinh c6 nghiem duy nhat
Dic'ii kien di'i
V i du 16: T i m m de phuang trinh sau c6 nghiem duy nhat:
=> m^ - 4 m - x„ cung la nghiem cua (1)
V a y ( 1 ) CO nghiem duy nhat k h i
( x „ + l ) ' + {x„ + 3)'* = 2 m o ( - x „ - l ) ' + ( - x „ - 3 ) - ' = 2 m
« [3 + ( - x„ - 4)]-' + [1 + ( - x„ - 4)]^ = 2 m tire la - x„ - 4 cQng la nghiem cua phuang trinh
Vay de phuang trinh c6 nghiem duy nhat dieu kien l i i :
- X o- 4 = x„<=>x„= - 2
K h i do:
(1) « ( - 2 + 1)-^ + ( - 2 + 3 ) ' = 2 m « m = 1
D o chinh la dieu kien can de phuang trinh c6 nghiem duy nhat
Dieu kien clii: V o i m = 1, ta c6:
(1) » ( x + l ) ' + (x + 3)'' = 2 (2) Dat t = X + = X + 2, suy ra :
<=>x + 2 = 0<::^x = - 2 la nghiem duy nhat
V a y , m = 1 phuang trinh c6 nghiem duy nhat
Trang 12Clu'i y:
1 Nliu vay, de tim dieu kien cua tham so sao cho phuang trinh:
CO nghiem duy nhat, bing phuang phiip di^u kien ciin va du dugc thuc
hien iheo cac buac:
Bum-1: DieII kien can:
Giai su (1) c6 nghiem x„, suy ra - X n - a - b cung la
nghiem ciia phuang trinh Vay de phuang trinh c6 nghiem
duy nhii't dieu kien la:
- x„ - a - b = x„
a + b
( I )
=> Gia tri tham so
Do chinh la di<!u kien can de phuang tilnh c6 nghiein duy
nhat
Biioc- 2: Dieu kien dir Thuc hien viec thu lai
2 Yeu cau tien hoan toan c6 the duac thuc hien bang phuang phap dat
rin phu, cu the:
Dat I = x + = x + 2, suy ra:
( x „ - l ) ( x „ + l)(x„ + 3)(x„ + 5) = m
« ( - x„ + 1 ) ( x „ - - ] ) ( - x„ - 3)( - x„ - 5) = m
o [5 + ( - X, - 4)][3 + ( - ^, - 4)][ 1 + ( - x<, - 4)][ - 1 + ( - x, - 4)] = m tuc la - x,i - 4 cung la nghiem cua phuang trinh
Vay de phuang trinh c6 nghiem duy nhat dieu kien la:
- x „ - 4 = x „ o x „ = - 2
K h i do:
( l ) » ( - 2 - l ) ( - 2 + l ) ( - 2 + 3 ) ( - 2 + 5) = m o m = 9
Do chinh la dieu kien can de phuang trinh c6 nghiem duy nhat
Dieu kien du: V d i m = 9, ta c6:
( l ) » ( x - l ) ( x + l ) ( x + 3)(x + 5) = 9 (x- + 4x - 5)(x' + 4x + 3) = 9
Dat t = x^ + 4x - 5, dieu kien t> - 9, suy ra x" + 4x + 3 = t + 8
K h i do phuang trinh tren c6 dang:
t(t + 8) = 9 » t^ + 8t - 9 = 0 «
x + 4x - 6 = 0 +4x + 4 = 0
1 = 1
1 = - 9
+ 4 x - 5 = l x^ + 4 x - 5 = - 9
x = - 2 ± V l O
x = -2 tuc la phuang trinh khong c6 nghiem duy nhat
Vay, khong ton tai m de phuong trinh c6 nghiem duy nhat
Bum-1: i)ieu kien can: Giai su (1) c6 nghiem x,„ suy ra - x,, - a - b
cung la nghiem ciia phuang trinh
Trang 13Vay de phuomg trinh c6 nghiem day nhat dieu kien la:
a + b
( I )
a b = x,| o x,| =
-Gia tri tham so
Do chinh la dieu kien can de phuong trinh c6 nghiem duy nhat
Bif()c 2: Dieu kien dir Thuc hien viec thu lai
2 Yeu cau tien hoan toiin c6 the' ducfc thuc hien bang phuang phap dat
an phu, cu the:
Viet lai phuang trinh du6i dang:
(x' + 4x - 5)(x^ + 4x + 3) = m
Dat t = X' + 4x - 3, dieu kien t > - 9 suy ra x^ + 4x + 3 = t -i- 8
Khi do phuong trinh tren c6 dang:
t(t + 8) = m « f ( t ) = t ' + 8 t - m = 0 (2)
Phuang trinh (1) co nghiem duy nhat
<=> (2) CO nghiem thoa man t, < t, = - 9
Vay, khong ton tai m de phuong trinh c6 nghiem duy nhat
Vi dii 19: T i m m de phuong trinh sau c6 nghiem duy nhat:
tiic la 2 - X|, cung la nghiem ciia (1)
Vay ( 1) CO nghiem duy nhat khi
Vx = V2 - x x = 1 Ja nghiem duy nhat
Vay, m = 2 phuong trinh c6 nghiem duy nha't
Chii y:
1 Nhu vay, de t l m dieu kien ciia tham so sao cho phuang trinh:
Vx + a + V b - x = c
(1)
CO nghiem duy nhat, bang phuang phap dieu kien can va du duoc thuc
hien iheo cac bu6c:
BiiocJ: Dien kien can:
Giiii sir (1) c6 nghiem x„, suy la
<=> , / b - ( - x „ - a + b) + ^/a + (-v„ - a + b) = c
<=> ^a + (-x„ - a + b) + ^ b - ( - x „ - a + b) = c tuc la - x„ - a + b cung la nghiem ciia phuang trinh Vay
de phuang trinh c6 nghiem duy nhat dieu kien la:
b - a
- X|, a + b = x„ <=> x„ = y
-=> Gia tri tham so
Do chinh la dieu kien ciin de phuang trinh c6 nghiem duy nhat
Bui/c 2: Dien kien dir Thuc hien viec thu lai
2 Yeu cau tren hoan toan c6 the duac thuc hien bang cac each khac,
cu the:
Ccicli I: Phuang phap ddr an pint:
x + a , dieu kien u, v > 0
V = V b - x Khi do phuang trinh dugc chuyen thanh he:
u + V = c
u + V = a + b
do chinh la he dx loai I ma chiing ta da biet each giiii
Trang 14Ci'icli 2: Phuang pluip ham so:
Xct ham so y = V x + a + V b - x l i e n tap D = [ - a, b ] , tCr do xac d i n h :
• D a o ham l o i giai phuang trlnh y ' = 0
• Bang bien thien
K h i do phuang trlnh c6 nghiem d u y nhat k h i va c h i k h i duang thang
y = c cat phan d o thj h a m so tren D tai m o t d i e m d u y nhat
Cacli 3: Pliii'(Hi}> plidp liMiiy, i^icic lioci
3 D e nghj ban doc m a rong cho phuang trlnh :
Tuc la k h i do - 1 - x,, cung la nghiem cua (1)
Vay ( 1 ) CO nghiem d u y nhat k h i
X(| — 1 X(| X|| — —
V a i X|| = - ^ , ta dugc:
( 1 ) « iog^^(J4Tl+^-l + 5) = a « a = 1
V a y a = 11a dieu kien can de phuang trlnh c6 nghiem d u y nhat
Dicii kicn dir V d i a = 1, phirong trlnh (1) c6 dang :
4x-^+4x + l = 0 2 Vay, a = 1 phuang trlnh c6 nghiem d u y nhat
Chu
y-1 T r o n g phan xac d i n h dieu kien can ta c6 the su d u n g :
• Bat dang thilc Bunhiacopski n h u sau:
2 V 4 ^ 2Vx + 5
« Vx + 5 = V4 - X <=> X = - ^
Trang 15Being bien thien:
Dat I = 2sinx dieu kien Itl < 2
K h i do phuong trinh c6 dang:
It - l l + l t - a l = b
K h i do (1) CO diing 2 nghiem phan biet thuoc [0, 2n)
<=> (2) CO nghiem duy nhat thuoc [ - 2, 2 ]
Dicti kien can
Gia sir (1) c6 nghiem la t = t,, suy ra
lt„ - 11 -i- ll„ - al b
c : > l ( l + a - t „ ) - a l + l ( l + a - t „ ) - l l = b
=> 1 + a - t|, cung la nghiem ciia (2)
V a y (2) CO nghiem duy nhat k h i
D o c h i n h la dieu kien can de phuong trinh c6 nghiem duy nha't
Dicii kien di'i:
V d i b = la - 11, k h i do (2) c6 dang:
I t - 1 1 + I t - a l = l a - I I
o l t - l l + l t - a l = l ( t - l ) - ( t - a ) l
c ^ ( t - l ) ( t - a ) < 0 (3)
• Neu a?tl (ta gia sir k h i do a < 1), k h i do:
(3) o a < t < 1, tuc la (3) khong c6 nghiem duy nhat
^~ 6
Vay voi b = 0 va a = 1 co dung 2 nghiem phan biet thuoc [0, In)
I I I B A I T A P D ^ N G H I Biii tap 1: T u n m de cac phuong trinh sau c6 nghiem duy nhat:
Trang 16Hiii tap 6: T i m m de cac phuang trinh sau c6 nghiem duy nhat
Voi yeu cau:
" Tim dicn klcn ciia tham so(i;id sir la m) dc he pliuang trinh, / t f hat phiioiiii trinh:
f ( x , y , m ) < 0
g( x , y , m ) > 0
CO ii^liieru day nhat"
ta thuc hien theo cac budc sau:
Biio'c J: Dat dieu kien de cac bieu ihiic irong (1) c6 nghla
Bum- 2: Dieu kien can: Gia sir (1) c6 nghiem la (x,,, y,,) khi do:
a Dua tren tinh chat doi xung cua cac bieu thiic giai tich trong (1), ta di khang dinh khi do ((p,(x,|, y,,), (pjCx,,, y,,)) cung la nghiem cua (1)
b Do do, de he CO p.ghiem duy nhat Clin c6:
Biioc3: Dieu kien dir V o i meD,,,, ta di kiem tra lai tinh duy nhat
Biioc 4: Ket hop ba buac giai tren ta tim dugc dap so
Gia tri ciia (x,„ y,,)
33
Trang 17Chii y: V a i cixc he mot an bai toan duac tbi/c hien dua tren phirong phap
da biet trong bai toan 1
Dicii kicii cciii:
Nhan xet nlng neu he c6 nghiem (x„ y„) thi (y^, x„) cQng la nghiem
cua lie, do do he co nghiem duy nhat khi:
Khi do, he c6 dang:
2xf| = m
2x„ = 6
Do chfnh ia dieu kien ciin de he c6 nghiem duy nhat
DicH kien dir
Voi m = 18, ta duac:
m = 18
+ y- = 18 fx + y = 6
x + y = 6 XV = 9 <=> X = y = 3 la nghiem duy nhat
Vay, vdi m = 18 he phuang trinh c6 nghiem duy nhat
Chii y:
1 Nhu vay, de tim dieu kien cua tham so sao cho he phuang trinh doi
xiTng loai I va ioai II c6 nghiem duy nhat ta thuc hien theo cac bu6c:
Biioc I: Dieu kien can
• Nhan xet rang, neu he c6 nghiem (x,„ y„) thi (y,„ x„)
cung la nghiem ciia he, do do he c6 nghiem duy nha't
x„ = y,, (**)
• Thay (**) vao he ta duac gia tri ciia tham so Do chinh
la dieu kien can de he c6 nghiem duy nhat
Bitoc 2: Dieii kien dii
2 Yeu cau tren hoan toan c6 the dugc thuc hien bang nhung phuang
phap khac, cu the:
Cckli J: Sir dung phuang plidp cluing ciia he doi xiing loai I
Bien doi he phuang trinh v6 dang:
He CO nghiem duy nhat
<r> (1) CO nghiem duy nhat o A',,, = 0 < = > m - 1 8 = 0 < = > m = 1 8
Khi do he c6 nghiem x = y = 3
Vay, vai m = 18 he phuang trinh c6 nghiem duy nhat
Cdcli 2: Siiditng plutang plidp the
Bien doi he ve dang:
x~ + ( 6 - x ) " = m <=> 2x^-12x + 36 i.i-0 (2)
y = 6 - x
He CO nghiem duy nhat
<=> phuang trinh (2) c6 nghiem duy nhat
« A',|, = 0 » m - 18 = 0 « m = 18
K h i do he c6 nghiem x = y = 3
Vay, vai m = 18 he phuang trinh c6 nghiem duy nhat
Cdch 3: Sit dung phuang phap do thi
Nhan xet rang vdi m<0, he v6 nghiem, do do ta xet v6i m > 0
Ta c6:
• Phirang trinh (1) la du6ng tron (C) c6 tarn 0 ( 0 , 0), ban kinh R ^
yfm
• Phuang trinh (2) la duang thang (d)
He CO nghiem duy nhat
<=> (d) tiep xiic v6i (C)
<=> d ( 0 , (d)) = R » = Vi^ « m = 18
Vi + i
Khi do, he c6 nghiem x = y = 3
Vay, vai m = 18 he phuang trinh c6 nghiem duy nhat
Trang 18Ccuh 4: Si'cclungphucfngplidp luang gidc hoa
Nhan xet r i n g vai m < 0, he v6 nghiem, do do ta xet v 6 i m > 0
T u phuang trlnh t h i i nhat ciia he:
Thay (3) vao phucrng trlnh t h u hai ciia he, ta duoc:
Vim sint + 4m cost = 6 «
« s i n ( t + ^ ) = ^
He CO nghiem duy nhat
phifong trlnh (4) c6 nghiem duy nhat tren tap [0, 2n)
Vay, voi m = 18 he phuang trlnh c6 nghiem duy nhat
V i d u 2: T u n m de he phuang trlnh sau c6 nghiem duy nhat:
log2(x + y) = m logjCxy) log2(xy) = 6-xy
Dial kien (dir
N h a n xet rSng neu he c6 nghiem (x,„ y,,) t h i cQng c6 nghiem (y,,, x„),
do do he c6 nghiem duy nhat t h i x„ = y„
|log2(xy) = 6-xy [xy = 4 [xy = 4
Vay, v 6 i m = 1 he c6 nghiem duy nhat (2, 2)
la nghiem cua he, do do he c6 nghiem duy nhat k h i :
D o chfnh la dieu k i e n can de he c6 nghiem duy nhat
ieu kien di'i
• V o i m = 1, ta duac:
^ j ^ ^ | x y + (x + y) = 3 [xy(x + y) = 2
khi do X + y va xy la nghiem ciia phuang trlnh:
Nhan thay he luon c6 hai cap nghiem (0, 1) va ( 1 , 0)
Trang 19-la nghiem duy nhat ciia he
Vay, v d i m = 1 hoac m = - he da cho c6 n g h i e m duy nhat
Chii y: Nhu da tha'y trong v i d u tren, chiing ta c6 the thuc hien bang
k h i do S, P la n g h i e m ciia phuong trinh:
<=> X, y la n g h i e m cua f(u)—u —u+m+1 = 0 (1)
» X, y la n g h i e m ciia g(u)=u^-(m+1 )u+1 =0 (2)
I S
He CO n g h i e m d u y nhat
(1) v6 nghiem & (2) c6 nghiem kep
<=> (2) v6 nghiem & (1) c6 nghiSiii kep
(i) & (2) CO nghiem kep u „
Dicii kien can: N h a n xet rang neu he co nghie m (x,,, y,,) t h i cung
n g h i e m (y,„ x„), do do he co nghiem duy nhat t h i x,, = y,,
Trang 20^hii y: V i d u tren, chiing ta c6 the thuc hien bang each sau:
Viet lai he phuong trinh d u d i dang:
He CO nghiem duy nhat
» ( 1 ) CO nghiem kep duong
Vay, v o i m = logj y thoa man dieu k i c n dau bai
V I (UI 5: Tim m de he bat phuong trinh sau c6 nghiem d u y nhat:
_ yfx+yjy = 1
X + y < m
Gicii
D i e u k i e n x, y > 0
Die II kien can:
G i a su he c6 nghiem (x,„ y,,) =:> (y,„ x,,) cQng la nghiem cua he V a y
he CO nghiem d u y nhat t h i dieu kien can la: x„ = y„
K h i do he (I) c6 dang:
2 ^ = ^ = ^ m > i
2x < m 2
V a y m > ^ la dieu k i e n can de he c6 nghiem d u y nhat
Dien kien dir
Vdfi m > ^ , ta xet hai t i u o n g hop :
Tnfd-iii!, lu/p 2: V d i m > ^ , he (I) c6 dang:
^/^ + ^/y =1 t=VI JVy = i - t
^ CO v 6 so gia t r i y thoa m a n => he k h o n g c6 nghiem d u y nhat
Vav, m = - la dieu kien can va du de he c6 nghiem duy nhat
2 •
Chu y: V i d u tren, chung ta c6 the thuc hien bang cdc each sau:
Truoc het, dat:
Trang 21Trudc het can c6
Vay, vdi = ^ h? c6 nghiem duy nhat
Cc/c// 2; Si'fdiing phifc/ngphdp do thi
Triayng lu/p 1: V 6 i m<0 thi (III) c6 v6 so nghiem
Tnayng lu/p 2: V o i m > 0
Goi X , va X j Ian lugt la tap nghiem ciia (1) va (2), ta c6:
• X | la tap cac diem trong doiui thang A B ciia duong tliang (d): u + v - ! = 0
" X j la tap cac diem trong hinh tron (C) c6:
Vay, voi m = ^ he c6 nghiem duy nhat
Vi du 6: Tun m de he bat phuong trinh sau c6 nghiem duy nhat:
X + y + ^2xy + m > 1
x + y < 1
Gidi
Die It kien can: Gia sir he c6 nghiem (x,„ y„) ^ (y,,, x„) cung la nghiem
ciia he Vay he c6 nghiem di^y nhat thi dieu kien can la: x,, = y,,
Vay m>~ ^ la dieu kien can de he c6 nghiem duy nha't
Pic'ii kien dir V d i m> - - , ta xet hai tru5ng hop :
fi-iiviig lu/p 7: V d i m = - - , he (I) c6 dang:
x + y < 1
He (II) CO nghiem duy nhat x = y = ^ , v i k h i do dirong thang
X + y - 1 = 0 tiep xiic voi dudng trong ( C ) : (x - 1)^ + (y - 1)^ = ^
=> CO v6 so gia tri y thoa man => he khong c6 nghiem duy nhat
Vay, m = - ^ la dieu kien can va dii de he c6 nghiem duy nhat
Chu y: Co the sir dung phuong phap do thi de giai v i du tren bang viec
bie'n doi tuong duong he ve dang:
7 2 x y + 111 > l - ( x + y)
X + y < 1
x + y < 1 2xy + iii > [ l - ( x + y ) f
Goi X | va X j Ian luot la tap nghiem ciia (1) va (2) Ta c6:
• X , la tap cac diem trong phan matphang phia dudi dudng thang (d): x + y - 1 = 0
4-?
Trang 22X 2 la tap c a c d i e m tiong hinh tron ( C ) c 6 :
Vay, vtfi m = - - he c6 nghiem duy nhat
Vi till 7: T u n m de he sau c6 nghiem duy nhat:
X = - y +1)1 (*)
y = - X + m
Gicii
Dieu kien can: Nhaii xet rang, neu he c6 nghiem (x,,, y,,) t h i cung c6
nghiem (y,,, x„), do do he c6 nghiem duy nhat i h i
D o chinh la dieu kien can de he c6 nghiem duy nhat
Dieu kien dir Vdfi m = 1, he c6 dang:
Nghiem thoa man he va la nghiem duy nhat
Vay, vcfi m - 1 he c6 nghiem duy nhat
Vi dH 8: T u n m de; cac he sau c6 nghiem duy nhat:
( x - i ) ^ + ( y + i ) - < m (x + l ) ^ + ( y - l ) 2 < m
Giiii
Dieu kien can: Gia sir he c6 nghiem (x,„ y„), -suy ra (y,„ x„) cQng la nghiem
cua he Vay de he c6 nghiem duy nhat thl dieu kien can la x„ - y„
Nhan xet l i n g x = y = 0 thoa man he (II)
Vay, he c6 nghiem duy nhat k h i m = 2
Vi du 9: Tim m de he sau c6 nghiem duy nhat:
x"+(y +1)" < 111 (x + l)^+y^ < m
Gicii
Dieu kien can:
Gia sir he c6 nghiem (x,„ y„), suy ra (y,„ x„) cung la nghiem cua he
Vay de he c6 nghiem duy nhat thi dieu kien can la x„ - y„
K h i do:
xr, + ( x „ + l ) - < m » 2 x ? , + 2 x „ - m + 1 < 0 (1)
Ta can (1) phai c6 nghiem duy nhat
<=>A = 0 < = > m = - Vay dieu kien can de he c6 nghiem duy nhat la ' i i = ^ •
Dieu kien du: V o i m = ^ , he c6 dang:
x + ( y + 1) < (X M)^+y^ < ^
-(ID
x ' + (y + + (X + + y ' < l 2 x ' + 2x + 2 y ' + 2y + 1 < 0
«(xV^ + ^ ) ^ + (yV^ + ^ ) ^ < 0 « x = y = - i Nhan xet rang x = y = - ^ thoa man he (II)
Vay, he c6 nghiem d u y nhat k h i m = ^
45
Trang 23Chii y: Ta c6 the su dung phuang phap do thi de thuc hien v i du tren, cu
the:
Goi X , va X2 Ian lugt la tap nghiem ciia (1) va (2) Ta c6:
• X | la tap cac diem trong hinh tron:
Vay he c6 nghiem duy nhat khi (C,) tiep xilc vdi (C,)
<=> I , ! = R, + R, I L = 2 <=> m = -
Vay, vai m = - thoa man dieu kien dau bai
VI du 10: Tun m de he phuang trlnh c6 nghiem duy nhat:
xy + x^ = m ( y - l )
xy + y = m(x - 1 )
Gicii
Die It kien can:
Nhan xet rang: neu he c6 nghiem (x,„ y„) thi cQng c6 nghiem (y,,, x,,),
do do he c6 nghiem duy nhat thi
y = - 8 - x
72 = 0
<=> x = y = 2 la nghiem duy nhat
V a y , vdi m = 8 he c6 nghiem duy nhat
Vi (111 11: Ti'ii m de he sau c6 nghiem duy nhat:
x-^ = y 2 + 7 x ^ - m x (1)
y-' = x^ +7y" - my (2)
Gicii OU'ii kien can: Nhan xet rang: neu he c6 nghiem (x,„ y„) thi cung c6
nghiem (y,„ x„), do do he c6 nghiem duy nhat thi
Trang 24bai phirang trinh (**) v6 nghiem do:
Vay, voi m > 16 he c6 nghiem duy nhat x = y = 0
Vi du 12: Tun m de he sau c6 nghiem duy nhat:
x(4y' - 3 ) = in
y(4x^ - 3 ) = 111
Gidi
Dieu kien can:
Nhan xet rang: neu he c6 nghiem (x,„ y„) thi cung co nghiem (y,„ x,,)
do do he c6 nghiem duy nhat thl x„ = y„ K h i do:
(1) <» x„(4xr, - 3) = m o 4xf) - 3x„ = m
Do x„ duy nhat nen (1) phai c6 nghiem duy nhat « hnl > 1
Dieu kien du:
x(4y- - 3 ) = 111
X = y x(4y" - 3 ) = m 4xy + 3 = 0
111
x + y = - - ^
xy = - l
( I V ,
Nhan xet rang ( I V ) luon c6 2 nghiem phan biet, do vay he (I) khong
the CO nghiem duy nhat
Vay, khong ton tai m de he c6 nghiem duy nhat
nghiem ciia he Vay de he c6 nghiem duy nhat thl dieu kien can la
Do chinh la difiu kien can de he co nghiem duy nhat
Dieu kien clii : V o l in - 2 he co dang;
( x - 2 ) ' + y - - = 2
x - + ( y - 2 ) 2 = 2
^ (X - 2)- + y ' + x ' + (y - 2)- = 4 <» (X - + (y - = 0
<=> X = y = 1
Nhan xet rang x = y = 1 thoa man he (II)
Vay, he co nghiem duy nhat khi m = 2
Chii y: Chung ta co the sir dung phuong phap do thi de thuc hien v i du
• X , la tap cac diem tren dudng tron (Cj) co:
Trang 25Vi du 14: T i m a de he bat phucfng trinh sau c6 nghiem duy nhat:
Vx + 1 + ^ <-d
4 I + Vx < a
Gidi
Dieu kien x, y > 0
Dieu kien can:
Gia sir he c6 ngliiem (x,,, y„) =:> x,„ y ;i> 0 tCi' do:
• => neu a < 1 thi he vo nghiem
Vay a >1 la dieu kien can de he c6 nghiem duy nhat
Dieu kien dir Xet hai trudng hop:
V o i a = 1, he CO dang:
+ 1 + < 1
V o i a > 1, xet cac cap nghiem ciia he c6 x = 0 he co dang:
Bien doi bii't phuong trinh (1) ve dang:
<z> X = y = 0 la nghiem duy nhat cua he
yjy + l <i\
y < ( a - i r
7 « 0 < y < m i n { ( a - 1 ) ' , a ^ - 1 }
y < a ' ' - l
=> CO v6 so gia tri y thoa man => he khong c6 nghiem duy nhat
Vay, voi a = 1 he c6 nghiem duy nhat x = y = 0
Chu y: V o i each lap luan tuong tii nhu tren ta c6 the giai duoc bai toan
voi yeu cdu:
" Tim a de he but phmyng trinh sau c6 nghiem "
Khi do dieu kien la a > l
V i du 15: T i m m d6 he phuong trinh sau c6 nghiem duy nhat:
I g x l g y + lg X = m ( l g y - l ) ( I )
(D
I g x l g y + l g - y = i n ( l g x - l )
Gidi
Dieu kien x,y > 0
Dieu kien can: Nhan xet ring neu he c6 nghiem (x,,, y,,) thl cung c6
ngiiiem (y,,, x,,), do do he c6 nghiem duy nhat thl x,, = y„ K h i do;
TrCr tCing ve he phuong trinh, ta duoc :
Ig-x - Ig-y = - 8(igx - Igy) (Igx - lgy)(lgx + Igy + 8) = 0
Vay, voi m = 8 he c6 nghiem duy nhat
Vi du 16: T i m m de he sau c6 nghiem duy nhat:
Trang 26Do do he t o nghiem duy nhal thi:
X(i = 2 - x , )
• y ( ) = 2 - y „ o x „ = y „ = 1
Voi x,| = y„ = 1 ta suy ra m = 4
Dicii kieii du: V o i m = 4, he c6 dang:
j l x + l l + l y - 3 l = 4 rx = y = l
| l y + 1 1 + I X - 3 1= 4 [ x = y = 3 •
Vay, khong ton tai m de he c6 nghiem duy nhat
Vi (ill 17: Tim a de he sau c6 nghiem duy nhat:
[ i i x ~ + a = V + I
<
I x l + y - = 1
Gicii
Dicii kien can: Nhan xet n\ng: neu he co nghiem (x,,, y,,) tiVi ( - x,,, y,,)
Cling [i\m cua he
Do do he co nghiem duy nhat thi: x„ = ~ x,, <=> x„ = 0
Voi x„ - 0 ta suy ra:
la nghiem duy nhat
Vay voi a = 2 he co nghiem duy nhat
£)iai kien can:
Nhan xet rang neu he co nghiem (x,,, y„) thi cung co
( - x,„ y„) K h i do de he co nghiem duy nhat \h :
x„ = - x„ <=> x„ = 0 Voi x,| = 0, ta dugc:
Vay, voi m = 6 he co nghiem duy nhat
V i d u l 9 : Cho he phuong tilnh:
ax^ + a - 1 = y - I s i i i x I tg~x + y^ = l
Tim a de he phirong trlnh co nghiem duy nhat
Gidi
£>ieu kien can:
Nhan xet rang neu he co nghiem (x,,, y„) thi cung co
(•- X|„ y„) K h i do de he co nghiem duy nhat la
x„ = - x„ <=> x„ = 0 Voi x„ = 0, ta duoc:
Trang 27Dicn kien di'i
la nghiem duy nhat ciia he
Vay, voi a = 2 he co nghiem duy nhii't
Vi du 2 0 : Tim a de he sau co nghiem duy nhat:
ax'^+I sin 2x I + a = y + 1
1 tg6x I + 2 y - = 2 'j
(jiiii
Dicii kien can:
Nhan xet rang: neu he co nghiem (x,„ y„) ihi ( - x,„ y„) cung la
nghiem ciia he
Do do he co nghiem duy nhat thi: x„ = - x„ o x„ = 0
Voi x„ = 0 ta suy ra:
P Vay, voi a = 2 he co nghiem duy nhat
Vi du 2 1 : Tim m de he sau co nghiem duy nhat:
2 ' ' ' ' - 2 > ' = y - 1 x 1 ( 1 1 1 + 1 )
' 1X + y = 111 2
Gidi Dieu kien can: Nhan xet rang neu he CT nghiem (x,„ y„) suy ra ( - x„, y„) cQng la nghiem
Vay de he co nghiem duy nhat thi x„ = - x,, <=> x„ = 0
Do chinh la dieu kien can de he nghiem duy nhat
f^ieu kien du: Gia su m - 0, khi do ht co dang:
2'-^'-2>' = y - l x l
X - -f y - 0
, 1 x 1
<=> x l = 2 > ' + y (3) x*^+v = 0 ( 4 )
5 5