Bidt phan biet rd cac khai niem quy tac cdng, quy tdc nhan va van dung trong tflng trudng hgp cu the.. • GV neu khai niem quy tac cdng Gid sit mdt cdng viec cd the dugc thuc hien theo ph
Trang 1Ndi dung chfnh eua chuong II:
Quy tae ddm: Gidi thieu quy tac cgng va quy tac nhan va nhiing iing dung cua cac quy tdc nay
Hoan vi - ehinh hgp - td hgp : Day la ba quy tac ddm cu thd nhdm dd dem cac phdn tii cua tap hgp hffu han theo cac quy luat thii tu ggi la hoan vi, chinh hgp va td hgp
Nhi thiic Niu-ton : Nhdm tim he sd ciia mdt khai tridn (a + b)"
Phep thit va bidn cd: Day la nhflng khai niem quan trgng cua xac sudt, Trong bai cdn dua ra nhiing quy tdc tfnh xac su&
Xae sudt cua cac bidn cd
II MUG TIEU
1 Kie'n thurc
Nam dugc toan bd kidn thiic co ban trong chuong da neu tren, cu thd :
Hinh thanh nhflng khai niem mdi cd hen quan ddn cac quy tac ddm Tfnh dugc sd cac td hgp, sd cac chinh hgp va sd cac hoan vi cua mdt taj hgp gdm n phdn tit
Phan biet dugc su khac nhau cua chinh hgp va td hop
• xay dung dugc khdng gian mdu, each xac dinh bidn cd va xac suat
Trang 2Cdn than, chfnh xac trong lap luan va tfnh toan
Cam nhan duge thuc td eua toan hge, lihdt la ddi vdi xac sudt
III CAU TAO C O A CHUONG
Ndi dung eua chuong gdm hai phdn du kidn duge thuc hien trong 21 tiet, phan phdi cu thd nhu sau :
PM/iA.Tdhgp(8tidt)
§ 1 Hai quy tac ddm co ban 1 tidt
§2 Hoan vi, chinh hgp va td hgp 3 tidt Luyen tap 2 tidt
§3 Nhi thfle Niu-ton 1 tidt Luyen tap 1 tidt
Phdn B Xac sua't (11 tidt)
§4 Bidn ed va xac sudt cua bien cd 2 tiet Luyen.tap 1 tidt
§5 Cac quy tac tfnh xac sudt 2 tiet Luyen tap 2 tidt
§6 Bidn ngdu nhien rdi rac 2 tidt Luyen tap 2 tidt
6n tap va kiem tra chuong 2 2 tidt
Trang 3• Hai quy tac ddm co ban : quy tac cdng va quy tac nhan
• Bidt ap dung vao tiing bai toan : khi nao dung quy tdc cdng, khi nao diing quy tdc nhan
2 KT nang
Sau khi hge xong bai nay HS sfl dung quy tac dem thanh thao
Tfnh chfnh xae sd phdn tfl ciia mdi tap hgp ma sdp xdp theo quy luat nao
dd (cgng hay nhan)
3 Thai do
Tu giac, tfch cue trong hge tap
Bidt phan biet rd cac khai niem quy tac cdng, quy tdc nhan va van dung trong tflng trudng hgp cu the
Tu duy eac vdn dd cua toan hge mdt each Idgic va he thdng
II CHUAN Bj cClA GV VA HS
Trang 4III PHAN PHOI THOI Ll/ONG
Bai nay chia lam 1 tidt
IV TIEN TRINH DAY HOC
• GV neu bai toan trong SGK
GV dat ra mdt vai cau hdi nhu sau:
?l| Hay vidt mdt sd mat khdu
GV chia ldp thanh 4 td, mdi td viet mdt so mat khdu, sau dd cho mdt ban trinh bay xem cac td cd trung nhau khdng?
• Thuc hien [HIJ trong 3'
Trang 5Ggi y tra ldi c^u hdi 3 Khdng du doan dugc
• GV neu khai niem quy tac cdng
Gid sit mdt cdng viec cd the dugc thuc hien theo phuang dn A hodc phuang dn B Cd n cdch thuc hien phuang dnAvdm cdch thuc hien phuang dn B Khi dd cdng viec cd the dugc thitc hien bdi n + m cdch
Quy tac cdng bdi nhieu phucmg an
Gid sic mdt cdng viec cd the dugc thuc hien theo mdt trong k phuang
a« AJ, A2, , A|j Co nj each thuc hien phuang dnA^, n2 cdch
thue hien phuang dn A2, vd n^ cdch thuc hien phuang dn A.^ Khi
do cdng viec cd the dugc thue hien bdi nj + n2 + • • • + n,j cdch
Trang 6GV thuc hien vi du 2 Vf du nay chi mang tfnh minh hoạ
• Thuc hidn [H2j trong 5'
Muc dich Kidm tra xem hge sinh da biet van dung quy tac cdng hay chuạ
Hoqt dpng cda GV
Cdu hoi 1
Cd bao nhieu de taị
Cdu hoi 2
GV đi sd va hdi xem cd
bao nhieu each chgn
• GV neu each phat bieu khac cua quy tac cdng neu trong chu ỵ
Sdphdn tit cua tap hgp hitu hgn Xdugc ki hieu la |x| (hodc n(X)) Quy tdc cdng cd the dugc phdt bieu dudi dgng sau :
Neu Ava Bid hai tap hgp hitu hgn khdng giao nhau thi sdphdn tilt cua A uB bdng sdphdn tit cua A cdng vdi so phdn tif cua B, tUc Id
| A u B | = |A| + |B|
Quy tdc cdng cd thd md rdng cho nhidu hanh đng
- Neu AJ, A2, ; Â Id k tap hOu hgn vd A; n Aj = 0 vdi i ^ j
(vdii,j = 1, , k) thi\AiKj A2^ yJ Ậ\=\AI\ + | A 2 | + " - + |A,^|
- Hai tap hgp A, B bdt ki thi\A u B| = | A | + | B | - | A n B|
Gia sfl tfl nha An đn nha
Binh cd 1 con dudng thi tfl
nha An đn nha Cudng cd
bao nhieu each chgn?
Hoqt dpng cua HS
Ggi y tra Idi cau hdi 1
Cd 6.1 = 6 con dudng
Trang 7Hoqt dpng cda GV
Cdu hoi 2
Hdi An cd bao nhieu each
chgn dudng di den nha
Cudng?
Hoqt dpng cda HS
Ggi y tra ldi c^u hdi 2
Cd 4 6 = 24 each di tfl nha An qua nha Binh ddn nha Cudng
• GV neu quy tdc nhan
Gid sit mdt cdng viec ndo do bao gdm hai cdng dogn A vd B Cdng dogn A cd the ldm theo n cdch Vdi mdi cdch thuc hien cdng dogn A thi cdng dogn B cd the ldm theo m cdch Khi do cdng viic cd the thuc Men theo nm cdch
f Thue hien |H3| trong 5'
Muc dich Kidm tra xem hge sinh da biet van dung quy tac nhan hay ehua
Hoqt dpng cda GV
Cdu hoi 1
Mdi each dan nhan cd bao
nhieu cdng doan, hay kd ten
cae cdng doan dd
Cdu hoi 2
Cd nhidu nhdt bao nhieu
chide ghd dugc ghi nhan
khac nhau?
Hoqt dpng cda HS
Ggi y tra ldi cau hdi 1
Viec lap mdt nhan ghd bao gdm 2 cdng doan Cdng doan thfl nhdt la chgn 1 chft cai trong 24 chft cai Cdng doan thfl hai
la chgn 1 sd trong 25 sd nguyen duong nhd hon 26
Ggi y tra Idi cau hdi 2
Cd nhidu nhdt la 24.25 = 600 chide ghd dugc ghi nhan khac nhau
• GV cho HS md rdng quy tdc nhan cd nhidu hanh ddng
Gid sit mdt cdng viec ndo dd bao gSm k cdng dognA^, A2, , Aj^ Cdng dogn Aj cd the thue hien theo Uj cdch, cdng dogn A2 cd thi thuc hien theo n2 each, , cdng dogn A^ cd the thuc hien theo
ny cdch Khi dd cdng viec cd the thuc hien theo nin2 •••ny cdch
Trang 8• Thuc hien vf du 4
Hoqt dpng cda GV
Cdu hoi 1
Mdi each lam mdt bidn sd xe
may cd bao nhieu cdng doan,
hay kd ten cac cdng doan dd:
Ggi y tra Idi c^u hdi 2
Thed quy tac nhan, ta cd tdt ca
26 9 10 10 10 10 = 2340000 (bien sd xe)
• Thuc hien Vl du 5
Hoqt dpng cda GV
Cdu hoi 1
Cd bao nhieu day gdm 6 kf ttt
mdi kf tu hoac la mdt chft cai
(trong bang 26 chft cai) hoac la
mdt chft sd (trong 10 chft sd tfl
0 ddn 9)
Cdu hoi 2
Cd bao nhieu day gdm 6 kf tu
ndi d cau>a) khdng phai la mat
khdu?
Cdu hoi 3
Cd thd lap duge nhidu nhdt bao
nhieu mat khdu?
Hoqt ddng cda HS
Ggi y tra ldi cau hdi 1
Vl ed 26 + 10 = 36 each chon nen theo quy tae nhan, ta cd the lap duge
36 day gdm 6 kf tu nhu vay
Ggi y^tra ldi cau hdi 2
Vi mdi kf tu cd 26 each chgn nen theo quy tac nhan, sd day gdm 6 ki tur khdng phai la mgt mat kh'du la 26
Ggi y tra ldi eSu hdi 3
cd36^-26^
Trang 9HOATD6NG4
TOMTATBAIHQC
1 - Gia sfl mdt cdng viec co thd dugc thuc hien theo phuong an A hoac phuong
an fi Cd n each thuc hien phuong an A va m each thue hien phuong an B Khi
dd cdng viec cd thd dugc thuc hien bdi n + m each
- Gia sft mdt cdng viec cd the dugc thuc hien theo mdt trong ^phuong anAj, A2, , Ajj Cd Wj each thuc hien phuong anAj, n2 cdch thuc hien
phuong an A2, va n^ each thue hien phuong an Aj^ Khi dd cdng viec ed
the dugc thuc hien bdi Uj + n2 + • • • + nj^ each
2 - Gia sfl mgt cdng viec nao dd bao gdm hai cdng doan A va B Cdng doan A
cd thd lam theo n each Vdi mdi each thuc hien cdng doan A thi cdng doan B
cd the lam theo m each Khi dd cdng viec cd thd thuc hi6n theo nm each
- Gia sfl mdt cdng viec nao dd bao gdm k cdng doan Aj, A2, , Aj^ Cdng
doan AJ cd thd thue hien theo Uj each, cdng doan A2 cd the thuc hien theo
n2 each, , cdng doan Aj^ cd thd thuc hien theo n^ each Khi dd cdng viec
cd the thuc hien theo njn2 Uj^ each
BOAT DONG 3
MOT S 6 CAU HOI TRAC NGHI£M
Cdu 1 Mdt bai tap gdm 2 cau, hai cau nay cd cac each giai khdng lien quan
den nhau Cau 1 cd 3 each giai, cau 2 cd 4 each giai So each giai dd thuc hien eac cau trong bai toan tren la tren la
(a) 3; (b) 4;
(c)5; (d)6
Trd ldi Chgn (c)
Cdu 2 DQ giai mdt bai tap ta cdn phai giai hai bai tap nhd Bai tap 1 cd 3
each giai, bai tap 2 cd 4 each giai Sd cac each giai dd hoan thanh bai tap tren la
(a) 3; (b)4;
(c)5; (d)6
Trd ldi Chgn (d)
Trang 10Cdu 3 Mdt Id hang duge chia thanh 4 phdn, mdi phdn duge chia vao 20 hop
khac nhau Ngudi ta chgn 4 hop dd kidm tra chdt lugng
Sd each chgn la
(a) 20.19.18.17; (b) 20 + 19 +18 + 17;
(c) 80.79.78.77 ; (d) 80 + 79 + 78 + 77
Trd ldi Chgn (e)
Cdu 4 Cho cac chft sd: 1, 3, 5, 6,*8 Sd cac sd chan cd 3 chft sd khac nhau cd
duoc tfl cac sd tren la:
(a) 12; (b) 24;
(e) 20; (d) 40
Trd ldi Chgn (b)
Cdu 5 Cho cae chft sd: 1, 3, 5, 6, 8 So cae sd chan cd 4 chft sd khac nhau cd
dugc tfl cac sd tren la:
(a) 4.3.2; (b) 4 + 3+ 2;
(c) 2.4.3.2; (d) 5.4.3.2
Trd ldi Chgn (c)
Cdu 6 Cho cac chft sd: 1, 3, 5, 6, 8 Sd cac sd le cd 4 chfl sd khac nhau cd
dugc tfl cac sd tren la:
(a) 4.3.2; (b)4 + 3+2;
(c) 3.4.3.2 ; (d) 5.4.3.2
Trd ldi Chgn (e)
Cdu 7 Mdt ldp hge cd 4 td, td 1 cd 8 ban, ba td cdn lai cd 9 ban
a) Sd each chgn mgt ban lam 1 ^ trudng la
Trang 11c) Sd each chgn 2 ban trong mdt td lam true nhat la
Hudng ddn Sfl dung cac phuong phap ddm sd phdn tfl cfla mdt tap hgp
Thep quy tac cdng, ta cd 5 + 4 = 9 each chgn ao so mi
Bdi 2
Hudng ddn Sfl dung quy tae nhan
Chft sd hang chuc cd the chgn trong cac chft sd 2, 4, 6, 8; do do cd 4 each chgn Chft sd hang don vi cd thd chgn trong eac chft sd 0, 2,4,6, 8; do dd cd 5 each chgn Vay theo quy tac nhan, ta cd 4.5 = 20 sd co hai chft sd ma hai chft sd cfla nd deu chan
Bdi 3
Hudng ddn Sfl dung quy tac nhan va quy tac cdng
a) Theo quy tdc cgng, ta cd 280 + 325 = 605 (each chgn)
b) Theo quy tac nhan, ta cd 280.325 = 91000 (each chgn)
Trang 12HS cdn hidu dugc each chiing minh dinh If ve sd cac hoan vi
Khai niem chinh hgp, cdng thfle tfnh sd cae ehinh hgp chap k cua n phdn tfl
• HS cdn hidu dugc each chihig minh dinh If vd sd cae chinh hgp chap k cua
n phdn tfl
Khai niem td hgp, sd cac td hgp chap k cua n phdn tfl
• HS cdn hidu dugc each chiing minh dinh li vd sd eac td hgp chap k cua n phdn tfl
HS phan biet dugc khai niem : Hoan vi, td hop va chinh hgp
Tu giac, tfch cue trong hge tap
Bidt phan biet rd cac khai niem co ban va van dung trong tflng trudng hgp, bai toan eu thd
Tu duy cac vdn dd cua toan hge mgt each Idgic, thuc te va he thd'ng
Trang 13II CHUAN B! CUA GV VA HS
1 Chuan bj cua GV
Chudn bi cae eau hdi ggi md
Chudn bi phdn mau va mdt sd dd dung khac
2 Chuan bj cua HS
• Cdn dn lai mdt sd kidn thfle da hge vd quy tac cdng va quy tdc nhan
6 n tap lai bai 1
III PHAN PHOI THOI LUONG
Bai nay chia lam 3 tiet:
Tiet 1: TU ddu den hit muc 2
Tiet 2 : Tiep theo den hit muc 3
Tiet 3 : Tiep theo den hit muc 4 vd bdi tap
IV TIEN TRINH DAY HOC
• GV neu va hudng ddn HS thuc hien vf du 1
GV cho HS didn va chd trdng theo each eua minh, sau Ao liet ke lai
Trang 14• Neu dinh nghia
Cho tdp hgp Acdn(n> 1) phdn tic Khi sdp xip n phdn tie ndy theo mdt thU tu, ta dugc mdt hodn vi cdc phdn tA cua tap A (ggi tdt la mdt hodn vi cda A)
• Thue hien [HIJ trong 5'
?l| Mdt tap hgp cd 1 phdn tfl cd bao nhieu hoan vi?
?2| Mdt tap hop cd 2 phdn tfl cd bao nhieu hoan vi?
?3| Mdt tap hgp cd 3 phdn tfl cd bao nhieu hoan vi?
• GVneu dinh ll 1:
Sdcdc hodn vi cua mdt tap hgp cd n phdn tii la
?^ = nt = n(n-l)(n-2) l
• GV hudng ddn HS chiing minh dua vao quy tac nhan
• GV ndu vf du 2, vi du nay chi mang tfnh minh hoa
• ThiJfc hien |H2J trong 5'
Ggi y tra Idi c^u hdi 1
mdi viec lap sd la mdt hoan vi
Trang 15HOAT DONG 2
2 Chinh hgp
a) Chinh hgp la gi
• GV neu cau hdi:
Cho mdt tap hgp A gdm n phdn tfl Viec chgn ra k phdn tfl dd sap xep ed thfl tu
?4| Neu k = n, ta duge mdt sdp xdp ggi la gi?
?5| Ndu k < n, ta dugc mdt sap xdp ggi la gi?
• GV neu vf du 3 va hudng ddn HS thuc hien
• GV neu dinh nghia ,
?6
Cho tap hgp A gom n phdn tic vd sd nguyen A vofl < k < n Khi lay
ra k phdn tit cua A vd sdp xep chdng theo mdt thU tti, ta dugc mdt chinh hgp chap k cda n phdn tit cda A (ggi tdt la mot chinh hgp chdp k cua A)
Hai chinh hgp khac nhau la gi?'
?7| Chinh hgp khac hoan vi d didm nao?
• Thuc hien [H3J trong 5'
Ggi y tra Idi cau hdi 1
(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)
Ggi y tra Idi cau hdi 2
Co 6 chinh hgp
Trang 16• GV neu nhan xdt:
Hai chinh hgp khdc nhau khi vd chi khi hodc cd it nhdt mdt phdn tic cda chinh hgp ndy md khdng la phdri tic cua chinh hgp kia, hodc cdc phdn tit cua hai chinh hop gidng nhau nhung dugc sdp xip theo thit
GV hudng ddn HS chiing minh dua vao quy tac nhan
• GV neu nhan xet trong SGK
TU dinh nghia ta thdy mdt hodn vi eua tap hgp n phdn tit la mdt ehinh hgp chap n cua tap dd nen A" = P^ = n!
• GV neu vf du 5 cho HS thue hien Co thd thay bdi vf du khac
• GV neu ehu y tfong SGK
Vdi 0 <k< n thi ta cd thi viit cdng thUe (1) dudi dgng
" (n-k)!
Ta quy udc
Ol = lvdAl=l
• GV dUa ra cae eau hdi cung cd nhu sau:
Hay chgn dung sai ma em cho la hgp If
?8| Hoan vi n phdn tfl la chinh hgp chap n cua n
(a) Dung; (b) Sai
Trang 17?9
?10
?11
Aj;iadungkhik>n
(a) Dung; (b) Sai
A„ la dung khi k < n
(a) Dung; (b) Sai
• GV neu dinh nghia
Gid sit tap Aeon phdn tit (n >1) Mdi tap con gom k phdn tut cua A ditgc ggi la mdt td hgp chdp k cua n phdn tiic dd cho
• Thuc hien |H4| trong 3'
Cd 4 td hgp
b) Sdcdc to hgp
• GV neu cac cau hdi:
?12| Hai td hgp khac nhau la gi?
?13| Td hgp chap k cua n khac chinh hgp chap k cua n la gi?
• GV neu dinh li
Kf hieu Cn la sd cac td hgp chap k cua n phdn tfl (0 < k < n)
Ta cd dinh If sau day
Trang 18DINH Lf 3
Sdcdc tdhgp chap k cda mdt tap hoped nphdn tic(l <k <n) Id ^
v_ A!: _n(n-l)(n-2)-(n-k + l)
" k! ki
• GV hudng ddn HS chflng minh dinh li
• GV hudng ddn HS thuc hien vi du 6 va vf du 7 nham cung cd kidn thfle vd tdhgp
1 Cho tap hop A gdm n phdn tfl (n > 1)
Mdi kdt iqua cua su sap xdp thfl tu n phdn tfl cua tap hgp A dugc ggi la mdt
hodn vi cfla n phdn tfl dd
Hai hoan vi cua n phdn tfl chi khdc nhau d thfl tu sap xdp
P„ la sd cac hoan vi cua n phdn tfl Ta cd
Trang 193 Gia sfl tap A ed « phdn tfl (n > 1) Mdi tap eon gdm k phdn tfl eua A dugc ggi
la mdt td hop chdp k cua n phdn td da eho
Cn la so cac td hgp chap k eua n phdn tfl (0 < k<n)
MOT SO CAU HOI T R A C NGHlfiM K H A C H QUAN
Hdy chgn khdng dinh ddng trong cdc khdng dinh sau, tic bdi 1 den bdi 4 Cdu 1 Cd 3 ban nam va 2 ban nfl sap vao 1 hang dgc
a) Sd each sap xdp la :
(a)C^; (b)Ci; (c)5!; (d)A3
Trd ldi Chgn (e)
b) Sd each sap xdp dd hai ban nft dflng hai ddu hang la :
Trang 20Trd ldi Chgn (b)
e) Sd each ldy ra 1 ban nam va 1 ban nfl la :
(a) 2; (b)C§; (c)5; (d)3
Trd ldi Chon (c)
f) Sd each ldy ra 2 ban nam va 1 ban nft la :
(a) 2; (b)Ci; (c)5; (d)3
Trd ldi Chgn (c)
g) Sd each ldy ra 1 ban nam va 1 ban nft la :
(a) 2; (b)C|; (c)5; (d)3
Trd ldi Chgn (c)
Mgt ldp hge cd 20 ban nam va 15 ban nft
a) Sd each ldy ra 4 ban nam va 4 ban nft di thi dau thd thao la :
(a)C^o; (h)C\y,
Trang 21(c)C^5+C^o; (d)C^5
Trd ldi Chgn (c)
b) Sd each ldy ra 4 ban nam va 4 ban nft va mdt ban phuc vu di thi ddu
the thao la:
Cd^ 5 Hay didn dflng, sai vao d trdng cua nhiing khang dinh sau:
(a) Sd each chgn 4 trong 7 ngudi di du hdi nghi la A7 [ J
(b) Chgn 4 trong 7 ngudi di du hdi nghi la C7 [ J
(c)C^=35 D
Trang 22Hucmg ddn Dua vao chinh hgp
Cd A | = 8.7.6 = 336 ket qua ed the
Bdi 7
Hudng ddn Sd doan thang la sd cac td hgp
Sd cae vecto la sd cac chinh hgp
a) vay sd doan thang ma hai ddu mflt la hai didm thudc P chfnh bang
sd td hgp chap 2 cua n phdn tfl, tfle la bang C^ = ,2 _ n ( n - l )
b) Sd vecto cdn tun bang sd chinh hop chap 2 cua n phdn tfl, tfle la bang An = n(n-\)
Bdi 8
Hudng ddn Khdng phan biet chfle vu thi dp dung td hgp
Phan biet chfle vu thi sfl dung chinh hgp
a) Cd C7 = 35 each chgn
b)Cd A7 = 210 each chgn
Trang 23Luyen tap (tiet 5, 6)
I MUC TIEU
1 Kien thurc
HS dn tap lai
Quy tdc cgng va quy tae nhan
Khai niem, cdng thfle tfnh so cac td hgp, ehinh hgp hoan vi
HS phan biet dugc khai niem : Hoan vi, td hgp va chinh hgp
TU giac, tich cue trong hge tap
Bidt phan biet rd cac khai niem co ban va van dung trong tflng trudng hgp, bai toan eu the
TU duy eac vdn dd cua toan hge mdt each Idgic, thuc td va he thdng
II CHUAN Bj C O A GV VA HS
1 Chuan bj cua GV
Chudn bi cac cau hdi ggi md
Chudn bi phdn mau va mdt sd dd dung khac
2 Chuan bi cua HS
Cdn dn lai mgt so kidn thfle da hge d bai 1 va bai 2
III PHAN PHOI THOI LUONG
Bai nay chia lam 2 tidt:
Trang 24IV TIEN TRINH DAY HOC
Hoqt dpng cda GV
Cdu hoi 1
Gia sfl ed mdt eau trac
nghiem, hdi cd mdy phuong
an?
Cdu hoi 2
Bai thi cd 2 cau thi cd bao
nhieu phuomg an?
Cdu hoi 3
Bai thi cd 10 cau thi cd bao
nhieu phuong an?
Ggi y tra ldi cau hdi 3
Cd 4^° = 1048576 phuong an tra ldi
HOAT DONG 2 Bdi 10
Trang 25Ggi y tra Idi cau hdi 5
Cd 9.10.10.10.10.2 = 180000 vay
>' cd 10
sd nhu
HOAT DONG 3 Bdi 11
Mdi phuong an tren cd bao
nhieu each di?
Ggi y tra Idi cau hdi 2
GV chia HS lam 4 td, mdi td lam cau Dua vao quy tac nhan
Ggi y tra ldi cAu hdi 3
Cdng 4 phuong an tren lai
mdt
Trang 26HOAT DONG 4 Bdi 12
Ggi y tra ldi cau hdi 2
Cd 2^ = 8 trang thai trong dd cd 1 trang thai thdng mach Cd 7 ttang thai khdng thdng mach
Goi y tra ldi c&u hdi 3
Hoqt dpng cda GV
Cdu hoil
Viec chgn ra 4 ngudi cd didm
cao nhit la td hgp hay chinh
hgp?
Hoqt dpng cda HS
Ggi y tra Idi c^u hoi 1
La td hgp vi khdng cdn thfl tu
Trang 27Chgn 3 ngudi sap thfl tu vih.it,
nhi, ba la td hgp hay chinh
Hoqt dpng cda GV
Cdu hoi 1
Viec chgn ra 4 ngudi xep cac
giai nhdt, nhi, ba, tu la to hgp
Cd bao nhieu kdt qua cd thd,
ndu bidt rdng ngudi gift ve so
47 dugc giai nhdt?
Cdu hoi 4
Cd bao nhieu kdt qua cd the,
ndu bidt rang ngudi gift ve sd
Hoqt ddng cda HS
Ggi y tra Idi c^u hdi 1
La chinh hgp cd thfl tu
Ggi y tra ldi cau hdi 2
Cd AJOO = 94109400 kdt qua ed the Ggi y tra ldi cau hdi 3
Alg = 941094 kdt qua cd the
Ggi y tra Idi cau hdi 4
4 Alg = 3 764 376 kdt qua cd thd
Trang 2847 tning mdt trong bdn giai?
HOAT DONG 7 Bdi 15
Cd bao nhieu each chgn 5 em
theo yeu cdu bai toan?
Hoqt dpng cda HS
Ggi y tra ldi cau hdi 1
Sd each chgn 5 em trong 10 em laCfg •
Ggi y tea ldi cau hdi 2
So each chgn 5 em toan nam laCg
Ggi y tra ldi c^u hdi 3
Sd each chgn cd ft nhdt mdt nft la Cfg
- ci = 196
Chfl y : Cd thd giai theo each khac
HOAT DONG 8 Bdi 16
Cd bao nhieu each chgn 5 em
theo yeu edu bai toan?
Hoqt dpng cda HS
Ggi y tra ldi cau hdi 1
Sd each chgn 5 em toan nam laCy
Ggi y tra Idi cau hdi 2
Sd each chgn 4 nam va 1 nft laC7C3
Ggi y tra ldi cau hdi 3
vay dap sd bai toan la C^ + C^C^ = 126
Trang 29§3 Nhi thurc Niu-ttfn
(tie't 7)
I MUC TIEU
1 Kien thurc
HS nam duge:
Cdng thfle nhi thfle Niu-ton
He sd cfla khai tridn nhi thfle Niu-ton qua tam giac Pa-xcan
2 KT nang
Tin dugc he sd eua da thfle <khi khai tridn (a+ b)"
• Dien duge hang sau eua nhi thfle Niu-ton khi bidt hang d ngay trude dd
3 Thai do
Tu giac, tfch cue trong hoe tap
Sang tao trong tu duy
Tu duy cac vdn dd cua toan hge mdt each Idgic va he thd'ng
II CHUAN Bj C O A GV VA HS
1 Chuan bj cua GV
Chudn bi cac eau hdi ggi md
Chudn bi phlun mau, va mgt sd dd dung khac
2 Chuan bj cua HS
Cdn dn lai mdt sd kidn thfle da hge vd hang dang thfle
• On tap lai bai 2
III PHAN PHOI THdl Ll/pNG
Bai nay chia lam 1 tidt:
IV TIEN TRINH DAY HOC
Trang 30• GV neu cac cau hdi sau:
?l1 Neu cac hang dang thfle (a + b)^ va (a + b)^?
?2| Tfnhcae he sd cua (a + b)" va ed nhan xet gi vd he sd
• GV neu va hudng ddn HS giai cap vi du 1 va vf du 2 trong SGK
GV hudng ddn HS thuc hien [HI
Muc dich Kidm tra xem hge sinh da bidt van dung cdng thfle nhi thfle
Niu-ton dd khai tridn da thfle dang (ax - 6 ) " hay chua
Hoqt dpng cda GV
Cdu hoil
Trong khai tridn Niu-ton d
day a, b bang bao nhieu?
Hoqt dpng cda HS
Ggi y tra ldi cSu hdi 1
a = 3x, b = - 4
Trang 31Ggi y tra Idi c&u hdi 2
sd hang chfla x^ \aCl(3xf(-4f Vay
• Neu dinh nghia:
Trong cdng thdc nhi thdc Niu-tan dmtic 1, cho n=0, l, vd xip
cdc he sd thdnh ddng,ta nhdn dugc tam giac sau ddy, ggi la tam
GV neu quy luat va cho mdt vai HS didn tidp eac ddng sau cua bang
GV dua ra quy luat
-Dinh duge ghi sdi Tiip theo la hdng thic nhdt ghi hai sol
- Niu biit hdng thUn (n >1) thi hdng thii n + 1 tiep theo dugc thiit lap bdng cdch cdng hai sd lien tiip cda hang thU n roi viet kit qud xudng hdng dudi d vi tri giita hai sd ndy Sau do viit sd I
d ddu vd cudi hdng
Trang 32• Ihuc hien [H2] trong 5'
Muc dich Kidm tra xem hge sinh da bidt thidt lap hang thfl n + 1 tfl hang thfl n ciia tam giac Pa-xcan hay ehua
Ggi y tra ldi cau hdi 2 Hang thfl tam la 1, 8, 28, 56, 70, 56,
28, 8,1
' H0ATD6NG3
TOM TAT B A I HOC
1 (a+b)" =c;a"+c!,a"-ib + + C|;a"-'^b'^+ +CS"^ab"-^+c;;b"
Vdia = b = l , t a e d 2 " = c ; + c ; , + + c;;
Vdi a = l ; b = - l , tacd
o=c;-c!,+.:.+(-l)'^ci;+.•.+(-l)"c^ :
2 Tam giac Pa-xcan dugc lap tiieo quy luat sau :
- Dinh dugc ghi sd 1 Tidp theo la hang thfl nhdt ghi hai sd 1
- Ndu bidt hang thfl n (n > 1) thi hang thfl n + 1 tidp theo dugc thidt lap bang
each cdng hai sd lien tidp cua hang thfl n rdi vidt kdt qua xud'ng hang dudi d
vi trf gifta hai sd nay Sau dd viet sd 1 d ddu va eudi hang
HOAT DONG 4
MOT s d C A U H O I T R A C NGHlfiM K H A C H QUAN
Hdy dien dung sai vdo 6 trdng sau
Cdu 1 Trong khai tridn (a + b)*
Trang 33Hdy chgn khdng dinh dung trong cdc cdu sau
Cdu 3 Cho phuong trinh lugng giac : -2sirui: = 2
Trong khai trien (a + 2b)® he sd ldm nhdt la
(a) 16; (b) 32;
(c)64; (d)112
Trd ldi (c)
Cdu 4 Cho phuong trinh lugng giac : - 2siiu = 1
Trong khai trien (a + 2b)* he sd cfla don thfle chfla b' la
(a) 16; (b) 32;
(c)64; (d)112
Trd ldi (b)
Trang 34HOAT DONG 3
HUC»VJG D A N B A I T A E SGK
Bdi 17
Hudng ddn Sfl dung true tidp cdng thfle nhi thfle Niu-ton
Ddpsd Sd hang chfla x'°'y^^ trong khai trien (2x - 3y)^°° la
Hudng ddn Sfl dung true tidp cdng thfle nhi thfle Niu-ton
Sd hang chfla x^ trong khai trien (2 - x)^^ \aC\g(-xf2^^
Cdng thfle nhi thfle Niu-ton
He sd cua khai tridn nhi thfle Niu-ton qua tam giac Pa-xcan
2 KT nang
Tin duge he sd cua da thfle khi khai tridn (a+ b)"
Trang 35• Didn duge hang sau cua nhi thfle Niu-ton khi bidt hang d ngay trudc dd
3 Thai do
Tu-giac, tfch cue trong hge tap
Sang tao trong tu duy
Tu duy cac vdn dd eua toan hge mdt each Idgic va he thdng
II CHUAN Bj C O A GV VA HS
1 Chuan bjcua GV
Chuan bi cae eau hdi ggi md
• Chudn bi ph^n mau, va mgt sd dd dung khac
2 Chuan bj cua HS
Cdn dn lai mdt sd kien thfle da hgc trong bai 3
III P H A N P H O I THdl LUONG
Bai nay chia lam 1 tidt:
IV TI§'N TRINH DAY HOC
Hoqt dpng cda GV
Cdu hoi 1
Hay ap dung true tidp cdng thfl
nhi thfle Niu-ton de khai tridn
Ggi y tra ldi cdu hdi 2
Trang 36Hoqt dpng cda GV Hoqt dpng cda HS
1 + 30x + 405x^+3240x^ + • • • (sfl dung may tfnh)
HOAT DONG 2 Bdi 22
Trang 37HOAT DONG 4 Bdi 24
Khai niem phep thfl
Khdng gian mdu, sd phdn tfl eua khdng gian mdu
Bidn cd va cac tinh chdt cua chung
• Bien ed khdng thd va bidn ed chac chan
2 KT nang
Bidt xae dinh duge khdng gian mdu
Xae dinh duge bidn ed ddi, bidn cd hgp, bidn cd giao, bien cd xung khac eua mgt bidn cd
3 Thai do
Tu giac, tfch cue trong hgc tap
Sang tao trong tu duy
Tu duy cac vaii de cfla toan hgc, thuc td mdt each logic va he thdng
Trang 38II CHUAN Bj C O A GV VA HS
1 Chuan bj cua GV
Chudn bi cac eau hdi ggi md
Chudn bi phah mau, va mdt sd dd dung khac
2 Chuan bj cua HS
Cdn dn lai mgt sd kidn thfle da hge vd td hgp
On tap lai bai 1, 2, 3
III PHAN PHOI THOI LUONG
Bai nay chia lam 2 tidt:
Tietl: Tin ddu den hit dinh nghia cua muc 2
Tiet 2 : Tiep theo den hit vd bdi tap
IV TIEN TRINH DAY HOC
d) Phep thvc ngdu nhien vd khong gian mdu
• GV neu cac eau hdi sau:
?l| Khi gieo mdt eon sflc sac cd mdy kdt qua ed the xay ra?
?2| Tfl cac sd 1, 2, 3, 4 cd the lap duge bao nhieu sd cd ba chft sd khac nhau?
Trang 39• GV vao bai:
Mdi khi gieo mdt eon sue sdc, gieo mdt ddng xu, lap cac sd ta dugc mdt phep thfl
• Neu khai niem phep thfl:
Phep thii ngdu nhien (ggi tdt la phep thdc) Id mdt thi nghiem hay mgt hdnh dgng md:
-Kit qud cda nd khdng dodn trudc dugc;
— Cd thi xdc dinh dugc tap hgp tdt cd cdc kit qud cd the xdy ra cua phep thic dd
Phep thd thudng dmc ki hieu bdi chiJcT
Tap hgp tdt cd cdc kit qud cd thi xdy ra cda phep thit dugc ggi Id khong gian mdu cda phep thdc vd dugc ki hieu bdi chit Q (dgc Id d-me-ga)
• GV neu va eho HS thuc hien vi du 1 va vf du 2
• Thuc hien |H1| trong 3'
Miic dich Kiem tra xem hgc sinh cd bidt each md ta khdng gian mdu cua mdi
phep thfl hay ehua
Hoqt ddng cda GV
Cdu hoi 1
Mdi ldn gieo cd mdy kdt qua
eua mdi ddng xu
Ggi y tra ldi cau hdi 2
Khdng gian mfiu la Q = {SSS, SSN, SNS, SNN, NSS, NSN, NNS, NNN}
b) Bien cd
• GV neu vi du 3
• GV neu cac cau hdi:
?3| Khi gieo mdt con sue sdc, tim cac kha nang cac mat xudt hien la sd chan?
Trang 40?4| Khi gieo hai ddng tidn, tim eac kha nang cac mat xudt hien la ddng kha nang?
Sau dd GV khai quat lai bang khai niem:
Biin cd A lien quan den phep thd T la biin cd md viec xdy ra hay
khdng xdy ra cda A tuy thudc vdo kit qud cua T
Mdi kit qud cua phep thd T ldm cho A xdy ra, dugc ggi la mgt kit
qud thudn lgi cho A
Tap hop cdc kit qud thuan lgi cho A dugc ki hieu IdQp^ Khi do
ngudi ta ndi Men cd A dugc mo td boi tap Q^
• Thue hien |H2| trong 3'
Muc dich Cung ed khai niem "Tap hgp md ta bien ed A" hay tap hgp eac kdt qua
thuan loi eho A
GV dua ra khai niem bidn cd khdng thd va bidn ed chdc chan
Tap 0 dugc ggi la Men cd khong the (ggi tdt la Men cd khong)
Cdn tap £2 dugc ggi Id bien cdchdc chdn
Neu vi du vd bidn cd khdng thd
Neu vf du ve bidn ed chdc chdn
?5
?6
• GVneu quy udc
Khi ndi cho cdc biin cd A, B, md khdng ndi gi them thi ta hieu chung cung lien quan din mdt phep thd
Ta ndi rdng bien cd A xay ra trong mot phep thd ndo dd khi vd chi khi