Ndi dung chinh cua chuong IV : Bat phuong trinh : Bat ding thiic ; Dai cuong ve bat phuong trinh ; Bat phuong trinh va he bat phuong trinh mdt an; Dau cua nhi thiic bae nhat ; Bat phuong
Trang 5Ndi dung chinh cua chuong IV :
Bat phuong trinh : Bat ding thiic ; Dai cuong ve bat phuong trinh ; Bat phuong trinh va he bat phuong trinh mdt an; Dau cua nhi thiic bae nhat ; Bat phuong trinh va he bat phuong trinh bae nha't hai dn; Dau cua tam thiic bae hai; Bat phirong trinh bae hai; Mdt sd phuong trinh va bat phuong trinh quy ve bae hai
B a t p]»<«*iig t r i n l i
V6 mat hinh thiic, bat phuong trinh dugc trinh bay co ban nhu' phuong trinh, nhung chi khac d day da xay dung quan he thii tu tren tap hgp sd thuc
Ndi dung co ban la trinh bay ve bat phuong trinh mdt an ma d do cung dua ra
cac quy tic co ban de tim nghiem ciia chiing Dac biet la ndi dung ve kinh dien
Trang 6giai bat phuong trinh bae nhat va bat phuong trinh bae hai Trong chuong nay cung dua them khai niem ve bat phuong trinh bae hai hai in, d dd cd dang dap ciia bai loan kinh te bai toan tdi uu
Chiing minh thanh thao cac bat ding thirc, van dung linh hoat cac quy
tic: chuyen ve nhan hoac chia hai \6 cua mdt bat ding thuc vdi mdt sd
Giai mdt each thanh thao cac bat phuong trinh bae nhat xa bat phuong
trinh bae hai
•DBiet xac dinh tap nghiem cua bat phuong trinh bae nhat hai in, tir do manh nha giai cac bai toan kinh te rat don gian
Trang 7PHAN 2 CAC B A I SOAKT
§1 Bat dang" t h d c va cluitng m i n h b a t
dang^ thu'c (tiet 1, 2, 3)
I M U C T I E U
1 Kien thiic
HS nim dugc :
Cac khai niem ve bat ding thirc
Cac tinh chat ciia bat ding thiic
Cac bat ding thiic co ban va cac tinh chat cua nd
He thdng dugc cac bat ding thuc, tir dd hinh thanh cac phuong phap chiing minh cac bat ding thuc
Van' dung cac bat ding thiic Cd-si, bat ding thiic cd chua dau gia tri tuyet ddi de giai cac bai tap cd lien quan
Biet tim gia tri Idn nhat va nhd nhat ciia mdt ham sd, mot bieu thiic dua vao bat ding thiic
2 KT nang
HS phai chiing minh dugc cac bat ding thiic don gian
Van dung thanh thao cac tinh chat cua bat ding thirc de bien ddi tir dd
giai dugc cac bai toan \'6 chiing minh bat ding thiic, tim gia tri Idn nhat, nhd
nhat cua ham sd, ciia mdt bieu thiic
3 Thai do
Tu giac, tich cue trong hgc tap
Biet phan biet rd cac khai niem co ban, cac tinh chat va van dung trong tirng trudng hgfp cu the
Tu duy cac van di cua toan hgc mdt each logic va he thdng, budc diu
CO tu duy cue tri trong qua trinh sang tao
Trang 8II CHUAN BI CUA GV VA HS
Can dn lai mot sd kien thiic da hgc d ldp dudi
III PHAN PHOI THCH LUONG
Bai nay chia lam 3 tiet :
Tiet 1 : Tit ddu den het phdn 2
Tiet 2 : Tit phdn 3
Tiet edn Iqi: chda bdi tap
IV TIEN TRINH DAY HOC
Nhirng ket luan sau day, ket luan nao dung?
(a) x~ + X + 1 > 0 vdi mgi x G M
Trang 9B BAI Mdi
HOAT DONG 1
1 On Tap va bo sung tinh chat ciia bat ding thijfc
• GV neu van de:
HI Hay neu khai niem ve bat ding thiic _
H2 The nao la chiing minh bat ding thuc?
H3 a +h < - 2 cd phai la bat dang thiic hay khdng? neu phai thi day la bat dang
thiic diing hay sai?
• GV neu dinh nghia:
Cdc menh de dang a < b hoac "a > b" "a > b" "a < b"
dugc ggi la nhiing bdt ddng thdc
Hoat dong ciia HS
Ggi y tra 161 cau hoi 1
a < b < = > a - b < 0
a - b < 0 < ^ a < b
Ggi y tra idi cau hoi 2
a - b - l < O c : > a < b + 1
Tinh chat ciia bat ding thiic
GV: Cho HS dgc vd xem xet trang 104 SGK Sau do chia HS thanh 4 nhom, mdi nhom thao luan vd cii dai dien len bdng thuc hien thao tdc dien vao chS trdng
Trang 10Nhom 1 Dien ddu > hoac < vao cho tiring
Tinh chdt Dieu kien
a <b a + c <b + c
Ten goi
Cdng hai ve cua bat ding thirc vdi mdt so
Trang 11a + c > b < : ^ a > b - c ;
a > b > 0 va U G N * ^ a " > b " ;
a > b > 0 = 5 > ^ / a > ^ y ^ ; a>h => yfa > ifb
• GV neu vi du 1 trong SGK va cho HS lam, ggi y bing cac cau hdi sau:
Trang 12HI Binh phuong hai ve cua mdt bat ding thirc, ta dugc bat ding thiic ciing chi6u Diing hay sai?
H2 Neu sai can bd sung dieu kien gi de dugc khing dinh diing?
H3 Gia sit v2 + V3 > 3 hay binh phuong hai ve va so sanh
• GV neu quy udc trong SGK
• Neu vi du 2 trong SGK va cho HS lam, ggi y bing cac cau hdi sau:
HI Hay chuyen ve va dua bat ding thiic ve dang : f(x) > 0
H2 Hay chiing minh f(x) > 0 la bat ding thirc diing
• Neu vi du 3 trong SGK va cho HS lam, ggi y bing cac cau hdi sau:
HI Hay neu mdi quan he giira cac canh trong tam giac
2 2 2
H2 Giai thich vi sao a > a - (b - c)
H3 Giai thich vi sao (a - b + c)(a + b - c) = a^ -(b-c)^
H4 Hay lam tuong tu va chiing minh bat ding thiic da cho
2 Bat dang thurc ve gia tri tuyet ddi
• GV neu cac bat ding thiic trong SGK
-\a\<a< \a\ vdi mgi a G R
|x| < a <=> - a < X < a vdi a > 0
\x\>a <^ x <-a hoac v > a vaia >0
• GV neu bat ding thirc quan trgng sau:
\a\ - \b\ <\a + b\< \a\ + \b\ (vdi mgi a, b e R)
GV cho HS chiing minh bat dang thiic tren (ke ca |H1| bing HD sau)
10
Trang 13Hoat d o n g cua G V Hoat dong cua H S
b i n g each sir dung cau hdi 1
Ggi y tra 161 cau hoi 1
Ggi y tra 161 cau hdi 3
Ta cd |a| = |a + Z) - Z?| < |a + Z?| + \-b\
= \a + b\ + \b\
Chuyen ve ta dugc DPCM
HOAT DONG 2
2 Bat d^ng thiifc trung binh cong va trung binh nhan
a) Do! vdi hai so khong am
• GV neu dinh li
Vdi mgi a > 0, b > 0 ta cd
a + b i—r
> yjab
2
Trang 14Sau dd GV neu cac cau hdi
HI Hay phat bieu dinh li bing Idi
De chung minh dinh li, GV neu cac cau hdi sau:
H2 Dien cac dau > < > < vao chd trdng sau:
^ ' ^ = - - ( a + b- 2 ^ ) = - - ( ^ - V^)2 0,
2 2 2
H3 Hay ket luan va chi ra trudng hgp dau bing xay ra
H4 Van dung dinh li hay chii'ng minh I tan x + cot x 1> 2
Thuc hien H 2
GV cho HS doc va hieu noi dung H2
GV treo hinh 4.1 Sau do thuc hien theo cac thao tac sau:
GS-^ thao tdc trong 3 phiit
Hoat dong cua GV
riit ra bat dang thiic
Hoat dong cua HS Ggi y tra 161 cau hdi 1
• GV neu vi du 4 va hudng din HS lam theo cac cau hdi sau:
HI Hay phan tich \'e trai thanh tong ciia nhCing sd cd dang nghich dao ciia nhau H2 Hay ap dung bat ding thuc Cd-si
12
Trang 15• GV phat bieu he qua bing Idi:
HE QUA
NcAt hai sd duang thay doi nhung co tong khong ddi thi tich ciia chiing lini nhdt khi hai sd do bdng nhan Nen hai sd duang thay doi nhung cd ticli khong ddi thi tong ciia chiing nho nhdt khi hai so do bang nhau
Sau dd hudng dan HS chiing minh theo cac cau hdi sau day:
H4 x+ y nhd nhat khi nao?
H5 Ap dung he qua hay tim gia tri nhd nhat cua bi6u thiic ciia bieu thirc :
• GV neu iing dung :
Trong tdt cd cdc hinh chif nhdt cd cimg chii vi, hinh viiong cd dien tich lan nhdt Trong td'i cd cdc hinh chit nhdt cd ciing dien tich, hinh viidng cd chu vi nho nhdt
• GV neu vi du 5 va hudng din HS thuc hien theo cac cau hdi sau:
HI Chiing minh ring f(x) > 2V3
H2 Dau bing xay ra khi nao?
b) Ddi vdi ba sd khdng am
• GV neu dinh li
Trang 16a + b + c
^Jabc <» a = b- c
(vdi mgi a, b, c > 0)
Sau dd GV dua ra cac cau hdi sau:
HI Hay phat bieu dinh li bing Idi
H2 Neu bd di dieu kien ba sd khdng am thi dinh li edn diing hay khdng? hay neu mdt vi du
• GV neu vi du 6
Sau dd hudng din HS chiing minh bing cac cau hdi sau day:
HI Hay ap dung dinh li ve bat ding thiic Cd-si cho ba sd a, b, c
H2 Hay ap dung dinh li v6 bat dang thiic Cd-si cho ba sd
H3 Hay chiing minh bat ding thiic tren
H4 Dau bing xay ra khi nao?
Phat bieu ke't qua tirang tir he
qua tren cho trudng hgp ba sd
duang
Cau hoi 2
Ne'u bd di dieu kien ba so
duang thi ke't qua con dung
nhat khi ba sd do bing nhau Neu ba
sd duong thay ddi nhung cd tich khdng ddi thi tong ciia chiing nhd nhat khi ba sd dd bing nhau
Ggi y tra 161 cau hdi 2
Khdng
14
Trang 17T O M T A T B A I H O C
1 Cac bat dang thirc cd dang a < b, a > b, a < b, a > b
2 Cac tinh chat ciia bat ding thiic
a <b ci> \fa <y[b
3 Bat ding thiic Cd-si:
Trung binh nhan ciia hai sd khong dm nho han hoac bang trung binh cong ciia chiing
^ t j ^ Va,b>0
ab <
a + b Dang thicc yjab = xay ra khi vd chi khi a = b
Cac he qua:
He qua 1
Ne'u X, y cimg duang vd cd tong khdng ddi thi tich xy Idn
Trang 183 Hay chgn khing dinh diing trong cac khing dinh sau :
(a) X + Ixl > 0 (b) X - Ixl > 0
(c)-2x+ x <0
16
(d)x + 2 X < 0
Trang 19Tra lai (a)
4 Hay dien cac dau (>, <, =) vao cac chd trdng thich hgp sau
(a) V2 V3; (b) Vs VV
(c) 72 + Vs 73 + V? ; (d) 7I0 722
Tra lai
Cau Di6n
Trang 20Cau Dien
10 Hay chgn ket qua diing trong cac ket qua sau
(a) a -H 1 > a -K a Va e :i: (b) a"^ + 1 < a'' -h a Va G J<;
18
Trang 21b 2 (d) a < l
Trang 2214 Chgn bat ding thiic dung trong cac bat ding thiic sau
18 Chgn ket qua diing trong cac ket qua sau
(a) a+ b + c > 3¥abc ; ( b ) - a - b - c < - 3¥abc ;
(c) - 7 a - 7 6 - 7 c < - 3 ^ / 7 a + 7 ^ + 7 c ; (d) 7 o - 7 ^ + 7 c > 3 x / 7 a + 7 ^ + 7 c
Trd Idi (c)
20
Trang 23Ggi y tra Idi cau hdi 1
Hai so a va b ciing dau
Ggi y tra Idi cau hdi 2
GV: Hudng ddn hgc sinh Idm bdi tap nay a nhd
- On lai tinh chdt ba canh ciia tam gidc
- Cdc tinh chdt ciia bdt ddng thiic
C a u hdi
C a u hdi 1
Ne'u ba canh ciia tam giac la a
b, c Tinh nira chu vi p ciia tam
giac
C a u hdi 2
Hay tinh p - a, p - b, p - c
Ggi y tra 161 Ggi y tra Idi cau hdi 1
p - b = 2
b + a - c
p - c = 2
Trang 24Cau hdi 3
Chimg minh bai toan tren
Goi y tra Idi cau hdi 3
Vi — > 0 va b < a
ab
Bai 3
GV: Hudng ddn
HS dn tap lai cdc tinh chdt ciia bdt ddng thicc
- Mot sd ki ndng bie'n ddi bdt ddng thii'c
Cau hdi Cau hdi 1
Hay dua bat ding thire ve dang
Ggi y tra Idi cau hdi 2
Nhan ca hai ve vdi 2 ta cd
2a^ + 2b2 + 2e^ -lab - 2bc - 2ca > 0
«> (a - b)2 + (b - c)2 + (c - a)2 > 0
Ggi y tra Idi cau hdi 3
a - b = b - c = c - a = 0 tire la
a = b = c
Bai 4
Hudng din cau b)
Cau hdi Cau hdi 1
Nhan xet ve dau cua hai ve
ciia bat ding thiic
Ggi y tra 161 Ggi y tra 161 cau hdi 1
Hai ve ciia bat ding thiic khdng am
Ggi y tra Idi cau hdi 2
22
Trang 25Cau hdi 2
Hay binh phuong hai ve va
chung minh bat ding thiie
(7a + 2 + 7a + 4) < (73" + 7a + 6 ) '
hay la + 2 + a + 4 + 27(a + 2)(a + 4)
< a + a + 6 + 27a(a + 6)
nen ^(a + 2)(a + 4) < 7a(a + 6)
Do dd (a + 2)(a + 4) < a(a + 6) hay la a^ + 6a + 8 < a^ + 6a nen 8 < 0
Dd la dieu vd li
Vay 7a + 2 + 7a + 4 > 7a + 7a + 6 (a > 0) Cau a) la dang dac biet cua cau b) vdi a = 2002
Bai 5
Hudng ddn hgc sinh Idm bdi tap nay
- On lai dinh li bdt ddng thiic Cd-si cho hai so khdng dm
Cau hdi Cau hdi 1
Nhan xet ve dau ciia hai so
Hai so nay cd dau duang
Ggi y tra Idi cau hdi 2
Trang 26Bai 6
Hudng ddn hoc sinh idm bdi tap nay a nhd De Idm bdi tap nay HS can dgc kl lai khdi niem vd tinh chdt ciia bdt ddng thitc, cdc hang ddng thiic ddng nhd
24
Trang 27Cau hdi Cau |idi 1
Hay so sanh a+b va
Hay cdng ve vdi ve cac bat
ding thiic tren va riit ra ket
luan
Ggi y t r a Idi Ggi y tra 161 cau hdi 1
Ta cd a - b va c la hai so khdng am, han nira a - b < c, binh phuang hai ve cua bat ding thii'c nay ta cd
a^ +b^ < c^ +2ab
Ggi y t r a Idi cau hdi 2
b^ +c^ <a^ +2bc a^ +c^ <h^ +2ac
Ggi y tra Idi cau hdi 3
GV tu rut ra ke't luan
Bai 9
Hudng ddn hgc sinh Idm bdi tap ndy a nhd De Idm bdi tap ndy, HS can dgc kl lai khdi niem vd tinh chdt ciia bdt ddng thitc, cdc hdng ddng thitc ddng nhd, cdch phdn tich thdnh nhdn tit
Trang 28Cau hdi Cau hdi 1
Hay xet dau cua hai sd x + 3
va 5 - X
Cau hdi 2
Tong hai sd bing bao nhieu?
Ggi y tra Idi
Ggi y tra Idi cau hdi 1
Hai sd nay khdng am
Ggi y tra 161 cau hdi 2
Tong hai sd bing 8 khdng ddi
26
Trang 29Cau hdi 3
Hay ap dung he qua ciia bat
ding thiic Cd-si va ket luan
Ggi y tra Idi cau hdi 3
Gia tri nhd nhat la f(-3) = 0
Bai 13
Hudng ddn hgc sinh lam bdi tap ndy De Idm bdi tap ndy, HS edn dgc ki lai khdi niem vd tinh chdt ciia bdt ddng thitc, bdt ddng thitc Cd-si vd he qua cho hai sd khdng dm
Hay bie'n ddi / (x) = x - 1 H 1-1
x - 1
Ap dung bdt ddng thitc Cd-si cho hai sd'x - 1 vd
Gia tri nhd nha't la 1 + 2 7 2
x - 1
Trang 30Luyen tap (tiet 4)
I MUC TIEU
1 Kien thirc
HS dn tap lai dugc :
Cac khai niem ve bat ding thirc
Cac tinh chat cua bat ding thiic
Cac bat ding thiic co ban va cac tinh chat ciia nd
He thdng dugc cac bat ding thitc, tir dd hinh thanh cac phuong phap chiing minh cac bat ding thiic
Van dung cac bat ding thiic Cd-si, bat ding thiic cd chiia dau gia tri tuyet ddi de giai cac bai tap cd lien quan
Biet tim gia tri Idn nhat va nhd nhat cua mdt ham sd, mot bieu thiic dua vao bat ding thiic
2 KT nang
HS phai chiing minh dugc cac bat ding thirc don gian
Van dung thanh thao cac tinh chat ciia bat ding thii'c de bien ddi, tir do giai dugc cac bai toan ve chiing minh bat ding thiic, tim gia tri Idn nhat, nho nhat cua ham sd, cua mot bieu thirc
Giai dugc cac bai tap trong SGK
Thdng qua cac bai tap luyen tap de hoan thien he thdng kien thiic ve bat ding thirc
Thdng qua cac bai tap luyen tap se cd nhieu phuang phap chiing minh
mdi v6 bat ding thiic
3 Thai do
Tu giac, tich cue trong hgc tap
Bie't phan biet rd ca dang chiing minh bat ding thiic
Tu duy cac van de ciia toan hgc mdt each Idgic va he thdng, budc diu
cd tu duy cue tri trong qua trinh sang tao
28
Trang 31II CHUAN BI CUA GV VA HS
1 Chuan bi ciia GV
GV chuan bi chira mdt so bai tap tai ldp, mdt sd bai edn lai hudng din
HS lam tai nha
Chuan bi phan mau va mdt sd cdng cu khac
2 Chuan hi ciia HS
Can dn lai mdt sd kien thirc da hgc d bai 1
HI PHAN PHOI T H d l LUONG
Bai nay chia lam 1 tiet :
IV TIEN TRINH DAY HOC
Nhirng ke't luan sau day, ke't luan nao dung?
(a) x^ + X + 1 > 0 vdi mgi x e M
Trang 32B BAI M 6 |
HOAT DONG 1
Bai 14
- HS can dn lai bat ding thiic Cd-si cho ba so khdng am
- Ap dung true tiep dinh li nay d6 chLhig.minh bai toan
GV hudng din HS lam bai nay tai ldp theo hudng din sau:
Ggi a, b la cac canh tay ddn ben phai \'a ben trai cua can dia
Cau hdi Cau hdi 1
Trong lan can dau sd cam
dugc can la bao nhieu?
Cau hdi 2
Trong lan can sau khdi
lugng cam la bao nhieu?
Cau hdi 3
Trong hai lan can khdi lugng
cam la bao nhieu?
Cau hdi 4
Hay ket luan
Goi V tra Idi
Ggi y tra Idi cau hdi 4
Khach hang mua nhieu hon 2 kg
30
Trang 33^ 1.2 2.3 3.4 n(n + l)
b) Hudng din HS lam tai ldp
Cau hdi Cau hdi 1
Chirng minh bai toan
Ggi y tra Idi
Ggi y tra Idi cau hdi 1
Ggi y tra Idi cau hdi 3
GV cho HS ket luan bai toan
HOAT DONG 4
Bai 17
De lam bai tap nay HS can dn tap va van dung cac kien thuc sau:
Trang 34- Dinh li va he qua ciia bat ding thiic Cd-si
- Cac tinh chat ciia bat ding thirc
Hudng din HS lam tai ldp
Cau hdi Cau hdi 1
Hay tinh A'
Cau hdi 2
Ap dung bat ding thiic Cd-si
cho bieu thiic
2 7 ( x - l ) ( 4 - x )
Cau boi 3
Giai bai toan
Ggi y tra Idi Ggi y tra Idi cau hdi 1
De lam bai tap nay HS can dn tap va van dung cac kien thirc sau:
- Hing ding thiic dang nhd
- Cac tinh chat cua bat ding thiic
Hudng din HS lam ve nha
(a + b + c)- < 3(a^ + b" + c" c^ a^ + b^ + c^ + 2ab + 2bc + 2ca < 3(a^ + b^ + c^)
« 2ab + 2bc + 2ca < 2(a^ + b" + c^)e> (a - b)^ + (b - c)^ + (c - af > 0
HOAT DONG 6
Bai 19
De lam bai tap nay HS cin dn tap va van dung cac kien thiic sau:
32
Trang 35- Dinh li va he qua cua bat ding thirc Cd-si
- Cac tinh chat cua bat ding thuc
Hudng din HS lam tai ldp
Cau hdi Goi V tra Idi Cau hdi I
Ap dung bat ding thiic Cd-si
cho hai cap so a va b ; c va d
Ggi y tra Idi cau hdi 2
TCr tren suy ra
Ggi y tra Idi cau hdi 3
De lam bai tap nay HS can dn tap va van dung cac kie'n thiic sau:
- Hing ding thiic dang nhd
- Cac tinh chat ciia bat ding thiic
- Bat ding thiic Cd-si
Trang 36Hudng din HS lam ve nha
a) (X + y)^ = x^ + y^ + 2xy < 2x^ + 2y^ = 2 ^ | x + y | < 72
b) 15^ = (4x - 3y)^ < (x^ + y^)(4^ + (-3)^) = 25(x^ + y^) => x^ + y^ > 9
Cd the chiing minh bing nhieu each khac
BO SUNG KIEN THUC
Bdt ddng thiic Cd-si tong quat:
Cho n sd khdng am : aj 03, , a„, khi dd : -^ ^—LJ n > iila^an-.-a
n
Dau bing xay ra khi: a^ = a2 = = a„
2 Bait dang thiirc Bunhiacdpxki:
Cho bd'n sd a, b, c, d Khi dd (ac + bd)'^ <(a'^ +b^)(c'^ +d'^)
Dau bing khi — = —
c d
Bat ding thiic tdng quat cd ten: Cdsi- Svac
Chohaibdnsd ai,a2, ,a,, va b^,b2, ,b,^ Khi dd
Dau bing khi: J - = ^ a,
34
Trang 37Neu dugc dieu kien xac dinh cua bat phuong trinh
Sau khi hgc xong bai nay HS giai dugc cac bat phuang trinh don gian Bie't each tim nghiem va lien he giiia nghiem cua phuang trmh va nghiem cua bat phuong trinh
Xac dinh mdt each nhanh chdng tap nghiem cua cac bat phuang trinh va
he bat phuong trinh don gian dua vao bien ddi va lay nghiem tren true sd
3 Thai do
Bie't van dung kie'n thiic ve bat phuang trinh trong suy luan logic
Dien dat cac van de toan hgc mach lac", phat trien tu duy va sang tao
II CHUAN BI CUA GV VA HS
1 Chuan hi ciia GV:
De dat cau hdi cho HS, trong qua trinh day hgc GV can chuin bi mot sd kie'n thiic ma HS da hgc d ldp dudi, ching han :
Trang 38- Cac bat phuang trinh bae nhat da hgc
- Cach lay nghiem ciia he bat phuang trinh tren true sd
Chuin bi phan mau va mdt sd cong cu khac
2 Chuan hi ciia HS :
Cin dn lai mot so kien thiic da hgc d ldp dudi
HI PHAN PHOI THCII LUONG
Bai nay day trong 1 tiet
IV TIEN TRINH DAY HOC
Hay xac dinh tinh diing - sai ciia cac menh de sau day:
1) Ne'u hai phuong trinh f(x) = 0 vag(x) = 0 vd nghiem thi hai bat phuang trinh f(x) > 0 va g(x) > 0 cung v6 nghiem
2) Neu ham y = f(x) cd dd thi nim hoan toan phia tren true hoanh thi bat
phuang trinh f(x) < 0 v6 nghiem
B BAI M 6 |
HOAT DONG 1
1 Khai niem bat phiTdng trinh mot an
• GV neu dinh nghia
36
Trang 39Cho hai ham sd y - f(x) vd y = g(x) cd tap xdc dinh Idn lugt Id U^^
vd IT^, Ddt 'J^ = ^J^f n y^^, Menh de chita bie'n cd mot trong cdc dang fix) < g(x), f(x) > g(x), f(x) < g(x), f(x) > g(x) dugc ggi Id
mdt bdt phuang trinh mot dn; x ggi Id dn sd (hay dn) vd U^ ggi Id
tap xdc dinh ciia bdt phuang trinh
So XQ e y^ ggi Id mot nghiem ciia bdt phuang trinh f(x) < g(x)
ne'u menh de /(XQJK g(xQ) Id dimg Khdi niem ndy cimg dugc dinh nghJa tucmg tu cho cdc bdt phuc/ng trinh dang
fix) > g(x),f(x) < g(x) vd fix) > g(x)
Sau dd GV neu cac chii y sau:
- Khai niem nay cung dugc dinh nghia tuong tu cho cac bat phuang trinh dang
Bieu dien tap nghiem cua mdi
bat phuang trinh : - 0,5x > 2
bdi cac ki hieu khoang
hay doan
Cau hdi 2
Bieu dien tap nghiem cua mdi
bat phuong trinh : x| < 1 bdi
Hoat ddng cua H S Ggi y tra Idi cau hdi 1
T = ( - o o ; - 4 )
Ggi y tra Idi cau hdi 2
T = [ - l ; l ]
Trang 40HOAT DONG 2
2 Bat phLfdng t r i n h tUdng d i / d n g
• GV neu dinh nghia
Hai bdt phuang trinh dugc ggi Id tuang duang ne'u chiing cd ciing
Sai Ching han x = 1 khdng thoa man
Ggi y tra Idi cau hdi 2
Diing
• GV neu chu y trong SGK va neu vi du 1
Sau do dat ra cac cau hdi sau cho HS tra Idi nhim cimg cd kie'n thircmue nay
HI Hai bat phuong trinh von ghiem thi cd tuang duong khdng?
H2 Hai bat phuang trinh tuong duong tren D la gi ?
38