a/ Chijfng minh rkng nhi dien canh SB tao bdi cac mat phang SBA va SBC la mot n h i dien vuong.. b/ Goi I la trung diem cua SC, H la hinh chieu vuong goc cua I len CM.. Chiifng minh rang
Trang 1V
A,
B
& c un
g ben so v&
i (D )
Dimg A' do
i xiJng
vd
i A
qua (D)
Lu
c do : A' va B d k ha
c be
n so
v6 i
(D ), ne
n tr
d ve t rU cf ng h op t re
n :
MA + MB >
AB <=>MA' + MA ^ AB
mi n(
MA + MB ) = m in (M A' + M B) = AB
ttf on
g Ofng :
M a M
Q = ( A' B)
o (D )
O Ke
t lu an : va
y tr on
g mo
i tr if dn
g hg
p ta x dc d in
h dif ac M t ho
a yc bt
• Xa
c di nh d ie
m
m tr en d Uo Tn
g th Sn
g (d ) de | M
A
- MB |
Ti fa ng ti
T c an p ha
n bi et h
ai tr Uc fn
g ha
p :
V
A,
B
& c un
g ben so v&
i (D )
|M
A
- MB
|
<
AB
ma x|
MA ~ MB
|
= AB
M
Mo
(d)
tuan
g lin
g M = MQ = (A
B) r^
(D)
V A,B d k hd
c ben so v&
i (D )
|M
A
- MB
|
<
|M A'
- MB
|
^ AB
Vd
i A' la hin
h do
i xijf
ng cii
a die
m
A qu
a (d), t
hi A'
va
B
a cun
g phia (D)
|
= m ax JM A'
- MB
|
= AB
ta on
g tjfn
g M
s M
Q = (A 'B
) n
(D )
t luan : va
y tron
g m
oi tri/dn
g hap ta d
a xa
c din
h die
m
M thoa ycb
t
n GlA
l T OAN T
HI
Ba
i 39
3 (D AI H OC K HO
I
A MI EN B AC
- 19 72 )
Cho mo
t kho
i t
il die
n ABCD
a/ Mo
t ma
t phan
g son
g son
g vdr
i canh B
C ca
t c
ac can
h A
B, AC, DC, DB
d c^c die
g min
h rSn
g
t uT gia
c MNP
Q la m
ot hinh thang pha
i thoa man die
u ki§
ot hinh bin
h han
h ? la m
ot hin
h ch
a nha
t ?
b/ Cho bie
t c
ac goc BAC, CA
D, DA
B la vuong, co
n BC
D la m
ot ta
m giic deu canh
a kho
i tijf die
n th
eo
a
c / Cho bie
t BC
D la m
ot ta
m gia
c deu canh
a
va c6 ta
m la die
m
O
Tin
h doan O
u ngoa
i tie
p til die
n ABCD nha
n dudn
g tro
n (BCD) lam m
ot ducfn
h mat cau trong trUdng hap ay Xa
c din
h v
i t
ri cii
a din
h A tre
n mat ca
n ABCD
I6 n
nha
n (BCD)
=>
MN //
P
Q
Va
y thie
t di6
n MNPQ la m
ot hin
h than
g (ycbt)
Trang 2Muon cho M N P Q la h i n h b i n h h a n h ; tifang t u
tren ta phai c6 t h e m dieu k i e n N P // M Q , (P) // A D
Vay dieu k i e n de M N P Q la h i n h chff n h a t la BC 1 A D (ycbt)
b/ Tuf dien A B C D la tuT d i e n v u o n g d A
AB = A C A D = ^ = ^
2 2 Vay the t i c h k h o i tuT dien A B C D la :
V= - A B
c) De y dUcfng t r o n (BCD) la m o t dudng t r o n I d n cua m a t cau ngoai t i e p tiir d i e n A B C D va c6
0 la tam ciia t a m giac B C D canh a, nen t a m O cua t a m giac deu B C D cung c h i n h la t a m cua mat eau ngoai t i e p tuf d i e n A B C D
suong mat day (BCD)
12
3 0 1
Trang 3i 394 ( DA
I HO
C KH OI A
- MI EN B AC
- 19 74 )
Trong m
at phln
g (P), ch
o hin
h vuo
ng ABCD c6 canh bin
g
a
Tre
n dUdn
g thin
ng goc v
di mft
t phin
g
P, ngucri
ta lay m
pt die
m
S tiiy y, r
oi difn
g m
at ph
n lira
t t
ai B',
C, D'
Bie
t (Q) i SC
a / Chu
T ng min
h rSn
g S
B vuon
g g6c AB' v
a S
D vuon
g g
oc vd
i AD'
b/ Tim c^
c qu
y tic
h ci
ia B',
C, D' kh
i S chay tren A
x
c / Xac din
h v
i t
ri cua
S tre
n Ax sa
o cho hin
h ch6p C'ABC
D c
6 t
he tic
a /
Ta c6 :
3
AB'
=>
CB
1 AB'
Ma
t kha
c t
a c
6 : S
C _ L AB' (v
i AB' n^
m trong mp(Q)
ma
S C
1
Q)
Do d6 AB' 1 (SBC
ChiJn
g min
h hoa
n to^
n tUcfn
g t
if
ta c6 AD' 1 SD (dpcm)
b/
De
y :
B' e (S AB )
AB
^
= 9 0°
; A , Bc
o din
h
= > Vay qu
y tic
h ciia nhiJng diem B'
la dudn
g
tro
n (trong m
at phln
g (SAB) dtfd
ng kin
h A
B
(Doc
gia ti
f lam pha
n dao)
• Taan
g tii ta c6 qu
y tic
h ciia nhufn
g die
m D'
trong m
at phin
g (SAD) difd
ng kin
h A
D (ycbt)
• Tucfn
g t
u t
a cun
g c
6 qu
y tic
h cua nhCifn
g die
m
C
la dudn
g tro
n trong m
at phin
g (SAC) dadn
g
kin
h A
C (ycbt)
0 /
Ha CO
1 AC
v
a
thay O
C //
SA
; SA
1
P n6n :
V
= VC 'A BC I)
=
— S
AB CD - OC '
Vi hin
h c
h U
nha
t ABC
D l
a c
o din
h, nen th
e tic
h V se
I6 n
nha
t k
hi OC la Id
ng kin
h A
C
Vi va
y OC se Id
rn nh
at kh
i n
o
la ban
ai
vi tr
i Co'
va Co"
d
oi xufn
g v
di nhau qu
a A
C cung thoa man tinh ch
at d6
:
C'oC'o
± AC
ta
i O
; C'oC'o
c (SAC)
Kh
i
do OC = O
A
= O
C
= hay n
ay ta
m gia
c vuo
ng SA
C
co OC la difd
g lin
g d
o d
o : A
S = 20C = a-s
^
Vay kh
i S
(nam tren Ax) eac
h A m
Ot doan
a
^/ 2
(c
o ha
i
vi tr
hi hin
h chop C'ABC
D c
6 t
he tic
h Idn nha
t,
va th
e tic
Trang 4Bai 395 ( D A I H O C Y - N H A - D L f d C - 1976)
Cho h i n h vuong A B C D canh a Goi SA la doan thSng goc vdri mSt p h ^ n g ( A B C D ) SA = a
vk M la mot d i e m d i dong t r e n doan SD DSt S M = x
a/ Mat phang ( A B M ) cat doan SC t a i N Chitog m i n h tiif gidc M A B N l a mot h i n h t h a n g vuong
Trang 5i 39 6 DA
I HO
C BA CH K HO
A
- TO NG H OP
- 19 80 )
Tro
ng khon
g gia
n c
ho ba ti
a Ox, Oy, O
z tifn
g d
oi mo
t tao
w di
nhau m
ot goc
z lay Ia
n lucf
t c
ac die
m A, B, C sa
o c
ho : O
A = a, O
B = b, O
C = c
1 /
a,
b,
c pha
i tho
a man h
? thil
c g
i d
e tam gi
ac AB
C c
6 g
oc
A vuo
ng
? Hay tim
g buoc b, c, a de tim dU
c fc
a tho
a man h
e thuf
c ay
h (
0 <
a
< 90°) v^
b =
h a d
e tam gi
ac AB
ri Id
n nha
t a
y cua go
c A bang bao nhie
u
3 / Vd
i c
ac gia thie
t cua 2 Hay tinh th
e t
ich
cu
a tiif die
n OABC uf
ng vd
i g
ia tr
(1)
(2)
(3)
Gia
i
1) AABC vuon
g t
ai
A
» BC
^ = AB^
+ AC^
(1)
Din
h l
y ham cosin tron
g c
ac ta
m giac :
AOA
B, AOB
C, AOA
C c
ho :
AB'^
= a
^ + b^
- 2abcos
a
BC
^ = b^
+ c^
- 2bcco
sa
AC
^ = + c^
- 2accos
a
Thay (2), (3) v
a (4) vao (1)
(1)
< => b^ + c^
- 2bccos
a = 2a
^ + b^
+ c^
- 2a(
b + c)cos
a
< => a^
- a(b + c)cos
a + bccosa = 0
< => g(a)
= a
^ [(
-b + c)cosa]
a + bccosa = 0 (5)
De tim dt
f cfc
a th
oa ma
n (5)
< => A = (b + c)
^c os^
a 4bccosa >
0
< => A = cosaKb + c)^cosu
- 4bc]
^ 0 (0 <
a
< 90°
=>
cos
a >
0)
< => (b + c)
^cos
a 4b
-c ^ 0 (6
) (ycbt)
(6) dieu kien ca
n v
a d
u rang bu
oc
b,
c v
a a de tim difac
a th
oa ma
n (5)
21
X
et gia thie
t : b =
c
< =>
AOAB = AOAC
Go
i H
B 1 O
A
« CH 1 O
A
^ BH = C
H
Xet h
ai ta
m giac ca
n ABC va HBC
; chu
ng
c o can
h chu
ng BC
JA
B
^ HB
^ J A O H
C
jO
H = b cos
a
BC'
^ = OB'' + OC' - 20B.OCcosa
<^
BC' = 2b'
- 2b'co
sa
AHBC BC'
= HB' + HC'
- 2HB.HCcosH
BC' = 2b'sin'a
- 2b'sin'acos
H
So sanh (7) v
a (8) th
eo
ve :
= > 2b
^ 2b^
cos
a
= 2b^
sin^
a
- 2b
^ sin^
acos
H
=>
1 cosa = sin'a
- sin'acosH
gA
C
< B Ht;
=>
m axB AC = B Ht;
ti rcJ ng iln gA
Trang 6sin^acosH = sin^u + cosa - 1 = cosa - cos^o
cosH = c o s a d - cosa)
cosa.2sin^ —
s i n ^ a
cosa 4sin —.cos — 2
Bai 397 (DAI HOC BACH KHOA - TONG HCfP - Y - N H A - D L f d C - 1982)
Tren canh AD ciia hinh vuong ABCD canh a, ngudi ta lay diem M v<Ji
AM = X (0 < X < a), va tren nijfa dacrng t h i n g Ax vuong goc t a i A vcri mat p h i n g cua hinh
vuong, ngUdi ta lay diem S \6i SA = y (y > 0)
a/ Chijfng minh rkng nhi dien canh SB tao bdi cac mat phang (SBA) va (SBC) la mot n h i dien vuong
b/ Goi I la trung diem cua SC, H la hinh chieu vuong goc cua I len CM T i m quy tich cua H khi M chay tren canh AD va S chay tren Ax
c/ Tinh the tich hinh chop S.ABCM
d/Vdi gia thiet x^ + y^ = ai^, t i m gia t r i Idn nhat cua the tich hinh chop S.ABCM
Mat khac I H 1 CM => OH 1 CM (dinh ly 3 difcrng vuong goc)
Vi M e (AD) va S G Ax nen H a trong iCCt) Vay H 0 tren cung tron O H Q cua dUcfng tron dUdng kinh OC HQ la trung diem cua CD, khi M e AD va S e Ax
• Dao lai, lay mot diem H bat ky tren cung OHQ, ta c6 : O H 1 HC; CH n AD = M , tren nOfa dudng t h i n g Ox' // Ax lay mot diem I sac cho CI c i t Ax tai S Ro rang :
* I la trung diem cua SC
* I H _L CM (dinh ly 3 dUcfng vuong goc)
Ket luan : Quy tich H la cung tron OHg cua dudng tron dudng kinh OC trong mat p h i n g (ABCD) (xem hinh) (ycbt)
305
Trang 7c / Th
e tfc
h hin
h chop
V(SABCM)
=
- dt(ABCM)
=
- - (A
M + BOAB.S
= (x + a).a.y (y
d/ Xet :
x ^ + y
^ = a^
- x^
Ta
C O
; max
xa
y
ra
maSV
* = — (x + a)(
x + a)(x + a)(3a
-
Ap dun
g BDT Cauchy ch
o
4 so' khon
g a
m,
ta c6 : (1)
(1)
<=>3 V
^ <
36 (x +
a)
+ (x +
a)
+ (x +
81a'
36.3.1
6
64 3a^
„
V 3
g thiif
c trong (2) xay ra <=>
a + x = 3a
- 3x
< =>
Do d6 kh
i M la trun
g die
m A
D t
hi th
e tic
h VSABC
M ci
T c da
i va
73
2
maxV =
a (ycbt)
8
Ba
i 398 ( DA
I H OC B AC
H KH OA
- TO NG H CJP -Y -NH A-D l/
dC
- 198 3)
Trong khong gia
n, cho hin
h chop S.ABC
D, day ABC
D
la hin
h ch
a nha
t v
di AB
h chop vuong go
c vd
i day, A
S = 2a
a /
M l
a m
ot difi
m tre
n can
h A
S, vd
i A
M =
x (0
^ x <
2a)
Ma
t ph^n
g MBC cM
t dien g
i ? Tin
h die
n tic
h thie
t die
n a
y the
o a, b, x
hi
X
ac din
h x sa
o cho thie
t die
n tre
n c
6 dien tich Id
n nha
t
c / Xac din
h x sa
o cho ma
t phSng (MBC) chia hin
h ch6p ra h
ai phan c6 th
e tic
m cu
a ma
t phin
g (MBC) vd
a B
C //
A
D
Ma A
D = (SAD
)
n
(ABCD)
^ (MB
C)
n (S
AD)
= M
N // AD //
B
C
Ha
n nfla
vi BC
1
AB v
B C
1
MB
Than
h thi
jf thie
t die
n MBCN
\k
m
gt hin
h thang vuong
(6
= 1
^ = 9 0°
)
B
Trang 8=> fix) = 2(x - 4a)(x'^ + a^) + 2x(4a - x)^
^ f (x) = 2(x - 4a)(2x^ - 4ax +a')
DiTa vac b a n g b i e n t h i e n n^y t a t h a y :
Vay amaxS^ o 3maxS = — ^ 7 1 + 8 ^ 2 k h i va chi
8 khi: X = A M = ^^^iJ^ (yebt)
d Hien n h i e n h i n h chop S.ABC D c6 th e t i c h :
V = i A S A B A D = —
3 3
De t i n h the t i c h V cua h i n h iSng t r u t a m giac cut M A B N C D , t a difng m a t phSng ((3) qua N
1 vuong goc vdi BC; t h i m a t p h i n g (P) cat A D va BC I a n lifat t a i K va L , (P) chia l a n g t r u
I cut thanh h a i p h a n : l a n g t r u t a m gidc dtifng M A B N K L c6 the t i c h :
Trang 9h
th
il ISn
g tru cut MAB
NC
D c
6 th
e tich :
V =
V
i + Va = - a
bx 6 3-2a
J
Yeu cau b
ai toan can xac dinh
x (hien nhien
2a )
- 6a
x + 4a^
= 0
Phiicfng
trinh
nay c6 nghie
m :
X =
a
(3 +
V S)
c6
t he c ho
Ba
i 399
(DA
I HOC K
T T
H SP
- NN
- 1983)
y AB
i A, AB = 2a, AC = 3a, can
h S
B vuon
g
g6c vd
i da
y S
B =
a/ Ch
i r
o tar
n va ban kin
h ma
t ca
u ngoa
i tiep
tijf
dien SABC
b/ M l
a mo
t diem d
i dong tre
i H va
K Ia
a M len cac ma
t phSn
g (ABC) v
a (SAB)
Mat
phln
g KMH
g : KMH
L la m
ot hinh chi?
nhat V
di gi
a tr
i na
o cu
a x t
hi KMHL la mot
hi
nh
vuong
c/ Tinh theo
a v
a x do d
ai dudn
g che
o ML ciia hin
h
cha
nha
t KMHL Vd
i nh
o nhat
i d
a ti
m difd
c cu
a x, ha
y ne
u le
L
d/
Ha
y tinh theo
a v
a x the tic
h V cua hin
h cho
p din
h
A, da
y PCMHL K
hi cii
a ham
V kh
i M d
i don
g tren canh
SC
e/ Xa
c dinh
I Ia
n lifa
t l
a trun
g diem ciia SC va
BC Ca
c ta
m gid
c SAC, SB
ai
A, B nen t
n (ABC)
|m
a Ol
a trun
g diem
S
C
OA = O
B = OS = O
C
Vay
O la tam cua mat cau ngoai tiep
h ma
t ca
u la :
R =
O
A = — = 2a 2
Th
at va
= SB
^ + AB
^ + AC
^
^ SC' = 33^
+ 4a^
+ Qa
^ = IGa
^
=> SC = 4
a =
> R = 2
a (ycbt)
Trang 10b/ KMHL la hinh chuf nhat
M K ± (SA B)
A C 1 (SA B) '
M H 1 (A BC)'
SB 1 (A BC) J
Vay tuT giac KM H L la mot hinh binh hanh
De y den SB 1 AC => H L 1 LK : nhvt vay tit giac KM H L la mot hinh chff nhat (dpcm)
Dinh X de KM H L la mot hinh vuong Ta c6 :
o BS, M L, AC ciing vuong goc \6i A B
<=> BS, ML, AC cung nkm trong 3 mat p hing song song
309
Trang 11'2 ' 1 3
x V3
-—
=
—x^(
x) (ycb
Sau day t
a kha
o sat sif bie
n thie
n va v
e d
o t
hi cu
a V trong h
e tru
e (OxV
)
Mie
n xa
c din
h : D
y = [0
; 4]
"x = 0 =i
> V = 0
Da
o ham:
V
=
^ (-3x
^ + Sax) = 0 <=
3 27
V"
—
6x + 8a)
(-= 0 «
X =
—
=>
V
= 4a^V
3
Va
y (C) l
a d
o t
hi cii
a
V trong ycb
t
4^
3 , a^ ~ ~ = V e ; d X nh Di e / 27
Xe
t : V = 4^
3 27
V S
2 ,.
,
4V 3
3
< =>
— X
(4
a
- x)
= ^
a
32 2
7
Rx) = x
^ 4ax^
+ a^
= 0 (3)
f
4a
= 0
nen t
a c
6 :
(3 )
O
X
=
9 8 32
o _
x'^
- -a
x a" ^
8V3a
^
27 '
4V3a
^ , (C
)
27
0 4a
3 8a
0
Trang 12Vi X e [0; 4a] nen cdc n g h i ^m cua (3) la : x = 4a
OM^ + O'N^ = k^ (vdi k la m o t dp dai cho trifdc)
1/ Chijfng m i n h rSng do dai doan M N k h o n g doi
2 1 Vdi v i t r i nao cua M t r e n Od va N t r e n O'd' t h i tuf d i e n O O ' M N c6 the t i c h I d n n h a t T i n h gia t r i do theo h va k
3/ Muon M N tie'p xuc v d i mSt cau difdng k i n h OO' t h i h va k p h a i thoa m a n di4u k i e n gi ?
Neu each diTng M N t r o n g t r i f d n g hop do
Goi P va Q t u a n g iJng la h a i d i e m nSm t r e n Od doan O'd' G o i H l a h i n h chieu cua diem giaa K cua doan OO' l e n PQ H a y chufng m i n h r S n g k h i PQ t h a y d o i sao cho OP + Q'Q = PQ t h i H n a m t r e n m o t d i f d n g c6' d i n h H a y c h i r a dirdng c6' d i n h do
G i a i 1/ Chijfng m i n h doan M N k h o n g doi :
Vay k h i chon M e d va N e d' sao cho ; O M = O ' N =
Ifa nhat : maxV = — O M ' = (ycbt)
6 12
kV2
t h i t i i d i $ n O O ' N M c6 the t i c h
311
Trang 13MN = ON +
OM
3/ Die
u kien
de MN tie
h OO' Go
i I la tiep diem cua
dadng
thang
MN vdfi ma
t ca
u diTcrn
g kin
h O'O The
o tinh chat tie
p tuye
n ti
T 1 die
m d ngoai ma
M
« MN
^ = O'N^
+ OM
^ + 20'N
0M
=> h' + k^
= k
^ + 20'N
0M ^ 20M
0'
N = h'
De
y : (OM
- O'N)
^ = OM^
+ O'N
^ 20M
- ON
> 0
o 20
M
ON $ OM
^ + O'N ^ (A
p dun
g (4))
< => h^ < k
^ «
0 <
h <
k (5) (ycbt)
(4)
• Cac
h dung doan M
N : Cho
M e
d m
a OM = a Ti
T (4) ta c6 : O'N =
2a
Ta tim di/oc Ned' difgc xa
c dinh bdi O'
N =
v6i
dieu kie
n (5)
Chiitng min
h H nkm tre
n m
ot dUdn
g co din
= y
PQ = O
P + O'
Q
=
X +
y
Ta
C
O :
Q
(d')
(6)
• [P
Q
= PH + H
Q
PH + H Q
= x + y
Dinh l
^ + 0P
2
= HK
^ + HP
2
KQ
2
= O' K^
+ 0 Q2 = H K^
+ H Q2
Do OK = O'
= HP
^ HQ^
= y^
-^ (H
P HQKHP + HQ) = (x
- y)(
x + y)
Tif (6) =
>
HP
- HQ = x
- y (7)
Ke
t ho
p (6) v
a (7) =
> H
P =
x v
a HQ = y (8)
Qua
O difn
g
di // d' =
> d' // (d'
; di) v
a (d'
; di)
1
(d;
di), ne
n go
i Q' l
a hinh chieu
cua
Q tre
n
(d; di) t
hi Q' e
d, v
a d
o (QQ'P)
_L
(d;
dj) nen goi H' la hin
h chie
u cu
a H tre
a hinh chif nh
at =
> OQ' = O'Q = y
H
P HP
X
"
' H
P
HQ '
Ma
HQ
OP
OQ '
(8)
HQ ' OQ '
OH' l
a phan giac
P O^
'
=
(3^73^
Dieu nay chijfng to
H na
m tron
g ma
t phan
g co' dinh (a) ta
o bdr
i OO' v
a ph
i // d'
Do : AOP
K = AHP
K ^ H
K = O
K = -
2
Trang 14Vay H nftm t r e n diicrng t r o n co d i n h t a m K, ban k i n h — chufa t r o n g mSt p h ^ n g co d i n h
va C; (Q) la m a t p h ^ n g qua M va vuong goc AC
1/ Tuy theo M thuoc OC hay thugc OA hay chi ro each d i m g t h i e t dien m a (Q) c&t h i n h ch6p
2/ Bat X = M C T i n h dien t i c h t h i e t dien noi t r e n theo x, a, h K h i nao d i e n t i c h ay lorn n h a t
G i a i
1/ Doc gia tU p h a n t i c h va chiifng m i n h va bien l u a n , d day t a x e t h a i k h a n a n g xay r a t u y
theo v i t r i cua M t r e n A C = A O ^ OC
D C a c h dtfng t h i e t d i § n k h i M 6 A O
• Trong ( A B C D ) , qua M dUng di/cfng t h S n g song song
vdi cheo B D I a n lUOt gap A B , A D t a i N va G
• Qua N , M , G d i i n g cac difdng t h S n g vuong goc v d i
(ABCD) Ian luot gap SB, SC, SD t a i L , E , F t a dUcfc
thiet dien muon t i m la ngu giac N L E F G gom h a i h i n h
thang vuong bSng nhau co chung day lorn M E (ycbt)
• C a c h d U n g t h i e t d i $ n k h i M e O C
• Trong ( A B C D ) qua M dUng diidng t h i n g
song song v d i B D I a n luat cSt C B , C D t a i N , G
• Trong (SAC), qua M d u n g diTdng t h a n g song song
vdi SA cat SC t a i E T a m giac E N G can t a i E la t h i e t
dien muon diTng (ycbt)
21 De xac d i n h x = C M de dien t i c h S ciia t h i e t d i e n Idn n h a t t a x6t h a i k h a n a n g sau
S, = 2 x V 3 h x h V 3 Y 3a - x V 3
3a - h + 3a A
313
Trang 15Si
=
—
(xV3
-
a) (3 a
- xV
S,
= -^
Sx
(-^
+4aV3
3a
(3)
•
TH 2
:
M e C
O : A
O
^ AM <
A
C
<
aV3
x <
NG //
D :
NM C M
2
x
ME //
S :
aV
s
ME C
M
AS "
CA "
aV
3
xV
s xVs, x
^h
NM
2xV3 a xV3
3a
2
XA
/3 ,
ME = h
3a
S2 =
S'2 =
3 3a
2h
x
ih =
:
^
(0
(4)
(5)
De
y den (3) v
a (5) va h
ai bie
u thiif
c S ],
S2
d (
2) va (4), ta se la
p difg
c bang bie
S
i
^ , ah
, 2a
V2 , , ^ cb (y = i x vo ng g iT rn tifc , — a = x f ma : CO ta o, d Tut)
0<x
<aV3
3 3
Ba
i 40
2 (T
T D AO T AO
v
a BO
I D UO NG C AN
B
O Y T
E TP H CM
1 99 3)
Cho ha
i diem
A , B
d
oi xilng nha
u qua m
at ph
ang (P ), I
la giao diem cu
ai (P ),
co hin
h chieu vuon
g g
o c xuon
g ( P)
la
H ,
co
n M
la m
ng tro
n dUcm
g kin
h IH
ve tron
g ( P)
1 / Chufng min
h rang
I M
la diid
ng vuon
g g
o c chun
h rkn
g h
ai die
m A
, B
luon eac
h deu dud
ng OM
3 / Cho
B =
2
a, MH
= x
, M
I =
y Tin
h the tich tu
f dien
O MA B.
Xac din
n nhat
Gi
ai
l/Tac6:ABl(P)
= ^ AB I
IM
(1)
M
thuo
c dud
ng tro
n difd
ng kin
h I
H
^ IM _L MH
(2 )
Trang 163/ De' y tha'y : O H / / ( A B M ) ^ VQ.ABM = ^UMIM
Cho tuf dien SABC c6 goc p h i n g d d i n h S vuong
V Chiing m i n h r a n g : Vs S A D Q ^ Sggc + SogA + S ' S A C
-2/ Biet rang SA = a; SB + SC = k k h o n g doi D a t SB = x Ti'nh the t i c h tuf dien SABC theo a, k ,
jva xac d i n h SB, SC de t h e t i c h tuf dien SABC \6n nhat
3/ Cho A CO d i n h B v a C t h a y do i sao cho SB + SC = k ( k h o n g ddi) T i m quy t i c h giao d i e m O
cua cac dUcmg cheo h i n h hop c6 ba canh l a SA, S B , SC
3 1 5
Trang 17ai
1/
Difng : S
I 1
BC va n
oi AI, t
= -(
BC
^SI^
+SA
^SB^
+SA2
SC
= -[
BC
^SI^
+ S
A^
ISB^
Sl
2 +SA^
BC2)
4^
'
I
S = -[B
C^
.C SI
^+
SA2)] = -(BC2.Al2
)
= Si
Ap
dun
g BD
T Schwartz :
(S _ +S,„
'SBC
+ ^ IB
A + S|AC
)
2/ Go
i th
e tic
h tii
r d
ie
n SABC l
a V :
V =
- AS.S„„,, =
-SA.SB.SC = -ax(
k x) ^
24
X
+ k -
X
Dau
dan
g thijf
c tron
g (2) xa
y ra •» x = k
ak
^
24
; tuang ufng : •
SB = S
C = — (ycbt) 2
3/ Go
i O' la hin
h chie
u cu
a O xuong
(SBC)
Tron
g ma
t phang toa do (Sxy) = (SBC),
ta c6 :
y
=
SB + S
C
=
—=
> y = -x + — 2 2
A
Vi S
B + SC = k ^ 0 < S
Trang 18Quy tich O' la khoang (BC) :
0 < X < k
De y thay : OO' = - SA = SG ; VB; C
2 Vay quy tich diem O la khoang (B|Ci) : •
Cho tuf dien ABCD c6 A B = x va CD = b, cac canh con lai bang nhau va bSng a Goi E, F
n luat la trung diem ciia A B va CD
1/ Chiifng minh rSng : A B 1 CD va EF la ducfng vuong goc chung cua A B va CD Tinh EF theo X, a, b
2/ Tim X de hai mat phang (ACD) va (BCD) vuong goc vdi nhau Chiifng minh rang khi do tiif
dien ABCD c6 the tich \6n nha't
G iai A
1/ Ti/ gia thiet : AC ± A D => A F _L CD
ma BC = BD => BF 1 CD
[ C D 1 A B Vay CD 1 (ABF) \
EF 4a' - b-^ - (0 < X < V4a^ - b ^ ) (ycbt)
2/ Theo tren CD 1 (ABF) A FS = Goc nhi dien do vuong khi va chi khi
Trang 19) Id
n nh at k hi
SABF
Id
n nh at
Do
F
A
= F B=
i Vi l
^
ne n
VAHCD
I dn n ha
t
< => SAU
K =
iFA
.F Bs in Xp
^
= -(
4a
^ -b 2) si nA FB
(1)
(1)
3maxi(
4a
b^
^-)s in AF
n A Ff
Ba
i 40
5
(D AI H OC B AC
H KH OA T P.
HC
M -
1994)
Tr on
g ma
t ph Sn
g (P ) ch
o ta rn g ia
c AB
C vu on
g go
c ta
i
A, AB = c
; AC = b
g vu on
g go
c vd
i (P ) ta
i
A, la
y mo
t di em S s ao c ho S
A
=
h (h >
0
)
M la m
h SB Gp
i
I,
J Ia
n lu ot l
a tr un
g di em c ii
a B
C va A B.
1 /
Ti nh d
o da
i do an v uo ng g oc c hu ng c ii
a ha
i du dn
g SI v
a AB
2/ T in
h ty s6 ' g iO
Ta th
e ti ch c
^c h in
h ch op B MI
J va B SC
A kh
i do d
ai do an v
i dU cfn
g AC v
a MJ d at g ia t ri I dn n ha
t
Kh
i do
Du ng :
AN
1 (S IK )
Giai
1 /
De y t ha
y AB
1 (S AC ) va S
I c6 h in
h ch ie
u xu on
g
(S AC )
la S
K
Lu
c do : Jl
K
1 AC =>
I
K 1 ( SA C)
' AN ± S K;
N e S
K
JAN
1 IK
'AN
± S
K
N E/
/ AB ,E e SI
EF / AN F
e AB
EF
1 (S IK )
=>
EF
1 SI
Do : AB
1 (S AC )
=>
A
B
1 AN =>
A
B 1
E
F
=> EF
l
a do an v uo ng g oc c hu ng c ua A
B va S I.
Nh if ng :
E
F
= AN , ne
n ta t in
h do d
ai AN
I l
^
« AN =
2
Do d
^i do an v uo ng g oc c hu ng c ua A
B v^
S
I la :
EF = , (y
cb t)
S
Vb
^ + 4h
2
2/ D
e
y AC ± ( SA B)
3
MJ , tr on
g ma
t ph ln
g (S AB ), ito
g AH
1 MJ
=> A
H la d oa
n vu on
g go
c ch un
g ci ia A
C va M J.
Ta
CO
: AH <
A
J
= -
M.
B
Trang 20maxAH = - k h i va chi k h i H = J
2
<=> M la trung diem cua SB
Luc do ti/ang ufng : —m i =
(ycbt)
Bai 406 (DAI HOC K I E N TRUC TP.HCM - 1995)
Trong mat phfing (P) cho tarn giac OAB vdi OA = OB, AB = 2a v^ difcfng cao OH = h Tren
dudng thang (d) vuong goc vdi (?) tai O, lay diem M vdi OM = x Goi E va F Ian luat la hinh
chieu vuong goc cua A len MB va OB; N la giao diem cua EF va (d)
1/ Chijfng minh MB 1 NA v^ MA 1 NB
21 Tinh BE, BF, EF, AF va the tich tuf dien ABEF theo a,h v^ x
3/ Tim vi t r i cua M tren (d) sao cho t i l dien MNAB c6 the tich nho nhat vk t i n h gia t r i nho
Trang 21^
Vay : B
F = , (ycbt)
Tuan
g ti
f, tron
g tu
r gia
c no
i tie
p
MOFE t
a c
6 : ESJ
M
=>
=
BE B
Ta CO : A
a2
+ x2 )
2a
h
Tuan
g ta, t
a c
6 : AF
OB = OH
AB A
F = , (ycbt)
VA BE
F =
^AF.SBEF
= -A F.
EF B
E = „
, ,
„ ^ (ycbt)
+
n )(a + n + "
n
MN AB
l a:
V MN AB
= ^
-AF.S^^j, =
| AF M N.
OB
The tic
h tu
t die
n ABEF:
^ AF
S ^
-Ne
n :
3 min(V
^J
^A
B ' 3niin(MN)
NhUn
g : ANO
F c
o ABOM
=
> — =
=>
M
ON = OF
OB = h
^ a^
-OB
O
M
Ap dung BDT Cauchy
: MN = M
O + O
N >
2 Vh
^
- a^
^ 3m in
(MN)
= 2
V h^
- a^
O
M = O
3 mi nV MN AB
<=
> O
M = Vh^
- a
^ v
a minVMNAi
s = (ycbt)
I HO
C TON
G HO
P TP
HC
M 1995)
-Cho tarn giac deu OAB c6 can
h bSn
g a > 0 Tre
n difdn
g thin
g (d) d
i qu
a O vuong
g (OAB) la
y die
m M v
di OM = x Go
i E,
F Ian lug
t l
a ca
c hinh chieu vuong goc cu
g thing E
F cS
t d t
ai
N
1/ Chtifn
g min
h rSng A
N 1 B
M
2/ Xa
c din
h x de the tic
a nh
o nha
t
Gi
ai
A F I B
O
1/ Ta
CO
: =>
A
F 1 (MOB) =
> A
F 1 M
Ma : AE
1 MB ^ MB ± (ANE) ^ M
B ± N
A (ycbt)
2/ D
e y : AF
X (MBO) s (MNB) ^ A
F l
a chie
u ca
o hin
h cho
p A
BM
N
Trang 22Ap dung BDT Cauchy, ta c6 : x + ON ^ 2 J — = aV2 (*)
3rain(x +0N) = aV2 x = ON = ^
Vay the tich tut dien ABMN nho nhat khi va chi khi x = (ycbt)
' 2
1 Bai 408 (DAI HOC XAY Dl/NG HA NOI - 1995)
Trong mat phang (P) cho hinh vuong ABCD vdi AB = 2a Tren mat phang chuTa BC va
|B1 = X K la hinh chieu vuong g6c cua diem E tren dUdng thang AI; O la trung diem cua AE
1/ Tim quy tich ciia diem K khi I chay tren doan BC
2/ Tinh do dai 0 1 theo a va X
13/ Tim X de do dai OI Idn nhat, be nhat
ma EK 1 AK => FK 1 AI (dinh ly 3 difdng vuong goc)
luon vuong, AF co dinh nen K di chuyen tren tron (C) dUdng kinh AF
321
Trang 23GicJi ha
n khoan
g chay:
I
s
C =>
K ^ H
B H
c (C) ^ EK
± A
I
Vay quy tich
K l
a cun
g BH
c (C) (ycbt)
+ 2 EI
AE^
= AF
^ + EF
^ = 8 a^
AI
^ =
4
a ^ +
= > 0
1 =
V x^
ax
= fix) = x^ - ax + 2a^
; V
a e [0; 2a]
= > f (x) = (2x
- a) =
0
< =>
X = -
2
Difa v^o bang bien thien, t
a c
6 :
max f(x )
^a
^ f'(x)
max 0 1 =
S(2a ) =
2
a <2a 0«x
min O
I CUON
G 1996)
-Cho
id
dien ABCD c6 AB = C
D = 2x va
a 4 mSt) cu
a t
ri Id
n nhat
Gi
ai
1/ Nha
n thay, ca
Suy ra, die
n tic
h toa
n pha
n ciia
ti l
dien la : =
4.8^^
^
= 2.AI.C D
(1)
Vdri AI la dudng cao cua ACAD can tai A
Trang 24Dau d^ng thuTc trong (2) xay ra <=> = 1 - x^ x =
Vay vdi x = — t h i dien tich toan phan cua tif dien dat gi£i t r i Idn n h a t la
maxStp = 2 (ycbt)
Bai 410 (DAI H O C Q U O C GIA T P H C M - 1996)
Cho tuT dien SABC c6 goc p h i n g d dinh S vuong
1/ Chufng minh rSng VS.SABC ^ SSAB + SSBC + ^SAC
2/ Biet rftng SA = a; SB + BC = k Dat SB = x Tinh the tich tuf dien SABC theo a; k; x va xac dinh SB; SC de the tich tiif dien SABC Idn nhat
1/ Tinh the tich V cua tuf dien theo a
2/ ChOfng minh rang AB 1 CD Tinh khoang each gifla hai difdng th^ng AB, CD theo a 3/ ChOfng minh rang cac dudng th^ng OB, OC, OD ti^ng doi mot vuong goc nhau
4/ Xac dinh diem M trong khong gian sao cho MA^ + MB^ + MC^ + MD^ dat gia t r i nho nhat
G i a i 1/ Do ABCD la tuf dien deu canh a va H la hinh chieu vuong goc ciia A xuong (BCD)
H la trong tarn ABCD
Trang 251 aVe a
^V s
a^V
2
bt)
2/ Ta C
O :
BH l
a hinh chieu cua B
A le
n (BCD)
BHiCD
= > AB 1 C
D (dpcm)
Do ABC
D la ti
J die
n de
u, ne
n BH s
i
trun
g die
m
I va B
I
= AI
Go
i
J l
a trung die
m cua A
B, th
B
Tuang tif: J
D = J
C =
>
JI 1 C
D
= > IJ l
a doa
n vuon
g go
c chun
g cua A
B va C
D
V 4
3/ Ta C
O :
A
H
= VA B^
B H^
= ja^
^ ^
(ycbt)
e dudn
g tron)
= >
OB = O
C
= OD
2
2
Ma: OB^
= OH
^ + HB^
=
- AH
^ + HB^
= — + —
4
6
3
OB = O
C
= O
D
= iV
2
Nhan tha
y : OB
^ + OC
^ = a
^ = BC^
=>
ABO
C vuon
g t
ai
O
Tifang tU, ABO
D va ACO
D vuon
; OC;
OD tifn
g d
oi mo
t vuon
g go
c nhau (dpcm)
4/ G
oi
G la trong tam t
il die
n ABC
D
= >
GA + G
B + G
C + G
I
= MA^
+ MB^
+ MC^
+ MD^
= MA+ MB+
A + MG+GB+
MG+G
C + MG
+GD
>
V
= 4
MG
2 + GA^+GB^+GC^+GD
^ + 2M
G GA+G
MG
2 +
I
= 4
MG
2 +
GA
^+GB
^+GC^+GD^
GA
^+GB
^+GC^+GD^
Trang 26S > G A ^+ GB^+ GC^+ GD^ (const)
Vay : m i n i = GA^+ GB^+ GC^+ GD^ <=> M = G (ycbt)
Bai 412 (DAI HOC QUOC GIA TP.HCM - KHOI A - K I N H TE - 1997)
Tren ba canh Ox, Oy, Oz cua tam dien ba goc vuong Oxyz ta Ian li/gt lay cac diem A,B,C
vdi OA = a, OB = b, OC = c; (a, b, c > 0) Goi H la hinh chieu vuong goc ciia O xuong mfit
phing (ABC)
II Chilng minh rkng AABC c6 cac goc deu nhon va H la trifc tfim AABC
21 Chijfng minh rkng : S^ABC = S^OAB + S^OBC + S^QAC
3/ Goi M , N , P Ian lUcft la trung diem cua AB, BC, AC Chufng minh r^ng 4 mSt cua tuf dien
OMNP la cdc tam giac bang nhau Tinh the tich tuf dien OMNP theo a, b, c
1/ Doc gia tU giai c6 t h i xem De D A I HOC HUNG
VllCiNG - KHOI A - 1998 de c6 duac cdch chutng
minh ba goc AABC deu nhon
=> H la trirc tam AABC (dpcm)
Trang 27: AOM
P = AON
P = AOM
N = AMN
P =
> (dpcm)
Ta CO : VQMN
P =
—
OH S MN
=> VQMNP
=
—
OH.(
— SABC )
= -(a^b
^ + b^c
^ + a^c^
Ap dun
g BD
T Cauchy, t
a c
6 :
a" + b'' ^
2
a V (1
(3)
a^b^
+ b^c
^ + a^c
^
^ a
^ + b
"
+ c' '
« a^b^
+ b^c
^ + a^c
^
^ (a
^ + b
^ + c^)
^
- 2ia%^
+ b^c
^ + a^c^
)
« i(aV+bV+aV)<—(a^+b^+c^f
4^ ''12^
'
'A
BC
12 (4)
Dfi'u
d in
= b
= c
= > max(SABc ) =
g thuT
c trong (5) xa
y r
a <
= > a = b = c
=> max(OH) =-khi
il di?
n ABCD c6 AC = A
D = BC = B
D = a; A
1/ Xa
c din
h v
i tri va tin
CD
2/ Mo
t ma
t phing (a) vuon
e AB
; J
e CD) V
hing (a) ci
t tu
f die
n
Tinh dien tic
h S(x) cu
a thi
et dien Xa
et die
n c
6 die
n tic
h Id
n nha
t v
a tin
h gi
a t
ri Id
n nha
t a
y ?
Trang 28Khi do, I J l a difcrng vuong g6c chung cua
AB; CD, va I la t r u n g d i e m cua A B (vi A J = BJ)
Bai 414 ( D A I H O C N G O A I N G O T I N H O C - 1997)
4 (7)
Cho tuT dien A B C D sao cho A B = 2x, C D = 2y va 4 canh con l a i deu c6 dp d a i bSng 1
y T i n h dien t i c h t o a n p h a n cua tiir dien theo x va y
21 Xac d i n h x va y de d i e n t i c h toan p h a n dat gia t r i I d n n h a t
3 2 7
Trang 29n lifat la trun
g die
m cu
a A B;
CD
Ta
CO
: AAB
^
Ttfcr
ng tir: A
N = -^
=
S AB
D
= "
A B.
DM
= x V
l -
B
Hoan loan tuon
g tif
: Sg cu =
2 1
Va
y dien tich toan pha
n S,
p cu
a t
iJ die
-Vl
- '
Ap dun
g BDT Schwart, t
l -
x2
+
Dau dan
g thijt
c trong (1) xay ra <=>
V2
Vay : maxS,p = 2
<=>
x
= y = (ycb
t)
(l -x2 )]
+ [ y^
+{
y^
l-y
<2 (1)
<=>
X = y =
Ba
i 415
(DA
I HOC VAN LAN
G
~ KHO
I
B,
D DdT 1
- 1997)
Trong m
at phan
g (P) cho dUdn
g tro
n (S) diTd
ng kin
h :AB = 2R Tre
n dudn
di (P) ta
i A, lay die
m
C s
a o cho A
C = A
B
M l
a m
ot die
m thu
pc (S ), H la h
M
1/
Chufng min
h rSn
g k
hi
M d
i don
g tre
n (S) t
hi
H d
i dgn
g tre
n m
ot dUcfng tro
n
2 1
X
ac din
h v
i t
ri
M tre
n (S ) (Tin
h do d
ai AM theo R) s
a o cho hin
h chop HAB
t Tin
h gia t
ri Id
n nha
t d
o
1/
Theo din
h l
y b
a difcJ
ng vuon
Da
CO
: BM ± A
M (2);
v
i M
e (S )
(1)
&(2 )
= i>
BM
1
(ACM)
^ (CAM)
_ L
(CBM) theo giao tuye
n C
M
O
Ca ch
d im
g :
AH
_ L
C
M
^ AH ± (CBM)
= ^ AH
1
B
C (3)
Go
i K la trun
g die
m canh B
C cu
a ABA
C vuong ca
n d A
=> AK
1
B
C (4)
(3 )& (4 )
=> BC
1
(AHK) : co din
h, bd
i v
i A
K c
o din
h
Trang 30Luc do M liAi dong t r e n (S) t h i H luu dpng tren dUcfng t r o n co d i n h (Z) difcmg k i n h A K = R V2 ,
21 Cho SA = a, SB + SC = k D a t SB = x, t i n h the t i c h tuf d i $ n SABC theo a, k , x Xac d i n h
SB, SC de the t i c h tuT d i e n SABC IcJn n h a t
Trang 31Vdi ch
u y :
sina =
cosa =
AB SB SA SB
AB =
aA/2sina
SA =
aV2cosa
Khi d
o : V
q»B
p
= — a-«^ a
-y 2s in a
.a-y
2c os
a
= si n2
a
Vay : max(VsABc) <
= > s in 2a = 1
<=
> a = — (ycbt)
- 1998)
n Ox, Oy, O
B = b; O
g luo
n c
6 O
A + OB + O
C + AB + B
C + CA = k khSng
I HO
C NGOA
I NGU
f H
A NOI
- PB
- 1997)
2/ Ta
CO
: O
A + OB + O
C + AB + B
C + AC = k
< = > a + b + c + Va
; b > 0
; c
> 0;
ta ap dung BDT Cauchy
(2) (3)
Va^Tc
^ >
V 2a
c
(4)
Lay : (2) + (3) + (4) v
a a
p dun
g BD
T Cauchy, t
3V2.^ /ib c
C
=
^ ab
c eV
s ABC
= ab
c
TucJng tir (1) + (5) v
_^
^
= > k > (
3 + 3V2j^ /ab
c
k >
(3 + 3 72 )3 /6
?^
,
k 1
^S AB
C
^
g
SA BC
^ 3
(6)
3 + 3 V2
(7)
Dau d^n
g thiJ
c tron
g (7) xa
va (6) xa
y r
a <
= > a = b = c
Trang 32Vay: max(VsABc) =
-I 3 + 3V2J Bai 419 ( D A I H O C Stf P H A M QUY N H O N - 1998)
Cho dircrng tron (90 tarn O , dirdng kinh AB = 2R Diem M di dong tren {.f) va A M = x Tren
dilcfng t h i n g vuong goc vcJi mSt p h i n g chiJTa Cf) tai diem A, l a y mot diem co dinh S va AS = h 1/ Chilng to rSng hai mSt p h i n g (SAM) va (SBM) vuong g6c v(Ji nhau
2/ Tinh the tich tur dien SABM theo R, h , x Tim nhOng vi t r i cua M tren ('f) de the tich tiif
di?n nay dat gia t r i Idn nhat
Giai
1/ Doc gia c6 the xem C a u 1 De DAI WOQ
QUOC GIA - 1996, de" tCr: MB 1 (SAM)
Cho hinh chop SABCD co d^y ABCD la hinh vuong canh a, canh ben
SA = h va SA 1 (ABCD) M la diem thay doi tren canh CD Dat CM = x
Trang 33« AH =
Vay : SH =
VsA
^
+ AH^
SH =
a^
+a V+
xV
2 2
X +
^SA
AH.B
H
Vdi : SA = h
AH =
Vx
^T a^
AB-^
AH
-^ =
ax
Suy r
a : V(x) = VSABH
= ^
• (1
>
6 x'' +
a
Khao sat ha
m s
o (1) su
y r
a :
a^h
max(Vg
^H) = k
hi x = a hay
M =
D (ycbt)
- 1999
g
kinh AB = 2R La
y die
m S sao ch
m qu
y tic
h die
m K k
hi C thay ddi
i xe
m D
e DA
;
N ban
g K
; M bang
y tic
h die
m K k
hi C thay doi l
a
dadng tron
dUcfn g
kinh A
i SB
AH
AH = SA.A
B
SB
AB
AH =
SB
R
2R 2R
RA/5 VSSH
=
V5
Trang 34Goi K' la hinh chieu cua K xuong AH, khi do :
1/ ChiJng minh diem H di dong tren mot dUcrng tron Tinh do dai IH
21 Goi J la trung diem cua doan CE Tinh do dai JM va tim gi a tr i nho nhat cua JM
Vay H di dong tren cung B F ciia difcfng
tron CO difdng kinh CI tren mat phlng (ABCD)
21 Goi r la trung diem ciia CI Trong A I MC, ap dung dinh
MI^ + MC^ = 21M^ CI'
=> 2rM''^ = ( X - a)''^ + 4a^ + x^ - 5a'
=> I 'M = X - j i x +
5a'
Trang 35C
O :
J l
a trungdiemC
E
ri
a trungdiemC
I JI7/
EI
jr
= iEI
Trong AMI'J vuong tai I', ta c6 : M
J =
V l'M
^ + I'J
^ =
Khi d
o : M
J >
Vay (MJ),ni„ =
— ha
y M la trung diem
- Dd
T 2
- 2000)
n ducfn
g thdn
g (d) vuon
g go
c vd
i ma
t phi
ng
(ABC) ta
i A
lay diem M Go
i H la trUc ta
2/ Kh
i M thay doi tre
n (d), tim gid
Gi
ai
1/ Go
i I la trung diem
1
BC
Ma MA
l M
I
Suy r
a : BC
1
(AMI) (*
)
fBH_
LA
C (H l
a tru
e tam
HBIM
A (do:
MAl(
ABC) 3 HE)
HB
1
(MAC); m
a : MC
C ±
BK
Tif(l)va(2)^
MCKBHK)
(3)
Do d
o : HK
± M
C
(*)
(1) (2) (3) (4) (5)
(K la true tam)
(dpcm)
(vi : H
K c
(HBK))
(vi : HK
c
Tir (4) v
a (5) =
>
HK
1
(MBC) (dpcm)
D = dlK; (ABC)] l
Luc d6, thi tich
.K
D = ^a^
• 3max(KD)
iV3
Trang 36De y AHKI vuong tai K va canh hu yin
aV3
HI =
max(KD) = KoO =
12
ivdi O la trung diem H I; Ko G H I va KOO 1 HI)
Vay khi M thay đi tren (d) thi g i i tr i Idn nhát cua the tich V trong yeu cau bai toan 1^ :
max(V) = -l-.ậ—L- = _ (ycbt)
12 12 48 Dfi T L f dNG T i ; Bai 424 (DAI HOC KHOI A, B - 1982)
Cho hinh vuong ABCD canh ạ Lay M e AD va dSt AM = x (0 < x < a) Cho dudng th in g
d 1 (ABCD) tai Ạ Lay S e d va dat SA = y > 0
a/ ChUng minh nhi dien canh SB la nhi dien vuong
hi Tinh khoang cich tU M den mp(SAC)
d Tim the tich hinh chop SABCM
Al Cho x^ + y^ = ậ Tim gia tr i Idn nhát cua the tich hinh chop SABCM
Cho tU dien ABCD c6 AB = x, cAc canh con lai bSng 1 Tim x de the tich tuT di§n Idn nhát
Hxidng din
maxV = —
Bai 426 ( D A I H O C Q U O C G I A H A N O I - K H O I B - 1997)
Cho AABC can dinh A va dUcrng thiing (d) _L mp(ABC) tai Ạ Lay M e d (M ^ A),
a/ Tim quy tich trong tam G va trUc tam H cua AMBC
hi 0 la true tam AABC Tim vi tr i cua M de tuf dien OHBC dat gia tr i lorn nhát
Trang 37Ch uye
n de 2
3 :
P HlT ONG P HA
P V EC TO T RON
G KHONG G IA
N
I PH UON
G PHA
P
Ca s0 cu
a phirang pha
p l
a suf dung ca
c din
h nghia v
a phep toan ciia vectc
f tron
n chu
fa
he to
a
do (Oxyz))
No tUang tif ca
c din
h nghia v
a ph
g m
at phSng (Oxy)
O
day ta lifu
y dU
c fc ca
c tin
h ch
at
ca ba
n :
• Con
g h
ai vecta th
eo qu
y t
& c
dUcrn
g che
o hin
h binh han
m : V
A,
B,
M
e (Oxy)
•
I l
a trung die
m doan A
B
AM
^ hM
B = A
; V
M
s (Oxyz)
•
G la trong tam tam gid
c ABC <=>
GA + GB + GC
VM
e
(Oxyz)
GA+G
B + G
C + GD=
• Kh
ai nie
m b
a vecta don
g phSng :
•i
Ba vec
ta
a ,
b ,
c 5t
0 dong phSn
g k
hi gia cu
a chu
ng cii
ng son
g son
g hoS
c cCing
^n
g
•2
Pha
n tic
h
m
= aa +p b
?^
0 (V
a,
p
6
R) la duy nha
t v
a luon thifc hie
n dtf
g vd
i h
ai vecta khong ciin
g phi/an
t v
a luon thiTc hie
n difc
g don
g phSng
O Gh
i ch
ii
: 1) Neu m
ot tro
ng
ba vect
a
a,
b, c
b&
ng
0 tlii ch ung d ong ph dn
g
2) Neu m
ot tro
ng
ba vect
a
a,
b, c
co
ng tuye
n thi ch iin
g cun
g don
d Sng ph dn
g
=>0 ,
A,
B,
C
e mp(
a)
n CA
C BA
I TOA
N GO B
AN
Ba
i 42
7
Ha
i hin
h binh han
h ABCD v
a AB'C'D' tron
g khon
g gia
n c6 chun
g mo
t din
min
h cac vecta DD', BB', C
C dong phSn
g
Theo h
e thu
fc Chales, ta c6 :
Gi
ai
BB'=
BA+AB' (1)
DD' = D
A + AD' (2)
Con
g the
o
ve ha
i dUcf
ng thin
g (1)
va (2)
ta dif
gc :
=> BB' + DD'
= (BA ^ DA) + (AB' + AD)
= (CD
-r
DA) + (D'C' + AD)
= C
A + AC'
= CC'
=>
(dpcm)
Trang 38Ta phai chuTng minh duac rkng
Chon cdc vect0 co sd : AB = a; AD = b; AA' = c
V Cho tuf dien ABCD c6 AB = BC, AD = DC Chufng minh AC 1 BD
21 Khi t i l dien ABCD c6 AB J- CD Chilng minh rSng : AC^ - AD^ = BC^ - B D l
Trang 39A' D'
C, N
e A'B sao ch
o MN la dadng vuong goc chun
0 v
a MN.BA'=
0
—>
->
• >
D =
b, AA' =
- a
Da
t : AM = xAC, B
N = yBA'
Luc d
6 : M
N = M
A + AB + B
N = -xA
C +
a + yBA'
= -x (a + b )+
a +y (c
- a)
= ( l- x- y)
a
- xb
<=>
(1
- X
- X
- y)a
^ =
0
MN.AC=
0 [(
x-y)
l-a -xb-yc](
a + b) =
- Xb
- y c](c - a) =
0
fl 2x -
0 3
Suy r
a : M
3
» MN' = -(a
- b
- c
= — » MN = ^
O Gh
i c hi
i
: Bdi
todn ndy
cd nhieu cdch gidi,
d tren
ta da
sd dung phuang phdp
n ABCD C
o
E,
F, I
theo thOf tif la trung die
m cu
a AB, CD
, E
F
a/ Chijfn
g minh : lA
* + IB' + IC + I
m M bat ky trong khong gia
n, ha
y chiin
g minh : M
A + MB + M
m O sao ch
o O
A + OB + O
C + OD = 0 ChiJn
g minh die
m O la duy n
m ch
o ta : lA + IB' =
2 IE*
; IC + I
* + IC + I
D = 2( I
E + IF*)
=>
lA + IB
* + IC + ID
* =
0 (dpcm)
hi
Tuangtif:
MA + MB-2ME;
MC + M
D = 2MF
=> M
A + MB + M
C + MD = 2(M
E + MF) = 4MI (dpcm)
c/ Cun
g tiran
g nhu the t
if ca
u a/ ta c6 :
0 = 2(0E + OF)
Ding thutc na
y chuTn
g t
o O la trung die
f
O'E + O'
O + O'F
<K.
0 = 2
0'6
+ O'
E + O'F <=
m du
y nh
at th6a : O
A + OB + O
C + OD = 0 (ycbt)
Trang 40Bai 4 3 2
Cho tijf di e n A B C D v a m at phSng (P) T i m di e m M e (P) sao cho
ria tri nho nhat
Cho tijf dien A BC D Go i P, Q theo thijf tu l a t rung di e m cua c ac c an h A B v a C D H ai di e m
R, S Ian lUcft lay t re n cAc c anh A C v a B D sao cho — = — = k (k > 0) Chufng m i n h r Sn g bon
AC BD diem P, Q, R , S n am t re n cung mot m at phAng