Taong tif do tinh doi xuTng : iSOB la mat phan giac nhi dien S B SOC la mat phan giac nhi dien SC SOD la mat phan giac nhi dien SD Do do S O la giao tuyen tifong ufng trong ycbt dpcm.
Trang 1Di rn
g BH
1 IE =
>
NH _L I
E (d in
h ly b
a dt fd ng v uo ng g oc )
=> g oc c ii
a ma
t ph Sn
g th ie
t di en v
a ma
t da
y la :
(p =
N KB
( ho ac S Ft )
NB = p nc ta => B d g on vu H NB A Do
HB (1 )
TiT e ac
h di Tn
g ta s uy r
a
N la t ru ng d ie
m cu
a BB ' NB = —
Va : ab
HB
^
(1
=> ta nt
p
=
' BE
^ 2V
a2
cV a^
~
b ab
1
^
^ c ( a + 2 )
2 CO
S (p
CO S(
V
Di nh l
y ch ie
u hi nh c ho t
a : S'
= S.
co si
p (v
i
S la d ie
n ti ch t hi et d ie n)
( yc bt ).
co si
p
4
Uo ai S : MA
T Pf lA
« GI AC C UA N flJ D it
N
I PHUONG PHA
P
Co s
o cu
a ph if an
g ph ap d i/
ng m at p ha
n gi ac t he
o di nh
ng hi
a ca
n ph ai t hi fc h ie
n ba
h xid
c ca
b an :
• Bi : Di fn
g go
c nh
i di en a
^ cu
a nh
i di en ( a;
d
; )
• B2 : Di rn
g ti
a ph an g ia
c Mc c ii
a aM fe
• B
3 : Du ng m at y = ( d;
M c) v di d = a r>
(5 Th
i
y la m at
ph an g ia
c ci ia a;
P ).
O Gh
i ch ii
:
Mo
t di em tr en m at p ha
n gi c
6 kh od ng e ac
h
de
n ha
i ma
t nh
i di en b dn
g nh au
VL
CA
C BA
I T O A
N CO B AN
p S.
AB CD c
6 la t am g ia
c SA
B de
u va A BC
D la h in
h vu on
g
Gi
a si
f ( SA
n gi ac c ii
a ca
c nh
i di en ( B;
A D;
S ).
C de u.
Ke A G n S
B
=
M (A MN ) o S
C
=
N
Th eo t in
h ch at g ia
c tu ye
n so ng s on
g ta c
6 MN //
C D.
De y A
D
± (S AB )
! A D
1
S
A
[A D
1
S
B
Do ng th cf
i AM l
a ph an g ia
c
SA
B
Do d
o mp (A MN D) l
a mo
t ph an g ia
c go
c nh
i di
^n ( S;
A D;
B ) (y cb t)
Trang 2Biti 179
Cho hinh chop tuf giac deu S.ABCD ChiJng minh rkng SO la giao tuyen cua cac m at phan
giac tucfng ufng vdi cac cap nhi dien (SA), (SB) va (SB), (SC) va (SC), (SD) va (SD), (SA)
Giai
Do tinh chat doi xtifng ta chi can xet mot cSp nhi dien (SA), (SB) la
=> O M la tia phan giac cua I5MB =
=> (SOA) la mat phan giac nhi dien ( S A )
Taong tif do tinh doi xuTng :
i(SOB) la mat phan giac nhi dien ( S B )
(SOC) la mat phan giac nhi dien (SC)
(SOD) la mat phan giac nhi dien (SD)
Do do S O la giao tuyen tifong ufng trong ycbt (dpcm)
tail G: XAC Dpjfl MAT CAU tiQl Tli? HlNfl CHOP DA GlAC Dt u
LPHirONGPHAP
Co so cua phuang phap thuomg sijf dung cho hinh chop
tam giac deu qua ba budc :
0 B i : Xac dinh true difdng tron d cija da gidc day (thong
thifdng d qua dinh S)
tCr W den cac mat ben hay day cua hinh chop la ban kinh
r cua mat cau
tiep hinh chop bdng the tich V va di&n tich todn phdn Stp
Goi G la trong tam AABC deu => GB = GD = GC ( 1 )
Tuf dien deu ABCD canh a => AB = AD = AC ( 2 )
Tir ( 1 ) va ( 2 ) cho ta AG la true dudng tron ngoai tiep ABCD
Diftig mat phan giac (y) cua goc nhi dien canh CD la
Trang 3ly
difdng phan
giac
\k
dien tich
O Cac
h kha
c : Ta c6 : V = -S,„
r =
> r =
3V
Trong
d6 :
tp
1 aV
3 2
2 ;
(1)
=
V3 a2
V =
iBh=
l 3 3
—.a ,2 2
j
(aV3
Y
f 1 aV3
12 ^ aV6
^ = -a
(ycbt)
Stp ^
2 2 :.2a =
tich hinh
chop tuf gia
c deu
Trang 41/ Ngifcfi ta xem 6 mat trung triJc ciia 6 canh cua mot tuf dien C h i i n g to rkng 6 mSt ay giao
nhau tai mot diem
2/ Goi r va R Ian lifot la ban k i n h ciia dUdng tron npi tiep va cua du&ng tron ngoai t i e p ciia
mot mat tam giac tuy y ciia tijf dien tren
ChiJng m i n h r k n g : ~ ^ —
R 2
G i a i
1/ Cho til dien A B C D G o i I la giao d i e m cua ba di/dng t r u n g
true ciia t a m giac B C D
=> I la t a m difdng t r o n ngoai t i e p (BCD)
Hai mat t r u n g trUc cua h a i canh BC va C D c6 d i e m
chung I , nen p h a i cftt nhau theo giao tuyen d
^ d 1 (BCD)
Hai mat t r u n g trUc ciia canh B D va C D cung
^ (d') ^ (d) ^
Vay ba m a t phSng t r u n g trUc cua ba canh cua t a m giac (BCD) c&t n h a u theo dUcrng t h i n g
d vuong goc v6i m a t p h d n g (BCD) t a i I
Canh A B x i e n goc so vdi m a t p h a n g (BCD), nen m a t p h a n g t r u n g triTc ciia canh A B cSt
difcfng t h i n g d t a i m o t d i e m O
=> 0 la diem chung ciia bon m a t t r u n g trUc cua bon canh BC, C D , D B va A B
OB = OC = O D = OA Cac d a n g thiic OC = OA va O D = O A c h i i n g to O cung dong thcfi
thuoc cac mat t r u n g trifc A C va A D
Vay O la giao d i e m cua sau mat t r u n g triic cua sau canh cua t i i dien da cho (dpcm)
• C a c h k h a c ta c 6 the l|Lp l u ^n dcfn g i a n nhii s a u :
Ro rang mot d i e m tuy y thuoc dong t h d i ca sau m a t p h a n g t r u n g trifc ciia sau canh ciia t i i
dien k h i va chi k h i d i e m do each deu b o n d i n h ciia t i i d i e n
2/ Gia sii goi AABC la t a m giac can xet t r o n g gia t h i e t va goi : Diicfng t r o n noi t i e p AABC c6
tam Oi va ban k i n h r ; con dudng t r o n ngoai tiep AABC c6 t a m O2 va ban k i n h R
• Diing t a m giac A i B i C i c6 cac canh d i qua cac d i n h ciia AABC va song song v d i cac canh
cua \ABC
• Diing cac tiep tuyen cua dadng t r o n t a m O2 (ban k i n h R) t a i cac t i e p d i e m T j , T2, T 3 va
song song v d i cac canh ciia t a m giac A i B j C i sao cho tiep tuyen A2 B2 song song vdfi A i B j va
tiep diem T2 nhm t r e n cung A B (chiia d i e m C), ta difcfc t a m giac A2B2C2
Trang 5« =
- 2R
r ^ 0
<K
>
<= > — ^ —
Theo
each
dUng tre
n day, mie
a
trong cua mien trong tam giac
A 2B 2C
2 v
a
AA IB ,C
I 00 A A2 B2 C2
Goi the
m R, l
a ba
n ki'n
h dUcfn
g tron noi tie
R
Mat khac, t
y so dong dang cua ban kin
h cu
a diTdn
g tr
c l
a :
Ri ^ =
2 «
Ri = 2r<=>
2r<R » —
^
•
Ca ch k ha
c
:
Dat
() ,(
)2
= /,
2Rr
[R >
0 (hie
n nhien)
I A
- MIEN
B AC
- 1972)
Cho mot kho
i tu
f die
n de
u SABC Go
i S
H l
a du dn
g ta
m T ciia tam giac ABC va tam hin
b/ Tinh ban kin
h cii
a hinh cau noi tie
n ngoa
i tie
p
AABC va
= > 1< E
IH = I
b/ Go
i O la tam hin
i O
nam tre
n IH, don
g thcf
i O nkm tre
i die
n can
h AB, tuf
c l
a O la giao diem cua
IH
va dirdng phan giac goc IMH, v
a r = O
H l
a ba
n kinh hin
h
cau noi tie
p kho
i tu
f die
n lABC
Ta
CO
: SH = A / SA
^~
MF =
^ I H
Trang 6=> Cac tam giac AIB, BIC va CID deu vuong tai I , trung tuyen c6 dp dai bang nCfei canh do
=> A I , BI va CI doi mot vuong goc nhau (dpcm)
iBai 186 (DAI HOC KHOI B - M I E N B A C - 1972)
I Cho hinh thang ABCD, vuong o A va D, AB = AD = a, DC = 2a Tren du&ng t h i n g vuong goc pp6i mat phing ABCD tai D lay mot diem S sao cho SD = a
a/ Cac mat ben cua hinh chop SABD la nhufng tam giac nhu the nao ?
b/ Xac dinh tam va ban kinh hinh cau di qua cac diem S, B, C, D
[d Goi M l a diem giiira SA Mat phang DMC cat hinh chop SABCD theo thiet dien gi ? Hay
tinh dien tich cua thiet dien do
G i a i
1/ Mot each dan gian chung ta se chuTng minh duac cdc mat ben cua hinh chop la bon tam
jp^c vuong
Doc gia tu giai Chang ban ta t i n h duac :
SC = VSD^TCD^ = Va^ + (2a)2 = aVs
• SB = V S A ^ T A B ^ = V(aV2)2 + a^ = aVs ^ SC^ = SB^ + BC^ = Sa^
BC = aV2
=i> ASBC vuong 0 B (dpcm)
Trang 7G
oi
O la trung die
m cu
a
SC
De
y thay h
ai ta
m
gia
c SD
C vuon
g va SB
C vuon
g th
n ta c6 :
OS = OD = OB = OC =
n m
at cau tam O, ban
kinh:
„ SC
i ma
t phin
g (DMC)
va (SAB) c6 die
m
M chun
g nen
chun
g cfit nha
u the
o m
ot gia
o tuyen M
N (N nkm tren SB)
va
vi
AB // C
D ne
n M
N / / CD (v
a MN //
AB)
=> CDMN la
hin
h
than
g,
do la thie
t die
n cua
hin
h
chop v
di mS
t phAng DMC Ma
t die
n CDM
N la
hin
h
than
g vuong t
ai
D
va ta
i M (ycbt)
Do M la trung die
m SA nen t
a c
6 : D
M
=
i SA =
; M
N
=
- AB = -
n t
ic
h
thie
t die
n CDM
N bSn
g :
S
= CD +
MN D
M
=
2a+ - /r 2 aV2
I HO
C KH OI A
- MI EN B AC
- 19 73 )
(ycbt)
Cho
hin
h
chop tu
T gia
c deu S
ABCD din
h
S, da
y l
a mo
t h
in
h
vuon
g ABC
D can
n la
m vd
i ma
t phan
g da
y vd
i mo
t goc (p T
a dU
ng ma
t phSng pha
n gia
h BC trong
hin
h
chop (tilc la go
c nh
i die
n cu
a
hin
h
chop x
ac din
h ba
m
at phan
g phan gia
c na
y cM
eo
thu
f t
iT la trung die
m cu
a BC, AD Va d
o
hin
h
chop S
ABCD la
ASIL la tam gia
c can m
a goc
a
day S
it
= SL)I =
c p
va SH la dudng
o BD
Ma
t phan
g phan gia
c (a) cu
a nh
i die
n can
h
BC chin
h l
a m
at phan
g d
i qua B
C va difdng pha
n
gia
c I
K ciia Si lt v
a
K la trung die
m cua M
N
Tif
do
de dan
g thay ran
g thie
t die
n BCMN la m
ot
hin
h
than
thang BCM
N du
SBCM
N
= -(
BC + MN ).
IK
Theo din
h ly ham sin trong ALK
I ta c6 :
IL
sin
Trang 8Theo dinh l y h a m sin t r o n g A S K I , ta c6 :
Do (SKI) 1 ( B C M N ) nen difcfng vuong goc SJ ha t i f S xuong I K cung c h i n h \k dUdng cao
cua hinh chop S B C M N T r o n g t a m giac vuong S J I ta c6 :
a/ Chiifng m i n h r a n g t a m giac ASC la vuong
b/ Tinh the t i c h va dien t i c h toan p h a n ciia h i n h chop S.ABCD
Chutng m i n h rang goc n h i dien tao nen bdi cac mat SAB va SAD la vuong
G i a i
a/ Goi O = AC ^ B D : t r o n g t a m giac vuong O A B ta c6:
OA'' = AB^ OB^ = a'
-IV3J
2 a ^
Trang 9g ta
= a' -
A = OS =
g tuye
n S
O
bkng niia canh day
C, AS
C 1
^ tam giac vuon
g ta
i S (dpcm)
b/ T
a CO : VK AB CU = ~ SO.dt(ABCD)
3
Tron
g d
o : dt(
ABCD) = OA.B
D =
> dt(
ABCD) =
V 3
n xe
t rkn
g cd
e ma
t be
n (SAB), (SBC), (SDC), (SAD) l
i S
A =
SC, S
B = SD va tCr gi
a thie
t : AB = B
C = CD = A
D t
hi 4 t
g iln
g bSn
g nhau
Ha BH
1 SA, ABS
n B
H cun
g l
a trung tuyen
Tron
g ta
m gia
c vuong OSA ta
eo :
SA'-* = OS^
+ OA'
^ =
4a'
SA =
2a
AH = SA
a
BH
AB'
- HA
^ =
Ja 2
a 3
ABCD) + 4dt(SAB) =
2a
^4
2 4a
^y f2
DH la dadng cao ciia tam giac ca
n DSA
Do vay
iJH
fi =
(
^ =
[(SABiTisAD) ]
Ta C O : DH^
= BH^
* =
2a^
Trang 10DII^ + B H ' = 4a' = BD'^
3 3
=> ABHD vuong tai dinh H
=> Goc nhi dien canh (SA) la nhi dien vuong (ycbt)
Bai 189 (DAI HOC K I I O I B, N - 1975)
Cho mot tarn giac vuong can ABC, AB = AC = a BB' va CC cung vuong goc vcJi (ABC), d cung mot phi'a doi vdi mat phang do va BB' = CC = a
a/ ChiTng minh rSng tarn giac AB'C la tarn giac deu
d Chufng minh rang nam diem A, B, C, C , B' ciing nSm tren mot mat cau Tim the tich ciia
hinh cau tifang ijfng
Do OH la dtfdng trung binh cua tam giac BCC
^ OH = C C =
-2 -2
Do do O la tam hinh cau di qua nam diem A', B, B', C, C va the tich Vc ciia hinh cau do bkng:
V , = - 7 : R 3 = -n
3 3
Trang 11i 190
(DA
I HOC KHO
A HO
C KHOI
A 1977)
-Cho AABC deu canh
a, no
i tiep trong mot difdn
g tron tam
O chiif
a trong mpt mft
t phSn
g
(P) Go
i D la di6
m xuye
n ta
m do'
i cu
a A tre
n dudn
g tron nay, co
n S
D la m
a a va vuong goc v(J
i (P)
1/ Chufn
g min
h SA
C v
a SA
B l
a nhOTn
g tam giac vuong
2/ Tinh die
n tic
h toan phSn cua hin
h cho
p SABC
3/
Djnh tam ciia hin
S,
A,
B, C, D
(theo djn
h ly
3 difdn
g vu6n
g goc)
a A
JA D 1 B C
(tai
H )
^ [S
D
± (P )
va
A B 1 B
D
AB _L SB =i
> ASA
B vuon
g ta
i B (dpcm)
Ly luan ti/ang
t
ii
ta eung c6 ASAC vuong t
ai C (dpcm)
2/ Go
i
S |p la die
n tic
h toa
n phan cua hin
h cho
p SABC, ta c6
S,p = dt(
AABC) + dt(ASAB) +
dt(SAC) + dt(ASBC)
dt(AABC) =
Tron
2 SD
2
= + a
SB^
= 3a^
9
2 12a
^
+ a =
SB =
2aS
Ne
n : dt(ASAB) =
~ AB.S
B =
- a.SB
Xot:
S H^
= H D^
+ S D^
faV3
-.SH
^
=
^
^-
36 SH
=
1 V 39
36 3
6
=>dt(ASBC)
=lBC.SH=
—
— + — +
= (1
1 +
Vl3 ) (ycbt)
3/ D
e y den ba tam giac SAB, SAC, SA
g ta
D, S nkm tre
n ma
t cl
u, bd
n kinh
R =
cua hin
h ca
u la trung die
m I ciia doan SA (ycbt)
SA V(aV3 )2 + a
Trang 12Bai 191 ( D A I H O C K H O I A - 1976)
Cho mot tarn dien ba mSt vuong Oxyz Ngifdi t a l a y I a n lugt t r e n Ox, O y , Oz c a c d i e m P, 'Q, R cung khac d i e m O Goi A , B , C theo t h i i tiT l a d i e m giuTa ciia c a c doan P Q , QR, RP
a/ Chifng m i n h r i n g c a c m a t cua k h o i tuT dien O A B C l a nhOfng t a r n giac b a n g nhau
b/ Cho OP = a , OQ = b , OR = c T i n h t h e t i c h k h o i tuT dien OABC
c/ Tim tarn ciia m a t cau ngoai tie'p k h o i tiir dien OABC
il Chijfng m i n h r a n g t o n t a i m o t m a t cau tie'p xiic v 6i c a bon m a t cua k h o i tuf d i ^ n O A B C
Tim tarn m a t cau do
fi Chijfng m i n h r a n g ne u c a c goc n h i die n O A cua k h o i tuf die n O A B C l a g6c n h i die n vuon g
ihi hai goc B v i C cua t a m giac A B C thoa m a n h e thufc : t a n f i t a n C = 2 v a nguac l a i
=> Cac m a t cua t a m dien O A B C b a n g nhau (ycbt)
b' Goi H la cha n dirdng cao cua tiif die n O A B C h a t i f
0 va h c h i n h l a daotng cao cua tiJ die n OPQ R h a t i f O
=> giao d i e m I c h i n h l a t a m m a t c a u n g o a i tie'p tuf d i e n O A B C , ( v i l A = I B = I C = l O = R) d/ Tif I h a I O 3, l O , I a n lUcrt v u o n g goc vdri m a t p h l n g ( A O B ) v a (OAC)
=> 0:t; O 4 thuf tiT l a t a m v o n g t r o n n g o a i ti6'p t a m g i d c A O B v a AOAC
V i bon t a m g i a c O A B , O B C , O A C , A B C b a n g n h a u n e n c a c diTcrng t r o n n g o a i tie'p c h u n g cung b a n k i n h R j
Trang 13I O2 O
ta c6 :
lOi =
I O2
lA = 10 = R
OiA = O 2O = R
= lOi
; IO
4
= IO
2
= > lO
i =
I O2 = IO :J
= IO
4 = r
(tinh
chat h&
c
cau)
= > I chfnh
la ta
m m kt
cau tiep xuc vd
Ha tiJ C : CH
1
OA ^ CH
_L
(AOB)
Noi H
B ta
C O
Ha ti
r B : BH'
1
OA = > BH' =
CH, v
a O
H = BH'
Do AAB
C = ACOA = ^ C = CAD
OH
tan
6 ta
n C =
HC H
C HC
^
AH O
H
AH O
H
Xet de
n :
O A^
= ( OH + A H) '
= O H'
* + A H'^
+
2AH.0H
Trong tam giac vuon
g H BC
ta c6 :
O A' = C' = H C ' + H B '
= H C ' + H B ' + H H ''
= 2HC'
+ ( AH
- O H ) '
= 2HC
' + A H ' +
O H'
20H.
-AH
Tir (2 ) v
a (3 ) t
a c
6 : H C ' = 2AH.
OH
Thay vao (1) t
a dua
c :
tanfi.tanC =
2
Ngugc lai, gi
ha AH 1 O A.
Ta CO : tanCJO
A = ; tanCX
O =
OH A
± OA
Va
AC O
A
= AB AO : C
H
= BH ';
O
H
= AH '.
Ta c6:
H B '
= BH '' + H H '' = B H' ' + (A
H
- O H ) '
^ HB '
= C H' + A H' + O H' -
2AH.0H
= A H' + O H'
=> C H ' + H B '
= C H ' + A ' + O H '
Mat kha
c t
a c6
: BC '
= O A'
= ( OH + H A) '
EC '
= A H' + O H' +
2AH.0H
=
H' + O H' + CH '
Tom lai t
a c6:
B C' = C H ' + H B '
AH B C
vuong tai
H <=
>
C H
1
B H
Ta d
a c6
C H
_L
OA B) =
>
(C OA )
1
( AO B)
< => nh
i die
n ( OA )
la nhi die
n vuon
g (dpcm)
(1) (2) (3)
Trang 14Trong mot mat phang ( P ) ngifcri ta cho mot tam giac vuong can ABC v d r i AB = AC = a Bu
Cv ngUcfi ta Ian lUcrt lay nhCfng diem M va N di dong sao cho tam giac A M N vuong goc tai M
1/ Hay tinh y khi x = a; tinh dien tich tam giac A M N , suy ra cosin ciia goc nhon hop b d i mat
phang (AMN) v d r i ( P )
2/ 1 la trung diem cua BC Chiifng minh rSng goc A M I la goc p h l n g cua nhi di$n c6 canh la
MN va CO cac mat p h i n g BMNC va AMN Tinh gia t r i ciia goc nay k h i x = a
3/ Chufng minh :
al Bon diem C, I , M , N cung nkm tren vong tron
hi Nam diem A, C, I , M , N cung nkm tren mot mSt cau Hay xac dinh tam cua hinh cau nay
Cho hinh chop V.ABC c6 cac mat ben hop vdi mat p h i n g day ABC thanh nhifng goc nhi
dien bang nhau c6 goc p h i n g la (p
1/ Chutng minh rang chan cua dii&ng cao hinh chop xua't phdt tif dinh V la tam cua dUdng tron npi tiep trong tam giac ABC
2/ Tim diem O each deu cdc mat ben va mat day hinh chop
3/ Goi r la ban kinh difdng tron noi tiep trong tam giac ABC va R la bdn kinh hinh cau noi
tiep trong hinh chop V.ABC, tinh R theo r va ip
1/ Goi
Giai
I la h i n h chieu cua V xuong (ABC)
J , K, M la h i n h chieu cua V len cac canh A B , BC, CA
V J l A B
Ba tam giac vuong VIJ, VIK, VIM bkng nhau (vi c6
chung canh goc vuong V I va c6 goc nhon (p bkng nhau)
IJ = I K = I M
Vay I la tam ciia dacfng tron npi tiep cua tam giac
ABC (dpcm)
2/ Gia sijf da t i m difac diem O each deu 4 mat
cua hinh chop V.ABC Goi Oj, O 2, O3 Ian lugt la
hinh chieu ciia O tren cac mat (VAB), (VBC),
(VCA) theo thOf tif do
Ta CO : 01 = OOj = O O 2 = O O 3
01 = 0 0 ] => O d tren phan giac ciia
Trang 1501 = OO
Vay chi ca
n O la chan dudng phan gidc cii
a X'J
l l
a d
u (ycbt)
3/ Tin
h R theo
r v
a 9
Ta
CO
: R =
O2
;
IJ = I
K = IM = r
9 - = OKsin O2 O => K 2 OO A Trong
Trong AOIK =^
OK =
IK cos—
2
Thay (4) va
o (3), t
tan—
(ycbt) 2
(3) (4)
n—
—2 =
rtan
(DAI HO
C Y
- NH
A DtfCJC
- QUA
N Y TP.HCM
- 1980)
Trong khong gian cho mot doa
n thin
g IJ Tre
n mo
t dUdn
g thin
g d vuong goc vd
m A, B vdi A
I = IB = a
m C, D vdi C
J = JD = b Ca
• C va
ABII
J
JC = J
D
CDIIJ^
y r
a A
C = BD (dpcm)
Lap luan tifcfng ti
f t
a c
6 : AD = B
C (dpcm)
2/ Go
i O la tam ciia hinh cau ngoai tie
p tij
f die
n ABCD V
O pha
i d
tren dudng thing
IJ
3/ Ta
CO :
= OA
^ = 10^
+ lA
^ = + O
F
R2
= OC' -
Oj 2
+ JC^
= +
IJ -
Olf
R2
= + (c -
-(1)
(2)
TC r (1) v
a (2), su
Trang 16Bai 195 (DAI HOC SLf PHAM - NONG NGHIEP - TONG HOP - K H O I B - 1981)
Cho goc tam di?n Oxyz vdi cdc goc p h i n g d dinh x 6 y = 60°; y 9 z = 90°; z 6 x = 120°
Tren Ox, Oy, Oz lay cac diem A, B, C vdi OA = OB = OC = a
hi Chijfng minh rSng trung diem H cua doan AC la hinh chieu vuong goc cua O len mat
d Xac dinh tam I va ban kinh hinh cau ngoai tiep til di?n OABC
=> H la hinh chieu cua O xuong mp(ABC)
Luc do the tich V cua hinh ch6p OABC la :
c) OH la true (d) cua AABC
Tam I cua hinh cau ngoai ti6'p til dien OABC la giao dilm cua OH vdi mSt trung trUc (a)
cua OC
Ta c6: 10 = l A = IC => AlOC c&n c6 Xdl = 60° => AIOA diu
=> 10 = l A = IC = a = R (bdn kinh hinh cau) (ycbt)
Trang 17Tr on
g ma
t ph an
g (P ) ch
o nOf
a du dn
g tr on d ud ng
k in
h
AB = 2R Gi
a suT M
a hi nh c hi eu v uo ng goc cii
a M l en
m nuf
a du dn
g th an
g Mu v uo ng g6c vd
i ) ta
i M, g ia t hi et M
u lu on l uo
n d v
oi vd
i ) kh
i M t ha
y do
i tr en M
u la
y di em
S vd
i SM = MH
a/ Ti nh do d
ai ca
c ca nh c ua tuT
ie
n SA BM
b/ Ch uf ng t
o ra ng goc nh
i di en c an
h AB t ao b
di cd
c ma
t ph
^n
g (P ) va ( SA B) c
i M t ha
y do
i
d X
ac d in
h
vi tr
i t
ar
n
hi nh c au n go
ai ti ep tiif di en S AB
M Ti nh b an
k in
h
hi nh c au
a tr
i n ao c ua
x th
i b an
k in
h
ay c6
gi
a
tr
i I dn n ha
t ?
Gi
ai
(X em D
l DA
I HO
C SP
- KT
- KT
- NN
- KH OI
A 1 98 2)
P K
T K
T N
N K HO
-I A
- 19 82 )
Tr on
g ma
t ph ln
g (P ) ch
o nuf
a dUcfn
g tr on d Ud ng
k in
h
AB = 2R Gi
a thC
t M l
n, kha
c vd
i A v
a
B, gp
i H l
a hi nh c hi eu v uo ng goc ci ia
M tr en A
g MN v uo ng goc vd
i (P ) ta
i M.
G ia t hi et M
N lu on l uo
n d v
oi vd
i ) kh
i M t ha
y do
i, tr en M
N la
y di em
S vd
i SM = MH
a/ Ti nh do d
ai ca
c ca nh c iia tuf di en S AM
B
b/ Ch uf ng t
o ra ng goc nh
i di en c an
h AB t ao n en b
di ca
c ma
t ph in
g (P ) va ( SA
g do
i kh
i M t ha
y do
i
d X
ac di nh v
i tr
i t am h in
h ca
ii ng oa
i ti ep tuf di en S AB
M
Ti nh
ban
k in
h
hi nh c au
a tr
i n ao c ua
x th
i b an
k in
h
ay c6
gi
a
tr
i I dn n ha
t ?
Gi
ai
a/ He t hd
c li io ng t ro ng t am giac c ho :
H X
A
B = 2R(2R
- x)
BM
= V2R(2R
- x)
MH
^ = A
H
X
B H = x(
2R
- x)
MH
= Vx
(2R
- x)
MS
= M
+ MA
^
= x(
2R
- x) + 2 Rx = x(
4R
- x)
=>
S
A = Vx(4R
- x)
SB
^ = M B ' + M S' = 2R(2
R x ) + x (2
R x ) = 4
-R'
- X'
=^ S
B =
V
4R
2 - X
^ ; A
B = 2
R (y cb t)
b/ Go
c nh
i di en t ao b
di (P ) va ( SA B) k ho ng d oi
S
M 1 ( P)
M
H 1 A
SHM
( AS MH v uo ng c an )
SH
1 AB ( di nh l
y 3 d Ud ng v uo ng gdc)
Trang 18=> (p = — = const (ycbt)
4
c/ True cua A A M B l a dudng t h S n g (d) J_ (P) t a i O ( t r u n g d i e m A B )
Luc do t a m I ciia h i n h cau ngoai tiep tijf dien S A M B la giao d i e m I
cua (d) va mat phang t r u n g triTc (a) cua S M
Ban k i n h R, cua mSt cau l a : l A = I B = I M = I S = R i
2
Bai 198 ( D A I H O C K I E N T R U C - T O N G H O P - N O N G N G H I E P - 1984)
Cho ba nijfa difcfng t h a n g Ox, Oy, Oz k h o n g cung n k m t r o n g m o t m a t p h a n g va m o t d i e m A nam tren Oz H i n h chieu vuong goc cua A xuong m a t p h a n g (Oxy), Ox, Oy I a n lUcft l a A ' , B , C
1/ Chufng m i n h rftng neu x O z = y O z = a, t h i OA' l a ducfng p h a n giac cua x6y \k B C l a
triTc giao v d i OA
2/ Cho biet x O z = y5z = a (45° < a < 90") va x O y = 90° Goi (5 l a goc hgp b d i difcfng t h i n g
Oz va m a t p h a n g (Oxy); y l a goc n h g n hgp bdi m a t phSng ( A B C ) va (Oxy) T i m he thiifc giCfa
tanP va tany; giOa cos^ va cosa Suy r a bieu thiJc cua tany theo t a n a T i n h P neu a = 60° 3/ Cung gia t h i e t nhiT d p h a n 2, h a y xac d i n h t a m cua h i n h cau ngoai t i e p tijf d i e n O A B C va xac dinh t i e p dien cua h i n h cau nay t a i A Cho b i e t OA = a va a = 60° H a y t i n h dien t i c h thiet dien cua m a t phSng (ABC) v d i h i n h cau t r e n
1/ Theo d i n h l y ba dudng vuong goc
=> D i e m A' n S m each deu 2 canh cua x O y
=> A' nftm t r e n dudng p h a n giac A t cua goc do
=> OA' l a dudng p h a n giac ciia x6y (dpcm)
De y AOBC can, c6 OA' l a dUcfng p h a n giac => OA' 1 BC
Trang 19: AA' ± (OBC) =
> AA'
21
Ta
CO :
Nen
AOX'
= p = [Oz
; (xOy) ]
y (2)
2
Tir (1
) v
a (2) =
> OA'tany
O
B = OA.cos
V2
(dudng ch6o cu
a hin
h vuon
g OBA'C)
=
V2
OA.cosa <= > cos
P =
V2
cosa
a, P la hai g6
tan^y = 4tan^p
= 4
^cos^p -1 2cos^a
<= > tan
^ = 2(tan^a
- 1) v
i y 1^
1 + tan^a) -
Neu
a = 60' ,0 cosa
= — =>cosP
=
V2
cosa =
2
2
P = 45° (ycbt)
3/ X6
t :
ABt )
= Act ) =
90°, ne
n B, C n^m
Ta biet tie
g (T) vuon
g go
c \(s\g kinh O
t O
y ta
i C
Mat phan
g (T) =
(AB'C)
1 O
A ta
i A nen
n6 \k
tiep dien phai x^
c din
h (ycbt)
a
Ng'u OA = a va
a = 60°
OB = O
C =
BC =
^,A
B
= A
C = ^
Goi M 1^
AAJM
CO AAB
H
AJ A
M
AB ~ A
(3)
Trang 20kinh OA' c6 day BC 1 OA' nen OA' cSt BC tai trung diem H cua BC Ro r^ng OA' la dUcfng
trung true cua BC nen OB = OC Hai tam gidc vuong OAB va OAC c6 OA chung OB = OC nen ehiing bang nhau
Vay menh de : "BC trUc giao vcJi OA t h i xOz = la dung" (ycbt)
Bai 199 (DE BACH KHOA - K I E N TRUC - TONG HOP TP.HCM - 1 9 8 5 )
Cho hinh chop tuf giac deu S.ABCD c6 dinh la S; canh ben la b; mat ben hcfp vdri day g6c a 1/ Tinh canh day, dien tich toan phan va the tich cua hinh chop
2/ Trong trudng hop tam cua hinh cau noi tiep trung vdi tfim cua hinh cau ngoai tiep hinh
chop hay chufng minh : cos a = V2 - 1
3/ Cho biet cos a = 1 ; va goi (p la goc hap vdi canh ben va mat ddy
a/ Tinh tancp
b/ Trinh bay day du each difng thiet dien tao bdi mot mat phang (a) di qua dinh A, song
song vdi difcfng cheo BD va hgp vdi canh AB mot goc 3 0 "
G i a i 1/ Goi I la trung diem canh ddy BC => S l ^ = a
Trong tam giac vuong SHI => H I = Sl.cosa
Mat khac : SI -L BC va trong tam giac vuong SIC ta c6 :
Trang 21^ a
Vl + cos^a
2bcosa
Tif d
o : BC = (ycbt) 1 + co
Ta goi die
dt(ABCD) =
4 SI.B
+ cos^
a 2bcosa
a =bsina
1
+ co
s a
Vay : V^,,,™
2
2/ Gi
a sij
f O la tam hinh cau noi tie
Ki e
SI
fOH = OK , O
S =
OC
Theo gia thie
O + OH = O
C + OH = H
tana = = tan
HI
2 +
tan2^
Trang 22Mat khac => cosa = 2 , 1 - ^ + 1 V^ _ i ( d p c m )
3a'Ta c6 ; SCfi = ip Mat khac theo (1), thi :
Vdi gia thiet cosa = ^f2 - 1, da c6 duoc : tan^— = V2 - 1
=> BK' nkm tren mat phang vuong goc vdri BD Goi do la mat ph^ng (BB'y)
Gia siJ MN o BB' = I; By n Ax = E ^ (a) n (BB'E) = IE va K' e IE
Tarn giac vuong AK'B c6 ICAB = 30° ^ KB = - AB
2
Trang 23n gid
c vuong AEB
c6
B
E =
AB yf2
K 'B
2
=>
ABKE vuo
ng
can c6
BElt'
= 4 5°
AB V2
AE
BI vuon
g ca
n c
6 : B
E = B
I = —
2
B^n
g phan tich tren
day ta
su
y r
a cd
ch difn
g nhu sa
u :
• Trong
m
at
phin
g S
BD
difn
g B
B' 1 B
D,
tre
n B
B' lay
diem
I sao cho:
AB V2
BI
= B
E = —
Iz c^
t S
B ,
S D
tUang ufn
AF ca
AMQ
N l
a t
hie
t dien
ca
n d
Ung
•
De y
thay v
di
gia
thie
t
da ch
o,
thie
t die
n luon luon difn
g duac ThU
g v
di
FH <
S
H
Nhifn
V V2 +1
AB V2
C BACH KHO
A TP.HCM
- 1988)
Cho m
ot hin
h chop ta
m giac de
u D.ABC
c6
canh da
y a
, ca
c m
at ben nghien
h
cac
di§
n tic
h
s v
a S cu
a ca
c m
at cau n
oi
tie
p, ngoa
i tie
p vd
i hin
h chdp
an
S ,p cu
a h
in
h chop theo
a v
a a
b/ Bie
u die
n S
t p
theo
s va S
g tam AAB
C
=> DH
la
difdng
ca
o h
in
h chop
Go
i O
, I, r, R Ia
n lifg
t l
a tam v
a ban
kin
ai tie
p hin
h chop D
o t
in
h d
oi xilng
cua hin
h chop deu
nen d
De
y thay:
itEt)
=
CJETD
=
-
; lA = I
D = R
2
r =
O
H = HE.tan —
= —
s
=
AT IT
=
2V
3
tana
AHIA
=>
lA
^ = AH^
+
IH
^ = AH^
+
(D
H DI)^
Trang 24-hay: = tana - R R = a(tan^ a + 4)
4V3tana
Vay d i$n ti c h SR cua m at cAu ng o ai tiep
Mat khac : D E =
48tan^a
HE a
12tan^a cos a 2V3cosa
Stp = S „ + Sd = 3SnBC + SABC = 3 | a D E + ^ a - " ^
a^Vsd + cos a)
4 cos a 3S
2 cos a(l - cos a)
Cho h i n h cho p deu S.A BC c6 canh d ay la a, dUdng cao SH = h
1/ Tinh a theo h v a b an k i n h r, R cua m at cau np i tiep , ng o ai tiep cua h i n h ch6p
2/ Khi a co d i n h v a h thay d o i, xac d i n h h de t i so — d at g ia t r i \dn nha't
R
G i ai
1/ Goi H la trifc ta m (ho ac tro n g tarn) A A BC
=> SH = h la dUcfng cao cua h i n h cho p S.A BC
Trang 25i tie
p deu nSm
tren
SH
SH ± (ABC)
SM ± B
C
BC
_L
SH va BC ± S
M B
C ± (SAM)
= > (SBC)
1
SM
thi (o
J ± (SBC) A
Do (o
H = (oJ = r nen
a
o
T
«J Sc
o SH
HM
SM
SM
(h -r )
aV s
h
~
r
= > r =
12 h2 +
a
Trong tam giac SAM, trun
SO
SI S
SA SH 2SH
SA
2 9h 2+
> R = (dpcm)
2/ Xe
t :
y = — = 18h
6h 6h
6a h^
R (a 2+
3h 2)(
a + Va '+
12 h2 )
<= > y =
1 2
12—) 3 I 3
Dat : 12
X
(4
+ t an
^ x)(
l + V
l + t an
^x )
•» y =
,s in
^
X
CO S^
X
2sin^
x co
x)
Trang 26Hinh tron tam O b i n kinh a noi tiep trong hinh thang ABCD Ian lUdt tai M , N , P, Q
Trang 27Day nho DC = 2
x =
a
Ddy Idn AB = 8
x = 4a
Canh xien BC = D
A = 5x = (ycbt)
5a
dt(ABCD) = -(AB + CD).M
P = -(4a + a).2
a =
2/ Tac
6 S0_L(ABCD)1
Q i DA
; S
M 1 AB; S
N ±
BC
Do
OM = O
N = OP = O Q
= a = >
SM = S
N = SP = S
Q
S„
=
SM.A
(AB + B
C + CD + DA
S„,=
i V4 a2 + a2 5a
53^1 + a + — 4a
+
2)
= -aV5.10a
= 5V5a
Sd =
5 ^/
=
5 a2 2a =
BC
1 O
N BC
1 (OSN)
=t > (SBC) J (OSN) the
o gia
o tuye
n SN, ne
n h
a ti
f O, O
H 1
SN
= > O
H ± (SBC) =
> O
H = d[0; (SBC)]
Lap luan tifcfng tU
, h
a O
K 1 SP; O
I 1 SQ va OJ
1 S
M
= > OK, 01, O
t (SDC),
(SDA) v
a (SAB)
De y den bon tam gi^c SON, SOP, SOQ, SO
J cun
g
bang nhau
> E
e SN, v
a w
E // OH
hinh
ch6p S.ABCD (ycbt
K
AOSN OH^
ON^
4a^
<= > 0
H = OS^
a
^
2aV5 4a
^
4 a=
^
Trang 28ASwE 0 0 ASOH : caE Sco S O - c o O S O - c o E
Cho h i n h ch6p tuT gidc deu S A B C D , c6 canh My hkng a XSfe = a
1/ Xdc d i n h t&m -vk hAn k i n h m a t cau ngoai tiep h i n h ch6p
3/ Chthig m i n h r a n g h a i t a m m a t cau d6 t r u n g nhau k h i vk c h i k h i a = 45°
G i a i 1/ Trong m a t p h ^ n g (SAO) m a t t r u n g trifc (P) cua SA c^t true difdng t r 6 n ngoai ti§p ( A B C D )
Trong (SHO), m a t p h a n g i i c cua n h i d i ^ n (AB)
chia doi g6c S f i t ) se cat SO t a i I
Trang 29- 2 2
SO = V SH
OH
^-^
SO Vcos
a
2sin
—
2
ta np =
OH
+
2si
n
— t
- Vcosa =
ct
2 a
a =
-s in
— + c os
- V2 co
a J :
2^4)
Vcosa cosa
+ cos- = f tan-!^ o : Luc d
a n— si cos
r =
-J ^
^ (*
) (ycbt)
C O
K =
> AIO
B = AIKB
^
= Act ) (cun
g cha
n cun
g AB)
< =>
a = —
4
Kiem tra sir dun
g dS
n cu
a (4) d
e dan
g nh
d (*
) (dpcm)
Trang 30Cho hinh ch6p S A B C c6 day A B C la mot tam giac can c6 A B = A C = a, ( S B C ) ± ( A B C ) ;
SA = SB = a, S C = X
1/ Chijfng to rang B C la ducrng kinh ciia difdng tron ngoai tiep tam giac S B C
2/ Hay xac dinh tam va ban k i n h cua hinh cau ngoai tiep hinh chop tren
Vay B C la diTcrng k i n h cua dudng tron ngoai tiep A S B C (dpcm)
21 Goi O la giao diem gifla difdng trung trifc cua A B vdi A I
Cho tuf dien A B C D
1/ ChuTng to r i n g cac difdng t h i n g noi moi dinh vdi trong tam ciia mSt doi dien dong quy tai diem G
2/ Neu di6m G triing vdi tam hinh cau noi tiep, chuTng to r i n g cac mat cua til dien la bang nhau
Giai
1/ Goi M la trung diem D C ; A' va B' Ian lifcft la trong
ABCD va A A C D
tam
Trang 31g AABM, t
a go
i G
la giao di^
m cu
a AA'
v dr i
BB'
Theo
tinh
chat cii
a trong tam, t
a c
6 :
AM B
M
MB'
AG MA'
BG
= 3 ^ A
B' //
AB
AB A
M
Vay : B
B' c&t
AA' ta
i G
co dinh
Tuan
g tu, ca
c dirdn
g thSng noi C
v6i t
rong tam
C
cua AAB
D no
i D v
di tron
g ta
m D' cu
p luan
do (dpcm)
2/ Gi
a sij
f G cung la tam hin
h ca
u no
i tiep tuf dien
Dimg : C
H 1 AB; D
K 1 AB.Xet: SAB
C =
SABD
=>
Goi M;
N; O la trung die
m cu
a KH
; CD;
HD t
hi :
AMHC = AMD
K MC = M
DK =>
A
B IM
O
NO //
CH
ABI
NO
CH =
N 1 A
D d
i qu
a
trun
g die
m N cua C
g die
m M
cua A
B
jMA = M
B
^ [UK = M
H
AC HB = AD KA B
C = A
D
Ly luan tifan
g t
ii :
C = BD;
A
B = C
D
Vay cac ma
g nha
u (dpcm)
Bai 20
6
(D AI
HOC
T ON
G HOP
Khoi A
- B 1994)
AK = B
H
ir mh
ABC la tam giac ca
n AB = A
C = a; (ABC) 1
(SBC) va
ot ta
m gia
c vuong
2/ Xa
c dinh tam
v
a ba
n ki'n
h hinh cau ngoai tie
p hinh chop, bie
t S
C =
x
Gi
ai
(Xem De DAI HOC TAI CHANH K
E TOAN
- 1993)
Ba
i 207
(DA
I HO
C Y DLfOC
TP
HC
M 1994)
-Tron
g ma
t ph
^n
g (?
) ch
o mo
t di/crn
g thang (d) v
a mo
t die
m A ngoai (d) Mo
t (d) ta
i B va
C
Tren diXctng than
g qu
a A va vuong g6c vd
K l
a ca
c hinh chieu vuong goc cu
a A tre
n S
B va
SC
1/ Chilng min
h
A, B, C,
H, K thupc ciin
g m
ot ma
t cau
2/ Tinh ban kin
h ma
t ca
u tren biet AB = 2, A
C =
3, BAC
= 60"
3/ Gia
S Lt
tam giac ABC vuong t
ai A ChuTn
g minh rkn
g ma
t ca
u ngoa
i tiep
K luo
n
di qu
a mo
t dudn
g tron
co dinh k
hi S tha
y doi
Trang 32Gi ai 1/ Goi AA' la dtfcrng k in h dudng tr on ngoai tiep
Vay A; B; C; H ; K ciing thuoc mSt c l u
tam W difdng k in h AA' (dpcm)
cau ngoai tiep kh oi da dien A B C H K di dong tr en (d) co dinh
Vay kh i S thay doi, mat cau chOfa di/dng tron qua A nhan (d) la m true (dpcm)
Bai 208 ( D A I H O C Q U O C G I A H A N O I - 1 9 9 5 )
Cho h in h tiir dien AB C D c6 canh AB = x H a i mdt (ACD ) va (B CD ) 1^ nhflng ta m giac deu canh a Goi M la tr u n g diem cua canh AB
a/ Xac dinh x k h i D M la dircrng cao ciia h in h tiit dien AB C D
^ B C D
G i a i a/ Do D M la diidng cao tijf dien AB C D (hay hinh chop D.ABC)
Trang 33Ma ta CO :
= S ACAB =
SADCA = SADB
=> St
p = SDAB + SCA
B + S^CA + SDB
C = (
yc bt )
Goi r la ban kin
h m&t
cau n
2 V3)
Ba
i 20
9 (D
AI HO
C NGOA
I THl/
dN
G D
-E 3
- 1994)
Cho hinh chop tut gia
c de
u S.ABC
D din
h S, can
n kinh
R v
a r cua ca
c hinh cau ngoai tie
h hinh chop, Vj, l
a th
e tic
h hinh cau ngoai tie
p
Vj la thi t
c dinh quan h§
giijfa a va
a tr
i Idn nhS't
b/
dat gi
a tr
i \dn
nha
h vuon
g d
day va H
K l
a doa
n trung trUc cu
a S
C tron
g ASOC, K
KD
Kh
i do, ba
n kinh hin
h ca
u ngoa
i tie
p l
a :
R = S
K
SK S
O
SC
^ 2.S0
,2 (1)
+
Suy r
a ti
r (1) :
R = ^ (ycbt)
4h
Goi M la trung die
dSf e
trong AOMS
n va
m
at dd
y cu
a hinh chop deu
bang
nha
u, ha
y N la t
^
^ S0 _
^ 2h MO
a SMt> n ta D = tanNM t = Dat:
Trang 34=> h(t) = h.t^ + a.t - h = 0 ; 1 ^ t > 0 (c6 : Ah = + > 0)
U =
t2 =
2h Va^ + 4h^ - a
• The tich hinh clu ngoai tiep: V j =
• The tich hinh cAu npi tiep : =
( 2 h 2 + a 2 ) a + V4 h 2+a=
4h2
n3
+ 1
Trang 35ti r:
HC
M 1995)
-Cho goc tain dien Sxyz din
h S
v6i
5cSy = 120°
, zSy
=
60°
, 5c§
z = 90°
Tr
m
A, B, C sao cho SA = S
B = SC = a
1/ Chufn
g t
o rang ABC la m
pt tar
n gid
c vuong Xa
c dinh hin
h ca
u no
i tie
p ti
l die
n SAB
C the
o a
2/
Tin
h go
c phin
g cu
a nh
i die
n can
h AC
Gi
ai
1/ Ta C
O : AC =
V SA
Ja'^
2a^
cos = a
^ = A C^
+ BC
^ =
3a^
=>
AABC
vuong t
ai
C (ycbt)
Goi H la trung die
m
AB
=> S H I A
B (1 )
Dim g
: M
H / / B
1
S
M
Nen A C
1
( SM H)
AC
1
S H
(2)
Tir(l)va(2) =:>
SH
1
(ABC)
Vay
H la hin
h chie
u cii
a S xufi'ng
m
at phin
g
(ABC) (ycbt)
Ta c6:
Suy ra : r =
^(V3
+V 2
~ 2(V
3 +
V2 + 1)
ta
n cp
= SH
2 1
n
= — = 1 = > a
^n
g nh
i die
n can
h AC bSng cp = — (ycbt)
4
Trang 36Bai 211 ( D A I H O C B A C H K H O A H A N O I - 1995)
1/ ChuTng minh r^ng tro ng mot hinh ti i dien, 4 doan thi ng no i d inh vdi trpng tam ciia mSt doi dien dong quy tai 1 diem, diem nay chia moi doan thftng ay theo ti so 3 : 1 tinh tiJ d inh
va hinh cau noi tiep, ta deu c6 R > 3r
Dau d ing thiifc a (2) xay ra khi va chi khi hinh cau ay trung vdi hinh cau npi tiep
Phep dong dang phoi canh (vi ti i tro ng khong gian) tfim (G; - — ) bi§'n hinh til di^n A BCD
o
thanh hinh ti l dien A 'B'C'D'
Hinh cau ay c6 c^c diem chung A ' ; B'; C; D ' vdi ca b6'n mSt hinh ti l di^n A BCD
R
=> — > r « R > 3 r (dpcm)
o
Bai 212 ( D A I H O C K I N H T E Q U O C D A N H A N O I - 1997)
Cho hinh ch6p tam giac deu S A BC c6 dtf&ng cao SO = 1 va day A B C c6 canh 2-76 D i l m
M, N la trung diem cua canh A C , A B tUang ilng Tinh the tich hinh chop S A M N va ban kinh
mat cau noi tiep hinh chop d6
Trang 37Trong ACOM vuong tai M
c6 :
g ti
J die
n deu
S AB
C
« AS N
A
= AS MA
= > SsN
A = SsMA
can tai
S ,
goi
I
la trun
g digm
M
N
=>
M N
= S M '
- MI '
= SM ' -
2
= SM ' -
= > = — r
Ba
i 21
3
(D AI H O
C Q U O
C GI
A H A
NOI
- KH O
I D
- 1998 )
Cho dircfn
g tr6
n tar
n O ban kinh
va A
co dinh), S
A =
h ch
o trUdc, da
p rngt dUdng tr6
h ch6p)
Trong
A SA O
, goi Ky
X h.
tia trung trifc cu
a SA
Goi : O' = Ky
n
Ox =
>
O S
= O
A = O'B = O
C = O'D
vuong tai
O
=> A O'
= R' =
+ 4 R
- ^ SA.SABC
D
SABC
D -h.AC.BD
Nen : 3
max(VsABC
D ) < ^
Trang 38o AC va B D dong thcfi la difdng k i n h dudng t r 6 n t a m O
Ma : AC 1 B D Do do k h i A B C D la h i n h vuong n o i t i e p dudng t r d n t S m O t h i t h i t i c h
hinh chop dat gia t r i I d n nhS't (ycbt)
Bai 214 ( D A I H O C DLfOC H A N O I - 1999)
Hinh chop S.ABC c6 do dki cac canh ben bkng / cac mat ben lap vdi mat day goc a (0° < a < 90")
1/ Chilng m i n h h i n h chop la h i n h ch6p deu
2/ Tinh theo I va a cac ban k i n h R, r cua cac mSt cau ngoai t i e p , n p i t i e p h i n h ch6p
3/ ChuTng m i n h ^ < — vk dS'u dang thiifc x i y ra k h i va chi k h i h i n h ch6p Ik h i n h tiJf dien d4u
Vay S.ABCD la h i n h ch6p deu (dpcm)
2/ Trong ASAA', gpi O la giao diem ciia S H va d i t o g
trung tnfc K O cua SA
Trang 39tich hinh chop
)
2(1 + 3 co s^
a)V
l
+ 3c os
^a
Di?n tich toAn phdn cua hin
^ cosa(
l
+ cosa )
ABC
1 + 3cos^a
/sin 2a
3/ T
a la
i c
6 : 2V
/sin 2a 2sina
(ycbt)
^ 2V
l + 3
co s2 a (l + cosa)
l^|l + 3
cos^a
2c os a (l - cos a ) 2cosa(l -
cosa) -2co
s a + 2cos
a
R (
1 + cosaXl +
3cos^
a) 1 + 3cos
- 2t
^ + 2t
3t 2 + 1
^ ' (3 t2
a
(1)
t X -1
3 R
3
Ba
i 21 5
(DAI HOC MO BAN CON
G TP.HC
M KHO
-I A & B
2/
Chilng minh nam diem S; A
; M
; N
; P cung nkm tren
Giai
BD IAC (vi AB CD 1^ hin
h vuong )
BD ISA (viSAi.(ABCD
)3BD )
BD ± (SAC)
; ma: A
N c (SAC)
Trang 40• Ti/cfng tU, sijf dung cac k h a i n i e m
vuong goc ta suy r a :
2
Tir (1) va (2) => ba d i e m P; M ; N nSm t r e n mSt
cau (S) dudng k i n h SA
Vay S; A; M ; N ; P cung n k m tren mSt cau (S) (dpcm) ^
Bai 216 ( D A I H O C D l W C H A N O I - 2000)
Cho hai dUcfng t h ^ n g cheo nhau (d) (d') nhan doan AA' = a Ikra doan vuong goc chung (A
e (d), A' e ( d ) ) Goi (P) mSt phAng qua A' va vuong goc vcJi ( d ) ; (Q) 1^ m a t p h i n g di dong nhUng luon luon song song v(Ji (P) va cat (d); ( d ) Ian lifat d M , M ' Con N la h i n h chieu vuong goc cua M tren (P); x la k h o a n g each gifla (P) va (Q); a la goc giOa (d) va (P)
1/ Tinh the' t i c h hinh chop A A ' M ' M N theo a, x, a
2/ Xac d i n h t a m O cua h i n h cau ngoai tiep h i n h ch6p t r e n ChiJng m i n h r S n g k h i (Q) d i dong thi 0 luon thuoc mot du&ng t h a n g co d i n h va h i n h cau ngoai tiep h i n h ch6p A A ' M ' M N cung luon chiifa mot difcrng t r o n co d i n h