1. Trang chủ
  2. » Giáo án - Bài giảng

Tuyển tập 500 bài toán hình không gian chọn lọc phần 1 nguyễn đức đồng

100 606 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 29,1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

• BOI Dl/ dNG HQC SINH GIOI BOG... HtfdTng din Doc gi a tu gia i, xe m hinh ben... Co so ciia phu ong phap mot la sii du ng d in h ly phu ong giao tu yen song song... lidc le cung la du

Trang 1

• BOI Dl/ dNG HQC SINH GIOI

BOG

Trang 2

• PHAN LOAI VA PHU dNG PHAP G IAI THEO 2 3 CHU YEN

• B oi difdng hoc s inh gioi

• C hu a n b i t h i Tii ta i, D a i hoc va Cao da ng

(Tdi ban i dn thvt ba, c6 svCa chUa bo sung)

N H A X U A T B A N D A I H O C Q U O C G I A H A N O I

Trang 3

A N

Q I

16 H an

g C hu

oi

- H

ai Ba Tr cfn

g H

-a N

pi

Die

n t ho ai:

B ien ta

p C he b an : ( 04 ) 3 97 14 89

-6

H an ln ch inli : ( 04 ) 3 97 14 89 9;

T o ng B ien ta p:

(0 4) 39 71 50

11

• Fa

x : (0 4) 39 71 48 99

*

* *

Ch iu tr dc

h nh ie

m xu at

b an :

Gid

m do

c T on

-g bie

n ta p:

TS

HA

M TH

I TR

AM

Bie

n ta p:

THU

Y HO

A

Sa

a bd i:

THA

Nha sac

h

HONG

AN

Tr in

h ba

y bia :

THAI

AN

SACH

0 B

A I

T O

A N H

J NH K

H O NG G

I A

N C

H O

N L OG

M a so: 1

L 195OH2014

-In 1.000 cuon, kh

o 1

7 x

24c

m t

ai Con

g t

i C

o phan V3

n h

o a

V Sn La

- 2014/C

X B/

01

- 127/

O H

Q G

H N ng

ay 10/03/201

4

Q uy

et din

h xuat ba

n so:

198LK

ay 15/04/201

4

in xo

ng

v a nop

IIA J

chieu qu

y

il

n Sm 201

4

Trang 4

NhSm phuc vu cho viec r e n luyen va on t h i vao D a i hoc b k n g phucrng phdp t i m

hieu cac de t h i dai hoc da ra, de tiT nang cao va chuan b i k i e n thiJc can t h i e t

De phuc vu cho cac do'i tUcfng t\ i hoc : Cac bai g i a i luon chi t i e t va ddy d u , p h a n

nho tCrng loai toan va dua vao do cac phucfng phap hop l i

Mac du chiing t o i da co g^ng het siic t r o n g qud t r i n h bien soan, song vSn k h o n g

t r a n h k h o i nhiJng t h i e u sot Chiing t o i mong don n h a n moi gop y, phe b i n h tii quy

dong nghiep ciing doc gia de Ian xuat ban sau sach ducfc hoan t h i e n hcfn

Cuoi Cling, chiing toi x i n cam cm NIlA X U A T B A N D A I H O C Q U O C G I A H A N O I da

NGUYEN DtfC DONG

3

Trang 5

BANG KE CAC KI HIE

U TOA

N HO

C vA

CAC Tl/ VIE

g

(il

• [(ABC)

; (EFG)] :

• =

> : (i) ke

tUdn

g dilcfn

g

• C > :

Phep tin

h tie

n vectc

• d>

g tru

e A

• = : don

g nha

t

• D

o : Phep

doi xiiTng tru

e

0

i : khon

g don

g nha

t

• Q(

0;

cp ) : Phe

= S(ABC) =

dt(ABC) : dien.tic

0;

k) : Phep

AH

c =

V(S.ABC

) : the tich

hin

h cho

p

• VT(

0;

k) : Phep

• Stp

ly

• Sxq

V :

The tich

• CM

R : chiJng

minh rin

g

• A' =

''7(a

i A

: A' l

g (a)

• TH

i : trudng

hop

xuong

dtfcfn

g thftn

g (d)

• V

T :

ve tr

• BD

T :

bat di ng

thijfc

• d[M

; (

ABC)

I :

khoang each

• dpc

m :

dieu

phai chuCng min

h

• (a

; P):

goc

nhi die

n tao

a (P)

(AB) :

nhi die

n ca nh

AB

• K

L : ket lua

n

• (3r3

^ :

goc

tao bd

i ha

i

dUomg thin

g d

• D

K : dieu kien

va d'

• P

B : phan ban

• [HTCABCT

n ba

n

va mp(ABC)

4

Trang 6

Chuyen de 1 : T O N G Q U A N V E C A C K H A I N I E M

T R O N G HINH H O C K H O N G G I A N

• H i n h hoc k h o n g gian la m o t mon hoc ve cac v $ t t h e t r o n g k h o n g g i a n ( h i n h h i n h hoc

t r o n g k h o n g gian) ma cac d i e m h i n h t h a n h nen v a t the do t h u d n g thiTcrng k h o n g ciing n f t m

t r o n g mot m a t phang

• Nhif vay ngoai d i e m v a d i i d n g t h d n g k h o n g drfoTc d i n h n g h i a nhiT t r o n g h i n h hoc

phAng; mon h i n h hoc k h o n g g i a n con xay di/ng t h e m mot doi tuong can n g h i e n ciifu nCfa la

k h a i n i # m m g t p h a n g c u n g k h o n g difoTc d i n h n g h i a K h i noi tori k h a i n i e m nay t a

lien tuang den m o t m a t ban b a n g phang, m o t m a t ho nildc yen l a n g , m o t tb giay dat d i n h

sat t r e n mot m a t da di/gc l a m phang No duoc k y hieu b d i cac chCf i n L a T i n h n h a : (P), (Q), (R), hoac cac chCf t h u d n g H y L a p nhU (a), ((5), (y),

• M a t phang k h o n g ducfc d i n h n g h i a qua mot k h a i n i e m k h a c ; n h i f n g thifc te cho thfi'y mSt

ph&ng CO nhutng t i n h chat cu t h e sau, goi la cac t i e n de :

O T I E N D E 1: C o it n h a t b o n d i e m t r o n g k h o n g g i a n k h o n g t h ^ n g h a n g (nghia la luon luon c6 i t n h a t 1 d i e m d ngoai m o t m a t p h ^ n g tiiy y)

O T I E N D E 2: N e u m p t dtfdng th&ng v a m p t m a t p h ^ n g c 6 h a i d i e m c h u n g t h i dUcTng th&ng a y se n S m t r p n v ^ n t r o n g m a t p h a n g n e u t r e n

O T I E N D E 6: M o i d o a n th&ng t r o n g k h o n g g i a n d e u c 6 dp d a i x a c d i n h : t i e n de neu

len sU bao toan ve dp dai, goc va cac t i n h chat lien thuoc da biet t r o n g h i n h hoc p h i n g

• TiT do chung t a c6 m o t so each xac d i n h m a t p h 4 n g n h i / sau :

• Dong t h d i t a phai hieu t h e m r k n g mot m a t phang se r o n g k h o n g bien gidi va dUcmg t h ^ n g c6

do dai v6 t a n mac du t a se bieu dien no mpt each h i n h thiifc hflu h a n va k h i e m t o n nhU sau:

• De thuc h i e n dirge phep ve c h i n h xdc m 6 t h i n h h i n h hoc t r o n g k h o n g g i a n ngoai cac dudng

t h a y ve l i e n net, t a can p h a i n a m chac di/pc k h a i n i e m di/dng k h u a t ve b k n g net dijft doan:

Mpt dtfdng b i k h u a t t o a n bp h a y c h i k h u a t m p t d o a n c u e bp n a o do k h i v a c h i

k h i t o n t a i i t n h a t m p t m a t p h S n g du'ng p h i a t r vC6c h o ^ c p h i a t r e n c h e n o m p t

e a c h t o a n bp h o a c c u e bp ti^cAig uTng

5

Trang 7

• Muon x

ac din

h nh

^n

h mo

t m

at ph

^n

g trong khong gia

n ta con cho

n thu thua

c, tii

" gia

c hoac d

a giac ph&n

g (khong genh), dUcfn

h mp

t m^

t phSn

g tron

g khon

g gian Ta g

pi ca

g hinh

th vCc

v

di ca

c ky hip

u

(ABC), (ABCD),

(C),

tx ic tn

g vtn

g

• Ma

t phdn

g hinh thu^

c h

i khua

t ne

u c6 mpt hay nhieu m

^t ph&n

g nao

t

dvi ctn g

thdng n

^m trong m

^t ph&

ng hin

h thd'c m

a ma

t do h

i kh

p va khi dUcTn

g th

^n

g do khong l

a bien cua mat phdng b

g do cun

g tii'oTn

g vl

ng

khuat cue b

p ha

y toan b

p

• Mp

t diem

n hm

trong mpt m

$t ph&n

g hin

h thuTc b

i khua

t th

i g

oi la die

i diem m

a it nha

t c6 mpt die

m khua

t th

i dUp

c mp

t dUcfn

g khua

p : neu h

ai diictag d

o khon

g la bie

n cu

a cac m

^t phAn

g hinh thufc

C HINH ANH MIN

H HQ

A

\(d)

• (d)

bi (a) ch

e khua

t c

ue bo,

do (d) c6

1 doa

n

ve

ne

t dijft doa

n nk

m dud

i (a)

S

• (d)

bi ma

t ph^

ng (SAC) ch

e khua

t c

ue bo, d

e duf

t doan nkm sa

u (SAC) (h

ie

n

nhie

n (d) cung d sa

u c

ac ma

t (SAB), (SBC))

• Canh A

C

bi ha

i m

at phan

g (SBC)

v £l (SBC) ch

e

khua

t toa

n b

o,

do

ca doan A

C xe

m nh

u hoa

n to

an

d

sau

don

^n

g (SAB), (SBC)

-A A.

c /—

1—

^V FJ L^

• A]

H

bi ch

e toa

n b

o d

o c

a doan A]H nkm sa

u

ma

t

phin

g (AiADDi), m

Sc dij n

o

d

t rU

<Sc ma

t ph

an

g

(ABBjAi) va d tre

n m

at phan

g (ABCD)

• (d)

bi ch

e khua

t c

ue bo v

i c

6 doa

n EF v

e net

d

uT

t

doan nam sa

u ha

i ma

t phan

g (ADDiAj);

(CDDjCj

),

ma

c dij doa

n EF

d

phia t rU cJ e h

ai ma

t ph

ang

(ABBjAi);

(BCCiBi);

v

a

d tre

n m

at phan

g (ABCD)

CAC

K

Y HIEU

AN ^fHd

Thiir tr

f

Ky hie

u

Y nght

em A thuo

c ducfn

g thing (d) ha

y dadng

thin

g (d) chu

ra

A

Ha

y vie

2

A

i

(d) Di

em A or ngo

ai difdn

g thin

g (d) ha

y

dUcfn

g thing (d) khon

g chti

fa

A

Ha

y vie

d)

3 (d)

c (a) DU

&ng thin

g (d) nk

m trong m

at phin

g (a)

ha

y (a) qu

ay quanh (a) ne

u (a) lu

u don

g

Ha

y vie

e (a)

4 (d)

/ /

(a) Dif

crn

g thing (d) son

g son

g

\6

\t ph in

g

(a )

Ca ch v ie

n (a)

=

0

5 (d)

n (a)

=

A Difdn

g thing (d) ei

t m

at phin

g (a) ta

i A each vie

t k

hd

c :

(d)

n (a)

=

{A

}

Trang 8

6 (d,) n (da) = A H a i dUcfng t h i n g ( d i ) , (da) dong quy t a i A Cach v i e t khac :

Cling chijfa 3 d i e m A , B, C p h a n biet k h o n g

t h i n g hang

Cach v i e t khac : (a) = (p)

Co so cua phiiong phap t i m giao tuyen cua

hai m a t p h l n g (a) va (P) can thUc h i e n 2 budc

• B , : T i m h a i d i e m chung A , B cua (a) va (P)

n Ba : Difdng t h i n g A B l a giao tuyen can t i m

hay A B = (u) n (P) (ycbt)

n P H i r O N G P H A P ,

• Ti/ong t u nhtr phaong phap 1 k h i chi t i m ngay dtfoc 1 d i e m chung S

• Luc nay t a c6 h a i trifcfng hap :

> H a i m a t p h l n g (a), (P) thuf tif chiJa h a i difdng

t h i n g ( d i ) , (da) ma (dj) n (da) = I

=> S I la giao tuyen can t i m

> H a i m a t p h l n g (a), (P) thuf t i f chtifa h a i difdng

t h i n g ( d i ) , (da) ma ( d i ) // (da)

S _

D i f n g xSy song song v d i (dj) hay (da)

=> xSy la giao t u y e n can t i m

7

Trang 9

m C AC B AI T OA

N CO B AM

oi ABCD c

6 ca

c canh d

oi khon

g song son

g va die

m

S

d ngoa

n cii

a :

a/ (SAC) va (SBD)

hi

(SAB) va (SDC)

; (SAD) va (SBC)

Gia

i

a/ Xe

t ha

i ma

t phan

g (SAC) va (SBD), c

6 :

S la die

m chun

g

th

uf

nhat

(1)

Tron

g tuT gia

c lo

i ABCD, ha

i ducm

g cheo A

C

n

BD = O : diem chung

thijf

nhi

(2) ^

Ti/

(1 ) v

a

(2)

suy r

a :

(SAC)

o

(SBD)

= SO (ycbt)

hi

Xe

t ha

i ma

t phan

g (SAB) va (SDC) cung c

6 :

S la mot die

m chun

g

Ha

i canh ben A

B va C

D cu

a ti

l gia

c ABCD

theo gia thiet khong son

g song

^

AB ^ C

D

=

E : l

a diem chung

o : (SAB)

n

(SDC)

= SE (ycbt)

Tucfn

g tif:

(SAD)

n

(SBC)

= SF (ycbt);

vd

i

F

= AD ^ BC;

do AD/

/ BC

Ba

i 2

Ch

o ti

l die

n ABCD Go

i Gj,

Ga la trpng tar

n ha

i ta

m gia

c BC

D va ACD La

y th

m cii

a BD, AD, CD.Tim cac gia

c tuye

n :

aJ

(G

1 G2C)

o

(ADB)

hi

(G

1 G2B)

n

(ACD) c/

(ABK

n

(ABD)

= IJ

hi

(GiGaB)

n

(ACD)

= Gg

K

hoSc

A

K

d

(ABK)

^ (CIJ)

= G,G

cho

p

S

ABCD

c

6 da

y ABCD l

a

hinh

bin

h hanh tam O

aJ

Ti

m giao tuyen cua h

ai ma

t phSn

g (SAD) va (SBC)

hi

Ti

m gia

o tuye

n cu

a ha

i mS

t phin

g (SAB) va (SCD)

c/ Ti

m gia

o tuye

n cii

a ha

i ma

t ph

^n

g (SAC) va (SBD)

i ma

t phSn

g (SAD) va (SBC), c6 :

S la die

m chun

g thur nhat

De y A

D

c (SAD);

BC c (SBC) ma A

D //

B

C

Ta dun

g xS

y //

A

D hoac B

C

[(SAD)

= (xSy;

AD)

^

|(SBC)

= (xSy;

BC)

=^ (SAD) n (SBC)

= xS

y (ycbt)

hi

Tifang tir, difng uSv //

A

B hoftc C

D

8

Trang 11

Giai

• D

e y den K

D

Do do trong (BCD) KN

o CD = I

Ma K

N c (MNK) CD

(MNK) =

I (ycbt)

• Taon

g t

a xe

t IM

c (MNK), tron

g (ADC)

Ta

C O : AD n I

M =

E

= > AD

n (MNK) =

E (ycbt)

Ba

i 7

Cho tiJ die

n ABCD La

y diem

M tren A

C v

a ha

i die

m N va

m cu

a C

D v

a AD

\ di

(MNK)

HtfdTng din

Doc gi

a tu gia

i, xe

m hinh ben

a/ CD (MNK) =

P (ycbt)

b/ AD

n (MNK) =

h cho

p tu

f gia

c S.ABCD

La

y tren

m

M,

N, P theo

P khon

g th

m gia

o die

m cu

a S

C v

a AC v

di (MNP)

Gi

ai

ThUdng thudn

g d

o ycb

t ti

m gia

o die

n (MNP) =

K (ycbt)

Trong mp(SAC)

MK

o A

C = H1

ma MK

c (MNP) |

= > AC r>

(MNP) =

H (ycbt)

Ba

i 9

Cho m

ot ta

m gia

c AB

C v

a mo

t diem

S d ngoai ma

t phin

g chil

a ta

m giac

a tron

g ma

t phin

g (ABC) t

a la

y mo

t die

m O Dinh ro giao

diem

cua

(MNO) v

di ca

c dudn

g thing A

B, BC, AC va

u, do

c gi

a tu gia

i (xe

m hinh ben)

AB

n (MNO) =

E (ycbt)

BC

o (MNO) =

F (ycbt)

AC

n (MNO) =

G (ycbt)

SC

n (MNO) =

H (ycbt)

10

Trang 12

Loal 3 : Cf l l /NG MWfl B A D I £ M T R O N G K H O N G G I A N T H A N G H A N G

I pm ro NG P H A P

Co so cua phiiong phap can phai chufng min h ba diem

trong yeu cau b ^ i toan la diem chu ng cua 2 mSt phSng nao

do (chfing b a n A, B, C nSm tr en giao tu yen (d) cua h a i ma t

phSng do nen A, B , C th a n g hang)

O day khong loa i triJ kh a n& ng chiJng min h difoc difdng

thang AB qua C => A, B, C t h i n g hang

n C A C B A I T O A N C O BA M

Ba i 10

Xet ba diem A, B , C kh on g thuoc ma t p h i n g (u) Goi D, E, F Ian lu ot la giao diem ciia AB ,

EC, CA va (g) ChCifng m i n h D , E, F th a n g hang

G i a i

De y tha y D, E, F viTa a tr on g mp(AB C ) vifa d trong mp(a)

Do A, B, C g (a), nen (a) va (AB C) pha n b iet nhau

Trang 13

to al 4 :

C mi UG

M Wf

l

MQ

T D

tf CiN G

T H AN G

T RO NG K HO NG G IA

N

QU

A MO

I.

P Hi rO NG

P HA P,

Ca

sd

cua phucfn

g phap chuTng min

h diXcrn

g thing (d)

qu

a mo

t diem co din

h :

Ta can tim tre

n (d) ha

i diem tuy y A

;

B va chuTng min

h

2

diem d

o thin

g hang vdi mot die

m

I co din

h c6 sSn trong

khon

g gian

=> (d) qua

I

C O din

h (dpcm)

IL

P Ht fO NG P HA

P,

Co s

d cu

a phiTcfn

g phap can thu

c hien b

a bifdc cc

f ba

n :

n

Bi : Ti

m dUctn

g thin

g

a co din

h

d

ngoa

i mS

t ph5n

g co

dinh (a) m

a (a) chil

a

d (li

Oi dong)

• B2 : Ti

m

giao

die

m co din

h ma d d

i qu

a

m C A

C BA

I

TO AN

C

O B AN

m co din

h tron

g khon

g gian

d

v

e ha

i phia

kha

c

nhau cua

t diem M lu

u dong trong khong gia

n sa

o ch

o MA n a =

I va M

g thin

g IJ luo

n di qua mot die

m co dinh

> O co din

h (v

i

A,

B co din

Ta CO : mp

(P )

= (MA;

MB)

n (a)

= IJ

De y tha

y : O e I

J

=>

O, I, J thing han

g

Nghi

a la dacfn

g thin

g IJ d

i qu

a

O co din

h (dpcm)

ABC

D

(A

B //

C

D va A

B

>

CD)

Xe

t diem S

e

(ABCD) va mat

C vd

i

a '-^

S

B

= M, a n S

D

= N

ChuTn

g minh difdn

g thin

g MN luo

De tha

y

dx ia

c

ngay

M

N

c (SBD) va

AC

c (SAC) va M

N

o AC = O thi O e

BD = (SBD) n (SAC)

=> M

N qu

a

O co din

h (dpcm)

12

Trang 14

Bai 15

Ch o h a i d i f d n g t h f t n g d o n g q u y O x , O y v a h a i d i e m A , B k h o h g n S m t r o n g m a t p h i n g ( x O y) M o t m a t p h a n g l i f u d o n g ( a ) q u a A B l u o n l u o n c a t O x , O y t a i M , N C h i i f n g t o M N q u a

Trang 15

O

Ca ch

h rS ng

F q ua O = I

G n C

F

do ng

q uy

g ia

c

AB C, A B

C sa

o ch

o AB c at

A 'B

t A

C

d F;

C ca

g mi nh

b

a

di em

E , F ,

G

th Sn

g ha ng

b/ C hi Jn

g mi nh d if cf ng t ha ng

A A' ,

BB ',

C

C

do ng

q uy

E , F ,

G la b

a

di em c hu ng

c ua h ai m at

p h^

ng p ha

n bi et

(a )

^

(A BC )

va ( P) =

( AB 'C ).

Do

d

o : E , F ,

G

e (A ) = ( a)

n

( P)

b/ N ha

n

xe

t nh

u s au :

: A

A',

B B'

cr

( EA A' );

A A'

o

BB ' #

0

^ B

B' ,

CC

c

(G BB ')

; BB

' r

^

CC *

0

Ice

,

AA ' c

( FC C)

;

CC

n

A A'

#

0

^

AA ', B' , C

C

do ng

q uy t ai O

( dp cm ).

Chuyen de

2 :

Q UA

N H

E S ON

G SO NG

to ai 1: C Ht JN

G M Wf

l HA

I D LfC JN G

T

H A

N G

S ON

G SO NG

I.

PHirONG

p

ca

n

th ii

c hi en

h ai

h xid c

CO b an c ho

d in

h ng hi

a

a //

b

ja ,b

c:

( a)

Ki em

t ra h ai

d if dn

g th an

g

a

cu ng t ro ng

m ot m at

ph an

g

ha

y

hi fe

u ng am r an

g hi en n hi en d ie

u

do x ay

a

ne

u ch un

g tr on

g

1

hi nh p ha ng

n ao d o.

( 1)

B2 :

Du ng d in

h

ly

T ha le s,

t am

g ia

c do ng d an g, t in

h ch at

b ac c au

( ti nh c ha

\

6i

di fd ng t hi

J

ba ) la h ai

c an

h

cu

a

hi nh t ha ng ,

ha

y ha

i

ca nh

d oi c ua

h in

g di nh

h ai

d if cf ng t h^

ng

d

o

kh on

g

c6

d ie

m ch un g.

( 2)

=

>

(y cb t)

p S.

AB CD

c

6 Gj , G2 ,

G3

,

G, I an

lu cf

t

la

t ro ng

t am c ac t am

g ia

S DA C

hu mg m in

h

tiJ

f

gi ac G iG aG gG ,

la

h in

h bi nh h an h.

14

Trang 16

Cho diem S d ngoai ma t phSng h in h b in h h a n h AB C D Xet mS t phdng a qua A D c^t SB

va SC Ian lucft d M va N Chiirng m i n h A M N D la h in h tha ng

G i a i S D6 y thay ha i mSt phSng (a) va (P) c6 2 diem M vfl N 1^ d i^ m chu ng

Cho tuT dien AB C D G oi M , N Ia n li^gt la tr u n g diem cua B C va B D G gi P la diem

tren canh AB sao cho P ?t A va P # B Xet 1 = PD A N va J = PC o A M

ChiJng min h rSng : I J // C D

tu y y

G i a i Xet ha i ma t pha ng ( A M N ) va (PCD ) c6 h a i diem chu ng la I va J

Co so ciia phu ong phap mot la sii du ng d in h ly phu ong giao tu yen song song

De chiing m i n h d // a ta can thUc h ien h a i bade CO b a n chufng m i n h : d

• E l : Chufng m i n h d = y o p ma

y r- a = a

p n a = b a//b

1 5

Trang 17

n PHOONG PHAP^

Ca sd

ciia phifcn

g phap la st

f dun

g die

u kie

n ca

n

va du

chijf

ng minh di/d

ng thin

g (d) son

g song vc

Ji ma

t phan

g (a)

ban

g ha

i b

t fd

rc :

• Bi

: Qua

n sat va qua

n ly gia thie

t tim dudng thing o

u

vie

t (

A) cz

(a) va chiJ

ng minh (d) / / (A)

• B2

: Ke

t luan (d) / / (a) theo die

u kie

n ca

n va dii

m cA

c BA

I TO AN C

O BA

M

Bai2

1

Tron

g

t uf die

n AB

CD, chufn

g min

h rSn

g dean no'i ha

i tron

g ta

m Gi

hi son

g song

v6 [

(ACD)

Giai A

Go

i Ai

,

A2

la trung die

m BC v

a BD theo th

ut tiT d

o, ta c6 :

AG)

AG2

2

AA, ' AA

g

3

Theo din

h ly Thales, t

a c6 :

'0,02/

2

//C

D (tinh ch

at dU

c rn

g tru

ng binh)

Theo tin

h bS

c ca

u

=>

G1 G2

//

C

D c:

(ACD)

=j

G1 G2

//

(ACD) (dpcm)

Ba

i 22

Cho hin

h chop S

ABCD day la hin

h binh han

h AB

g minh : MN //

(SCD) va A

B / / (MNCD)

Gi

ai

Theo tin

h ch

at dudn

g trun

g bin

h tron

g ta

m gia

c

=>

MN //

A

B, ma A

B / / CD

=>

MN //

CD

cz

(SCD)

Theo die

u kie

n ca

n va d

u

=>

MN //

(SCD) (ycbt)

O Cach kha

n

(SAB) va trong h

ai ma

t phan

g

do

chiJa theo thijf tiT ca

c doan thing C

D / / AB D

MN //

B va C

D

=>

MN //

(SCD)

3

C

D (ycbt)

TifOng

tyl :

A

B / / MN

c

(CDMN)

=>

AB //

CDMN) (dpcm)

Ba

i 23

Xe

t ha

i hinh bin

h hanh ABC

D

va ABEF khong don

g phln

C va B

N

= B

-F Chufn

g min

h ring M

N / / (DEF)

3

3 Gi

ai

De

y tha

y

M,

N la trong tam cu

a ba

i ta

m gia

c ABD v

a

AB

E theo thijf tu d

o

Keo d

ai th

a trun

g die

m AB

PM P

X

1

^ PD P

E

3

Theo din

h ly Thal

es

^ MN //

E

D

c

(EFDC) ^ (DEF) (dpcm)

D

16

Trang 19

c kc

B AI

b

a t

ia

c un

g ch ie u, s on

g so ng

v

a

Ic ho ng d on

g ph

^n

g

Ax , By ,

B' , C s ao c ho

c kh on g.

C hO fn

g mi nh ( AB C)

A'B' II

AB

c

(ABC)

= C

C'

=j

A'C

//

AC

c

(ABC)

Ne

n

ta c

6 ha

i d

Uc rn

g th

^n

g do ng

q uy

A B' ,

A

C

tr on

g mp (A 'B 'C ') t ho

a di eu k ie

n (I ).

=> ( AB 'C )

//

AB C) ( dp cm )

h ha nh A BC D.

T ir

A

a C k

e A

x c

a Cy

on

g so ng c un

g ch ie

g

ma

t

ph Sn

g (A BC D) Ch ii

g mi nh

( B;

x) //

( D;

C y)

G i&

i

Ti ra ng

t

u x et

ai

m at

hi ng

( B;

A x)

th uT

t

a

ch uT

a

ca

c c ap

d ud ng t hi ng

do ng

q uy

fAB/

/C

D IAx/

/C

y

=>

( B;

x) //

( D;

y)

( dp cm )

F

d t

ro ng

h ai m at

p h^

ng k ha

c nh au

//

BC E)

v

a (

BC E) th iif

ti

T c

hu Ta

c ac

ap

d ir dn

g

th dn

g do ng

q uy

/ A;

iA F/

/B

E

AD//

BC

(A DF )

//

BC E) ( dp cm )

D an

g 2 : C

H UfN G

M

I N H

CA

C D

l /d

N G TH

A NG

D 6N G P

H A

N G

LP Bi rO NG PB AP

g ph ap c hi if ng m in

h

ca

c

du dn

g th in

g

di , d2 , dg

d on

g ph in

c hi

^n

h ai

b i/<

g mi nh

d ], d g, d s,

d oi m ot c at

n ha

u

va

c un

g so ng s on

g

vd

i mp

t ma

1 8

Trang 20

• B2 : Ket luan d], d2, ds, c (a) // (P) => d i , d2, d^j, dong p h i n g trong (a); (a) phai

chufa cac giao diem cija d,, da, ds,

Goi A t i , At2, Ata la ba diTdng phan giac

ngoai ciia goc : fiAfc, CXt), I5A6 theo thuT t u do

Do cac tam gidc can tai dinh A nen cac

phan giac ngoai song song vdi canh day, nen :

At, / / B C c (BCD)

A t a Z / C D e (BCD)

; A t 3 / / B D c ( B C D )

=> A t , , At2, Ata dong ph^ng (trong (P) // (BCD) \k (P) qua A) (dpcm)

Htfdng d i n

Doc gia t u giSi iMng t\l hai bai toan tren

19

Trang 21

DE SH L i"

HA IJ ES T RO N

G KH 6 N

G GI AN

•k

Din

h ly

i (thu|ln)

: Ha

i dit an

g th in

g tu

y

y d,, d

2 tr on

g

kh on

g gia

n ch dn tr en c dc in

^t ph dn

g so ng s on

g nh au (a )

II (P ) II (y ) t ao r

a cd

c do an th an

g tU cm

g l in

g ty le :

A,A.

-k

Dinh

l y2

( da o) :

• Tr Ud

c kh

i xe

t di nh l

y da o, t

a qu an t ar

n de

n ha

i kh ai

ni em s au

hi

et d en c ac d ay t

y so , c hi ng h an :

A,

A

B1 B9 (*

• (A i;

]) l

a ca

p go

c cu

a d ay t

y so (

*)

• (A 2;

B2 ) v

a (A 3;

B3 ) la c ac c Stp n go

n cu

a d ay t

y so

*)

• Do an n oi c ap g oc v

a cd

c c ft

p ng on l

a ( do an ) ba

c t ha ng c ua d ay t

y so

*)

• Dinh l

y

: N eu c

6 da

y ty s

o tr on

g kh on

g gia

n :

A,A

(*

) da , x dy r

a tr

g (d ,) (d 2) th

i cd

c ba

c th an

g AiB ,, A2B

2, A3B

3 cu ng s on

g so ng v

ai mo

t mg

i ch

u

: Ta

c

6

ph at b ie

u kh ac c ua d in

h ly

Th al es d ao n hi

f sa

u :

Va

i die

u kie

n c6 d ay ty s

o (*

) da x dy r

a tr en h

ai

du dn

g th dn

g (d j)

fd

^)

th

i mo

t tr on

g

3 ba

c

th an

g A,B ,, A2B

2, A^B

^ se s on

g so ng v

di mo

t

ma

t ph dn

g ch da h

ai ba

c th an

g co

n la

i

"A ,B

i (a )

= ( A2 B2 ; A3 B3 )

A2 B2

//(P)

-(

A3 B3

;A iB i) ( A)

A3 B3 //

(Y )

S (A ,B

i

;

A2 B2 )

(d i) (g oc )A

i

(n gp

n tr en ) A

2

(n go

n dif di) A

3

(d

z)

^ B,

o d in

h)

\

Dan

g 3 : CH

U fN

G M

I N

H D JC

i N

G TH AN

G S ON

G S ON

G M AT P HA NG

BA NG D

I N

H L

Y T HA LE

S

L

PH ir ON

G

PH AP ,

Co s

d cu

a ph uo ng p ha

p ch uf ng m in

h dU dn

g th in

g so ng s on

g vd

i mS

t ph in

h ly T ha le

s da

o tr on

g kh on

g gi an g om

ai b ud

c ca b an s au d ay :

• Bi

: Xa

c d in

h tr en h ai d ud ng t hi ng t ii

y

y ch an

g ha

n ( di ), ( d2 ) d

e ti

m t re

n do d

1 B

2

Aj As B ,B

3

Xd

c di nh c Sp ( Ai

; B j) l

a cS

p go c, c dc c Sp ( Aj

; B 2) v

a (A

3

B3 ) la h ai

Sp n go n.

n

B2 : Lu

c do c ac d oa

n ba

c th an

g Ai Bi , A2 B2 ,

A3 B3

d ir ac k et l ua

n cu ng s on

g (P ) ( xe

m • >

20

Trang 22

• pmroNG PHAPj

Ta chutng m i n h dUdng t h i n g (d ) n am tro ng m at p h i n g (a) / / (()) => (d ) / / (p )

m cAc B A I T O A N C O B A N

Bai 32

Cho tut d ien A BC D c6 A B = CD Go i M v a N la hai d iem lUu d o ng tre n A B v a C D sao cho

A M = CN Chutng m i n h M N luo n so ng so mg vdi mSt p h I n g co d inh^

Giai

Neu d at A B = C D = a; A M = C N = x De y thay tre n A B v a C D ta co d ay ty

A M ^ CN

A B CD

i(A; C) la cap go'c

|(M; N) va (B; D) la hai cap ngon tUcJng ufng

Ap d ung d i n h l y Thales dao tro n g kho ng g ian t h i ba bac

thang A C, M N v a BD ciing so ng so ng v<Ji mot mSt phIng (a)

due nay (a) chUa co d i n h v i d ay ty so — chUa la h k n g so)

a

Ta diTng (a) n h u sau : go i E, F, G la tru n g d i e m cac canh A B,

DC, CB theo thuf t i l do t h i (a) = (EFG) v a (a) tho a y eu cau la

Vay M N / / (EFG) = (a) co d i n h (d p cm)

Bai33

Cho hai h i n h binh h an h A BC D v a A BEF kho ng dong phIng; tren cAc dUOng cheo A C v a

BF Ian lucft lay cac d iem tuy y M , N sao cho

Cho h i n h v uo ng A BC D v a A BEF d tro n g hai m at p h I n g khac nhau Tre n cac d ifd ng cheo

A C v a BF, ta Ian lug t lay cac d i e m M , N sao cho A M = BN Chutng m i n h ran g M N / / ( CEF)

A p d ung d i n h ly Thales cho cac d o an bac thang :

A B, M N , CF voti de y EF cz ( CEF) ; A B / / EF c (CEF)

^ M N / / (CEF) (d p cm)

2 1

Trang 23

Bai

35

Tr en h

ai ti

a Ax v

a By ch6o n ha

u, ta I an

lua

t

la

y ha

i di em

M N sao

c ho A

h rS ng M

N lu on l uo

n son

g son

g vd

i mp

t mS

t ph Sn

g c

o di

nh

Tr ad

e he t:

HU oT ng

dim

By la'y d ie

m

N, di nh b

di : B

N, =

1

Ax l ay d ie

m

Mj di nh b

di : A M; =

k (v

i k > 0 , ch

o tn /d c)

Hi en n hi en 1^

h

ai di em M

j \k

N ] c

o di nh

Theo g ia t hi et v

a tii

each d an

g tr en h in

h ta

co :

AM , AM , AM

i BN

i

BN ,

BN AM

y da

o cu

a di nh l

y Th al

^s M

N

lu on l uo

n son

g son

g vd

i mS

t ph in

g c

o di nh ((5) =

(A

; Bd ) cha

a AB v

a da dn

g th in

g d q ua

B son

g

song v

di N, M]

(dpcm )

i da dn

g th in

g che

o nh au d

j va

d 2.

M la m ot d ie

m ch uy en dong t re

n don

g tr en

d 2.

im q uy t ie

h tr un

g di em

I cu

a doa

n MN

Hu&ng dan

Go

i AB l

a doa

n vu on

g go

e ch un

g cu

a

di va

d

2

(A

e dj , B

d2 );

O la t ru ng d ie

m eii

a AB

N'

OB I

X

Theo d in

h ly

T ha le

s da

o th

i 01

nkm

t ro ng m at p hl

ng

(P )

qu

a O song song v

di

di va

da, tiif

c la m at p ha ng x

ac

di nh b

ai ha

i da dn

g th in

O Ia

n lacr

t son

g

song v

di d]

va

d-^

Giai han

; M v

a N chay t re

n d]

va k ho ng

co ra

ng

huge n en

I cha

y

ti

y tr en

( P)

• Dao :

L ay m ot d ie

a I t

a dO ng dacfng t hi ng song

song v

di d

'2 ,

da dn

g th in

g na

y ci

'l

do'i xO ng vdri O q ua E

MI

c lt

d'2

d N' Di nh

l

y

da dn

g tr un

g bi nh c ho t ha

y I l

a

tr un

g di em c ua M 'N ' TC

f M' va N ' di fn

g ca

c da dn

g th in

g son

g

song v

di AB Ch un

g Ia

n la

gt el

t d] d

M va

d

2 d

N

Ha

i ta

giac O M' MA v

a ON 'N

B de

u la n hf ln

g hi nh c hS n ha

t :

=> , ^ ^ ^ _^

M N' NM ' la m ot h in

h bi nh h an

h d

o do

I la t ru ng d ie

m cu

y ti eh t ru ng d ie

m I c ua doan M

N la

m at p hi ng

( P)

i qu

a O song song v

di

dj

va

22

Trang 24

lidc le cung la du

Co so ciia phifong phap la sii du ng sii c^n th iet cua h a i tien de 5 va tien de 6 d4 xay diTng

va chufng min h mot so b ai toan co b a n tr on g khong gian k h i h in h th a n h nen cac va t the (hien

nhien 4 tien de d trirdc da duoc nga m hieu la lu on lu on di/gc sOf dung)

B a i 37

Cho a, b, c la ba difdng t h i n g khong ciing nkm tr on g mpt ma t phAng va doi mot cSt nhau

Chufng min h rSng : a, b, c dong guy

G i a i Tha t vay : gia sijf a, b, c kh on g dong quy, th i cac giao diem ciia chiing lap th a n h ba diem

khong th a n g ha ng va ba difcfng thftng cung nam tr on g mot ma t phang Tr a i vdi gia th iet

Theo phep chufng m i n h p h a n chiifng ycb t dUcrc chijfng m i n h xong

B a i 38

Cho 3 tia Ox, Oy, Oz doi mot vu ong goc

a/ Chufng min h r k n g ba tia do kh on g cung n k m tr on g mot ma t phang

b/ Ijay tren ba tia Ox, Oy, Oz Ian lifgt cac diem A, B, C (khac goc O) Chijfng min h r a n g :

(AB + BC + CAf ^ eiOA' + OB^ + OC^)

c/ Ky hieu a, p, y la ba goc tarn giac AB C, a, b, c la do dai OA, OB , OC Ti n h cosa, cosp, cosy

va chufng to r a n g a, [3, y nhon

G i a i a/ Tha t vay : gia sCf ba tia cijng thuge mot ma t

phang, vi Ox va Oy ciing vuong goc v6i Oz, nen Ox va

Oy cung n a m tr en mot du'dng tha ng D ieu do tr a i vdi

gia thiet

Do do ycbt di/gc chufng min h b a ng phep chufng

min h phan chufng

b/ Ap dung bat da ng thufc B u nhiacovky, ta eo :

(AB +BC +CA)^ < 3( AB ' + BC^ + CA^) = 3(0A^ + 0B ^+ OB^ + OC^ + OC^ +OA^)

(AB + BC + CAf <i 6(0A^ + OB^ + OC^)

c/ Ap du ng djnh ly h a m cos cho AAB C, ta c6 :

BC^ = AC^ + A B ' - 2AC.AB.cosa

2 3

Trang 25

cosa =

< =>

a nhon (dpcm)

>0

Tirang ti

f t

a c

6 : cos(i

= Va

^ + b^

Vb

^+

c^

Do d

o : P, Y cun

g nho

n (dpcm)

Ba

i 39

>

0;

cos

y = Vc

2 + b2 V a^

g khong gia

n ba tia Ox,

Oy,

Oz do

i mo

t ta

o vdr

i nha

u mo

t goc 120

Oy,

Oz ph

ai dong phSn

g

Gi

ai

Gia si

if

Ox,

Oy,

Oz khon

g dong phSn

g

va ta cho

n

sAn

tre

n Ox

; Oy ca

c die

o : O

A

= OB =

1 (dvcd)

Dong

th

di

tren tia d

oi Oz' cu

a tia Oz, ta cho

n die

m C sa

o ch

AC =

OC = OAcos60"

OC =

Dinh ly ham cosi

n tron

g A BOC c

ho ta :

BC

^

= OB' + OC

- 2OB.OCcos60°

« BC'

=

1 +

i

~ 2.1.-.i =

« BC =

Do d

o : AC = BC = (1)

Tifon

g tu : AB

^

= OA' + OB

^ 2OA.OBcosl20''

1

) =

3

« AB =

Va

(2)

Ttf (1)

va (2) ta difg

c : CA + CB = AB <=>

C

e AB <=>

Ox, Oy;

Oz dong ph^

ng (v

f ban dau)

ai dong phan

g

(dpcm)

Ba

i 40

Cho ba tia Ox,

Oy,

Oz sao ch

o xO

y ^ x

&

= 45

" v

a y(5

z = 90

"

ChiJ

ng min

c m

ot ma

t phang Hi^c

Tn

g da

n

Gia sU Ox,

Oy,

Oz khon

g dong phSn

g

va chon tre

n

do th

m A,

B,

C sao ch

o : O

a V

2

Do gia st

f =

> A

e (OBC)

Stf dung din

h ly ham cosi

n

=> AB = AC = VOC

^ + OA

^

- 20 C.

OA C OS 45

"

AB = AC

=

ha^

a '

- 2.a>/2 a ^

=

=

a

Ma : BC =

a

^/2.^/

2 = 2a

24

Trang 26

1/ G i a sd O x ; O y ; O z d o n g p h ^ n g t r o n g m p ( a ) n a o d o , t a co h a i k h a n&ng :

T i a O y h o a c n a m t r o n g m i e n goc xOz ( x e m h l ) h o a c m i e n n g o a i goc ic8z ( x e m h 2 ) t h i

xOy = 3 0 ° * 6 0 ° ( h 2 ) h o a c xOy = 1 5 0 ° * 6 0 ° ( h l ) ( v 6 l y v d i g i a t h i e t xOy = 6 0 ° )

Trang 27

c d

o, (1) + (2) ch

o t

a gia thi§

't:

2 c

os fli Ot)

1 OA O

'

=.1 oO

E

= 2cosf^

; OC co din

h trong khong gia

n ne

n tia pha

n gia

c O

D cung c6' din

h

Ha

i tia OB;

OD co din

h tron

g khon

g gia

n ne

n tia pha

n gia

c OE co din

h, ma

t ch

o t

a die

m

E

co din

h trong khong gian

Va

y kh

i A,

B,

C lo

u dong sa

o ch

o

nhun

g luo

n qua E co din

h

Ba

i 42

hi ma

t ph

^n

g (ABC)

h chop S

ABCD co day la hin

h binh han

h ABCD Tren ca

c can

g c

^c die

m A], B

i,

Cj sao ch

o SA

SC : k (k >

0,

k c

ho san)

ChuT

ng min

i

Ci thay d

oi th

i mp(AiBiCi) ca

t S

O ta

i 1 die

m

co din

h (vd

i

O

= AC

o BD)

Gi

ai

Go

i AM la trung tuye

n cu

a ZiABC tu

y y con

B', C tu

y y

thijf

ti

i tre

n A

B

va AC (h.2)

Kh

i AM

o B'C = M', ta co nga

y h

e thu

fc :

+ — = 2

— (*) (D

oc gia t

u chufn

g min

Do d

6, ne

u g

oi SO ^ A,C,

= O', th

SO

SAi SCi SO'

(1) (h.l)

NenSA SC ,

SAi SC]

(2)

< =>

„ SO , SO'

0, ch

o

< => O' CO

in

h (ycbt)

Ba

i 43

(h

.2

)

Cho hin

h chop deu co canh ben v

a can

h da

y de

u ban

g

a

Tim die

m

M

e SA sa

nho nha

t, ha

y ch

i r

a gia t

ri nh

o nha

n tic

h AMBD S =

i BD.M

O

=

|

aV2

M0 (1)

=>

min

S xa

y ra minMO xay r

a

Nhun

g minMO = dlO

; SA]

= OH

Vi

t Of die

n de

u ne

n AC n B

D

=

O th

i S

O la dudng cao

=> ASO

A vuong t

ai

O (2)

26

Trang 28

(3)

^ S = 4SO^ + AC'^

Be y trong (3) chi c6 SO la thay doi, do do S nho

nhat khi va chi khi SO nho nhat Trong mp(0; d) co

dinh ha OH 1 d tai H

=> OH = d[0; (d)] = minSO (do (d) co dinh)

=> minS = 40H^ + AB^ xay ra k h i S = H (ycbt)

Bai 45

Cho 3 diem A, B, C khong thuoc mat phang (P) Gia sd cac doan t h i n g AB va BC deu c l t

(P) Chufng minh rang doan t h i n g AC khong c l t (P)

• NhUng M , N , I la ba diem n l m trong ba canh cua AABC

ma t h i n g hang t h i dan den di6u v6 ly

Vay doan AC khong the nao c l t mp(P) difoc (dpcm)

Trang 29

a si

f A, B, C 1^

g

di qu

a

A, B va

C Dudn

g thin

g na

y

cung v

di diem

D xa

c dinh m

ot ma

t phftn

g (a) Ta c6 : / ^rv

De

y tha'

y (1)

t

"khong c6

4 diem nao /

tron

g n die

\

Vay khong the c6

3 diem nao trong

n diem ay thing han

g (dpcm)

2/ Ba

y gid t

a xe

t n die

m kha

c vd

i tinh chat l

a 4 diem bat ky nao trong chiing

deu

dong

phang

Goi n die

m a

y la

• Kh

i n = 4 t

hi ba

i an difang nhien dung

m Ai

; A 2;

3 xa

c dinh m

at phln

g (a) X6

t di

em

Aj (v(J

i 3 < i <

n) The

o gi

a thie

t 4 die

m Aj

a A

j e (a) vd

i m

oi i = 4

t c

a n die

m a

y thup

c mp(a) (dpcm)

Ba

i

47

Cho tiJ

ie

n ABCD Go

i I;

J Ia

n lug

t l

a trun

g diem cua h

ai can

h do

i AB v

m tuyy tre

n can

h AC Ma

t phln

g (IJM) ca

t can

h BD t

ai

N Chufn

g min

t die

n IMJN thanh h

ai phan dien tic

h ban

g nhau

Tron

g ma

t phing (IJM)

h ly Thales dao t

hi AC

; BD

; IJ nam trong

ba

ma

t phan

=> O la trung die

K tron

g tam giac MIJ

va

NI

J la ban

g nhau

dt (MIJ) = d

t (NIJ)

Vay I

J chi

a thie

t dien IMJ

N than

h ha

i pha

n die

n tic

h

bang nhau (dpcm)

Ba

i

48

Cho tuf die

n ABCD Ti

m diem

M tron

g khong gia

n sa

o ch

o I = MA

^ + MB^

i nh

o nhat

Gi

ai

Goi I,

, G Ian lifcrt la trung die

m cii

a AB;

CD va I

J

Dinh l

y difcfn

g trung tuye'n cho :

Trang 30

2

^ /c /- i 2 T T 2 A B ^ + C D ^ ^ A B ^ + C D ^ , , 2 L i

=> L = 4 M G ^ + IJ'' + > + IJ'' = h a n g so

2 2 Dang thufc xay ra k h i va chi k h i M = G => E = M A ^ + M B ^ + M C ^ + M D ^ d a t gia t r j nho nhat k h i va chi k h i M d G, t r o n g tarn cua tuT d i e n (ycbt)

Ta CO : VQ.MNP = VAO.NP + VA.OMP + VA.OMN

Khoang each tif A den ba m a t p h l n g (Oyz); (Ozx) va (Oxy) la :

Trang 31

Chuyen de

4 :

QUAN H

E VU

6

NG G

OC

Loai

1: DU CI NG T HA NG WONG

GOC fdJ^

T P HANG

Dang

1

: C

HQ NG

M IN H

Ol/

G

O C Vd

l MAT P

U KI EN

C

A N VA

DU

L PHiroN o

vdi ma

t phln

g a bSng dieu ki^n can va du

hai difcfn

g th^

ng

a, b dong

d_La (dpcm)

n

CA

C B

AI T OA

diy ABCD la tiJ gid

c loi Bie

CI

(SAD)

^ ^A B L DA c (SAD)

AB

1

(SAD) (dpcm)

Ba

i 5

1

Cho hinh chop S.ABCD

c6 day ABCD la hinh binh hanh tam

O v

a S

A = SC

m gia

c ca

n ta

i S : ASA

tSO L BD c (ABCD )

^ is O i AC c (ABCD )

= > S

O 1

(ABCD) (dpcm) A

\k hin

h tho

i tS

m O

= > AClBDc(SBD) (1

AC

J _ S

O c (SBD) (2)

TC r (1) v

a (2) ch

o : AC

1

(SBD) (dpcm)

30

Trang 32

(Sau nay t a c6 t h e chufng m i n h (1) bSng d i n h l y 3 dadng

vuong goc se n h a n h h d n hoac b d n g t i n h c h a t giao tuyen

cua h a i mftt p h i n g vuong goc)

Tif (1) vk (2) cho : E A _L (SBC) 3 SC SC 1 E A (3)

Tif (3) va (4) => SC 1 ( A E F ) (dpcm)

B a i 54

Cho h i n h chop S.ABCD c6 day A B C D l a h i n h chuT n h a t , goi I , J l a t r u n g d i e m A B , C D v^

gia sii SA = SB ChOfng m i n h r S n g C D 1 ( S I J )

Cho tijf d i e n A B C D c6 H , K l a true tarn cdc tarn gidc A B C va D B C G i a sC( r k n g H K 1

(DBC) Chufng m i n h A H , D K va BC dong quy

I i ^ I Vfiy A H , D K v ^ BC dong quy t a i I

Trang 33

ai

a / Ch

o A

H o B

C

= A'.

D

e c hii ng m in

h S

; K;

A' th in

g

ha ng ta ch ufn

g m in

h : S A'

± BC

BC

^A A'

'B CI SA (d

o SA

X (AB O)

Ta

C

O :

Tif do ta su

y r

a : B

C 1 (S AA ')

= >

BC

1 SA '

Va

y C

O t

he no

i : A H;

SK v

a B

C d on

g q

uy (d pcm )

b/ Th eo g ia th ie

t

ta c6 : S

C 1 B

K (1

)

Ma tk ha ct ac

o :

\^^^^^

J BHXSA (doSAKABO)

ne

n : BH

1 (S AC )

^ BH

1 SC

Tif (1 ) va (2 )

ta su

y r

a : S

C ± ( BH K) (d pcm )

d

Th eo ca

u a /

ta c6 : BC ± (S AA ')

= >

BC ± H

K

Th eo c au b /

ta

c 6 : SC

_L

BH K)

= >

SC J_

H

K

Tif (3 ) v

a ( 4)

ta su

y r

a : H

K ± ( SB C) (d pcm )

Ba

i

57

(2 )

(3 )

(4 )

Ch

o hin

h v uo ng A BC

D na

m tro ng m

at ph An

g ( P).

Qu

a A d ita

g

n ijf

a d Ucm

g t hin

ot die

m lU

u d on

g tre

n Ax

Bad

n g

th an

g qu

a M v uo ng g

oc vd

i m p(M

ng th Sn

g q

ua

M vu on

g g

oc

\6i

m p(M CD ) c

at (P ) t

ai

S

1 / Ch ufn

g m in

h : A

; B

;

R t ha ng h an

g

2 / Ti

m q

uy tic

h t ru ng d ie

m I c

ua do an R

S k

hi

M l ifu d on

g t re

n

n ijf

a d ud ng t hi ng A

x

Gi

^i

1 / Th eo g ia th ie

t t

a c

6 : MR

1 (M BC ) MR

1 BC

Ma d a

C O

: AD

1 AM ^ A

D 1 (M AR ) =

>

AD

1 AR

Va

y AR

; A B;

AD c un

g

a

tr on

g mp (P )

ma AR v

a AB

cu ng v uo ng g

oc vd

g ha ng (d pcm )

TiJ on

g t

if tre

g

2 / Do M

R ± ( MB C)

^ MR ± M

B

Ta

m g ia

c M BR v uo ng d M c6 d ifc

r ng ca

o MA n en :

MR

1 AD (v

= AB A

R

Tifc

r ng ti f:

MA ' = A D.A

S

AB A

R = A D.A

S

^ AR = A

S

= j>

I th uo

c d ifd ng t hi ng A

C

Do R c ha

y t re

n tia A

u ( la ti

a d

oi cii

a

tia A B) va S c ha

y tre

n tia A

v ( tia d

oi tia A D) ne

n I

or

n go

ai hin

h v uo ng A BC

D

Va

y,

I c ha

y t re

n tia d

oi

At cu

a t ia A

C ( bo d ie

m A )

Va

y s au k

hi la

m p ha

n d

ao th

i q

uy tic

h c

ua

I l

a t ia A

t ( kh on

g k

e d ie

m A ) ( ycb t).

32

Trang 34

Dang 2 : C H J N G MI N H Dl/ dNG T H AN G V U ON G GO C Vdl MAT P H A N G

BA N G T R U C Dl/ CiNG T RO N

L PHirONG P H A P

Ca stf ciia phi/ang phap chiirng min h difdng t h i n g d vu ong

goc v6i mat pha ng a bftng van du ng d in h nghia t r u e dxidng

t ro n: l a dxtiing t h S n g v u o n g g o c vdri m a t p h a n g c h i i ' a

dUdng t r o n t a i t a m c u a n o b a ng h a i btfdp ca b an nhU sau :

n B i : Ti m mot diem S a d in h each deu cac d in h da giac

day ABC n h a sau : SA = SB = SC =

Tim diem O d day each deu cac d in h da giac day ABC

OA = OB = OC =

• Ba : No'i h a i diem S, O do th a n h tru e d cua di/crng tr 6n

No la dudng thftng vu ong goc vd i moi ma t pha ng ehiJa

duac di/cfng tr on (AB C)

n. C A C B A I T O A N C O B A N

B a i 58

Cho h in h vu ong AB C D canh a Ve cung ve mot phia (AB C D ); cac doan AA'' C C vu ong goc

(ABCD) sao cho AA' = C C = a Chufng min h : A'C 1 ( B C D )

B C = 2C I = 2 ^ = a V s (ASIC 1^ niJra A d e u)

Ta CO : •iCA = a (.\ASC d e u)

A B = a>/2 (AASB v u o n g c a n t a i S)

[CA^ - AB^ = a^ - 2a^ - Sa^

Theo d in h l y Pythagore dao => ACAB vu ong ta i A (dpcm)

3 3

Trang 35

b/ The

o ti nh c ha

t dUcfng

t ru ng t uy en

Cifn

g v

di ca nh h uy en cua t am

g'lAc

A BC v uo ng

B = I

C (1)

Ha

n nf fa d

a

CO

S

A = S

B = S

C (2)

ch

o : S

I la

tru

e ducrng t ro

n

ng oa

i ti ep zVABC =>

S

I 1 ( AB C) (d

pc

m)

Ba i6

0

Ch

o hi nh chop S A BC

D da

y AB CD l

a hi nh t ho

i c

6 IJ AC = 60

" v

a SA = SB =

g SG

x (A BC D) Vd

i G l

a tr on

g ta

m ta

m gia

c AB

: i

BA

- BC ( ca nh h in

h th oi ) AA BC d eu

i

g AC 6 0"

(gt)

=>

G la t am d ud ng t ro

n AB

C ng oa

i ti ep t am giac d eu A BC

Do d

o ; G

A = G

B = G

a du dn

g tr on ( AB C)

Gi

a th ie

t c

6 : S

A = S

B = S

C S

e (d )

To

m la

i SG

c (d ) ha

y SG

1 (A BC ) ha

y SG

1 (A BC D) ( dp cm )

D c

6 SA = SC = SD v

a AD

t = 9 0"

G

oi I l

a tr un

g di em

A

C ChuTn

g

mi nh r kn

g SI -L ( AB CD )

Gi

ai

De

y ti

f t am giac A DC (

A = I

C = I

D

Kc

t hcr

p gi

a th ie

t SA = SC = SD

=i> SI l

a tr ue d ud ng t ro

n (A CD ) ng oa

i ti ep

\A CD

=^ S

I 1 ( AC D) ^ (A BC D)

« S I

l (A BC D) ( dp cm )

D c

6 AB CD l

a nijf

a lu

c gia

c de

u c

6 SB t) - SCT) = 9 0"

m AD v

a SD Ch ij

g m in

h rf tn

g 01

1 (B CD ) va S

A 1 ( AB CD )

Gi

ai

De

y de

n ti nh c ha

t ci ia d ud ng t ru ng t uy en ufng

\'6i

c an

h

hu ye

n cu

a ta

m gia

c vu on

g, ta eo :

AS BD (

fi = 9 0"

) :>

I

B = I

D

AS CD (C 9 0°

) :r>

C = I

D

Xe

t nijf

a lu

c gia

c de

u AB CD ( la

m ci ia l uc giac d eu l

a O)

=>

O

B = O

C = O

D (2)

Ti

r (1)

va

(2 )

=>

1

0

la t ru

e di /d ng t ro

n (B CD ) ng oa

i ti ep t am giac B CD

=>

I

O 1 ( BC D) (d pc m)

IB = IC =

ID

(1)

Ma S

A / / - O

SA

1 (A BC D) = (B CD ) (d pc m)

34

Trang 36

tool I: DUdNG T H A N G W O N G G ^ C DUdJNG T H A N G

OUdNG THANG VUONG GOC Vdl MAT PHANG

L P B U O N G P H A P

Co sd cua phiTOng phap chOfng m i n h dudng t h i n g d vuong goc vdfi diTcfng

thSng a k h i t a sit dung d i n h n g h i a : d 1 a => d 1 a (tuy y t r o n g a),

qua 2 bade ca b a n :

• B i : Quan sat v a quan l y gia t h i e t t i m mp(a) chijfa dudng t h d n g

a can chufng m i n h no vuong g6c v d i d

Goi I la t r u n g d i e m c a n h C D v a de y h a i t r u n g tuyen cung l a

dudng cao t r o n g h a i tarn giac can cung ddy C D l a : A A D C v a ABCD

Cho h i n h chop S A B C D c6 A B C D l a niJfa h i n h luc giac deu v a S A 1 ( A B C D ) M o t m a t

phang qua A vuong goc v d i S D t a i D ' cat SB; SC t a i B', C ChuTng m i n h t i l giac A B ' C ' D ' n o i tiep difoc

Trang 37

Theo eac

h difng (a)

^ (AB'C'D')

=>

AB'

1 SD (5

)

Tif (4) va (5)

=>

AB'

1 (SBD)

; ma (SBD)

3

B'D'

=>

A B'

± B'D '

« AB TT = 9 0"

(6 )

Cung ti

f (5) va (6) =

> T

u T gia

c AB'C'D' no

i tie

p du

ac (dpcm)

n ABCD ChiJn

g minh

D IE

U KI EN

DA I

s

6 sa

u

de

tijf die

n c6 can

h do

i nha

- AD'

= BC'

- BD

l

Gia

i

Ta chiln

g minh die

u kien b

^ng h

ai trtfcrn

g hop :

• Die

u ki

#n

(=>

) : Gia si

jf AB

1 CD C

D

± (ABH)

H

la chan dUcm

g cao BH =>

C

D

± AH

Ap dun

g he thiJc luan

g tron

g ta

m gia

c vdri

M

la trung die

m CD

f

A C'

- AD

' -_

2 CD

.M

H

=> <i

iB C'

-B D^

- 2C D.

MH

=> AC'

- AD'

= BC'

- BD' (dpcm)

• Di^

u k i$

n

(<=) : Gia AC'

- AD'

= BC'

- BD' (1)

Gp

i

M

la trung die

m CD, AH

j, BH

2 l

a cac cha

n di/

dn

g cao

.MH7

( 2)

tuon

g tfn

g, ta

C

O :

\

;B C'

- BD '

= 2

CD M H2

( 3)

S ijf dun

g (1) ch

o (2) va (3) :

2C D.

MH,

= 2

CD M H2

=>

M

H,

= MH

2

<= >

Hi =

H

2

(4)

Nghia la

\.

\S

(4) ta c6 C

D

1 (ABHi)

^

(A BH 2) ,

ca h

ai ma

t phSn

g (ABHi);

(ABHj)

o CD

1 AB (dpcm)

O Ke

t lu gin

: Die

u kien ca

n va d

u (da

i so) de h

ai can

h do

i AB v

a CD cu

a tiJ d

g go

c nhau la AC'

- AD'

= BC'

- BD' (dpcm)

Ba

i

67

Chiifn

g minh rkn

g ha

i can

h do

i b

at ky ciia tu

f die

n de

u th

i vuong g

oc v<J

i nhau

m can

h AB Theo tin

h cha

t cua ta

m gia

c de

u

d

cac ma

t ti

l dien:

'A

B

^ C E

c

( CD E)

|A B D

E C ( CD E)

=> A

B

1 (CDE);

m

a CD

c (CDE)

AB

1 CD (dpcm)

Tuan

g tir t

a chiifng min

h difa

c B

C

1 AD v

a AC

L

B

D (dpcm)

O Ghi ch

u

: B

oc gid xe

m

eac

h

ch iin

a i

d ii

c tn

g th

nh

ch

a t

nay, ch un

g toi xi

n nh

d c : rdt ti

^n ich tr on

g qua tr

c til d ien dS

u

Doc gid cU

ng c6 the d un

la

B ai

66

36

Trang 38

Chufng m i n h rSng : T r o n g mot t i l di$n neu c6 2 cSp canh doi vuong goc nhau t h i c&p can h

doi thuT ba cung vuong goc nhau

Dang 2 : CHUfNG MINH HAI OUCiNG THANG VUONG GOC NHAU

L P H O D N G P H A P

Ca sd cua phuang phap can v a n dung d i n h l y ba dudng vuong goc n h u sau :

, » , T , > I A M la dildng xien (so vdi (a))

Gia stf A H 1 (a) => < ,

; H M la hinh chieu (ciia AM xuong (a))

t h i difcrng (d) n'km t r o n g (a) thoa :

(d) 1 A M (ducrng x i e n ) c* (d) J. H M ( h i n h chieu)

Do do philcfng phdp gom 2 budc thuc h a n h :

• B i : Xac d i n h dudng vuong goc v d i m o t m a t phSng (a) t ^

Trang 39

n cA

c BA

I T OA

N C OBA

1 (ABCD)

De

y tha

y : S

A

1 (ABCD)

Ma B

C

1 AB

Ch

o hinh chop S.ABC

D c6 SA

1 (ABCD) va ABC

D la hin

h ch

a nhat

Chuto

g min

u I

k

nhflng tarn gia

c vuong

JA

S A

B vuong d A (ycbt)

ISA

1

AD ^ [ASA

D vuong d A (ycbt)

SB : l

a d

U cJn

g xie

n

AB : l

a hin

h chieu

=>

B

C

1 SB (dinh l

y b

a dtfcrng vuong g6c)

=>

ASB

C vuong

a

B (ycbt)

Tiran

g t

ii DC

1 SD (dinh l

y 3 dudng vuong goc)

=>

ASD

C vuon

g d

D (ycbt)

To

m la

i hin

h chop c6

4

m &

t

ben deu la nhifng tam gia

c vuong (dpcm)

n ABCD c6 A

B _ L CD

vk

A

C

1 BD Go

i

H la hin

h chie

u cua

A xuon

g (BC

g

H la tr

Uc ta

m ta

m gia

c BCD v

a A

D 1 B

i :BH sa

CH saochoCHnBD = C

i

DH sa

o ch

o D

H n B

C = D

j Ta

C

O :

CD ± AB (g

ia thiet)

CD

1

AH (v

i A

H 1

(BCD))

=> CD1(AB

H) 3B

H

=> C

D _ L BH t

ai

Bi ha

y BB, la dUcfn

g ca

o ABCD

(1 )

Ti/on

g t

a B

D

± (ACH) z C

H BD ± CH t

ai Cj

=> C

H l

a dudng ca

o ABCD (2

)

Tii

(1) va (2) cho ta :

H la tr

Uc ta

m ABCD (dpcm)

AD

j

: \k

dudng xie

HD, : l

a hin

h chieu

Ma B

C

1 HD

i (

vi

H la trifc tam ABCD)

=>

B

C

J _ AD

j

=> B

C

1 (AHDi)

^ (ADDi) 3 A

D BC ± AD (dpcm)

ai dUdn

g vuong g

oc

v6i

m

at ph

^n

g hinh ch

C ? nh

at ABCD MQ

t Cx, Dy t

g min

h ran

g ABEF la hin

h ch

Q nh

^t

Gi

ai

Bi

y EC

1 (ABCD) EB

: I

k

udng xie

h chieu

Ma A

B 1 C

B

=>

A

B 1 E

B (1)

Theo din

h ly gia

o tuye

n song son

g th

i ABEF la hin

h binh

h^nh v

a n

o thoa (1) ne

n la hin

h ch

if nh

at (dpcm)

O Ca ch k ha

c

: D

l y tha

y DC

1 (EBC) ma AB/

/C

D

=> A

B X

(CDE

)

r

EB =>

A

B 1 E

B (1)

=>

(dpcm)

Trang 40

Bai 73

Trong h i n h chop S A B C D d a y la h i n h chC n h a t A B C D G o i S H la diTcfng cao h i n h chop va

SK; SL thijf t u la dirdng cao cac t a m giac S A B va SCD Chijfng m i n h r S n g H , K , L t h S n g h a n g

D e y v d i S H I ( A B C D )

G i a i

fSH : la dudng xien

^HK : ]k hinh chieu

MaAB 1 S K (each difng) A B i H K ( d i n h l y ba dif&ng vuong goc)

TucJng t u C D ± H L ( d i n h l y ba di/cing vuong goc)

Cho tiJ dien SABC c6 A B C l a t a m giac deu canh a, cac mftt (SAB); (SBC) v a (SCA) h a p v d i

(ABC) cac goc bftng nhau v a bftng a

1/ Chiitng m i n h rftng : h i n h chieu H cua S l e n (ABC) l a t a m du&ng t r o n n o i t i e p AABC

2/ Tinh tong dien t i c h 4 mftt cua tuT dien S.ABC

: 1

1/ Goi 1, J , K I a n lifot la h i n h chieu ciia H l e n BC; C A ; A B

Do d i n h l y ba dUcfng t h f t n g vuong goc

BC 1 S I ; C A 1 SJ; A B 1 S K

Do d6 goc p h i n g cua cac m f t t ben (SBC); (SAC) v ^ ( S A B )

tao vdi (ABC) I a n lugt la S ^, SJi?, gS^

g l i l =S3tl - SKfi = a

De y t h a y t a m giac vuong S H I , S H J , S H K bftng nhau n e n :

H I = H J = H K

Vay, H l a t a m dUdng t r o n HQI t i e p AABC ( H cung l a t r o n g t a m , true t a m , t a m difdng t r 6 n

ngoai tiep cua AABC) (dpcm)

2/ Theo d i n h l y dien t i c h v a h i n h chieu t a c6 : •JSHBC = ^sac cos a <=> -ISSBC

Ngày đăng: 07/03/2016, 21:10

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w