• BOI Dl/ dNG HQC SINH GIOI BOG... HtfdTng din Doc gi a tu gia i, xe m hinh ben... Co so ciia phu ong phap mot la sii du ng d in h ly phu ong giao tu yen song song... lidc le cung la du
Trang 1• BOI Dl/ dNG HQC SINH GIOI
BOG
Trang 2• PHAN LOAI VA PHU dNG PHAP G IAI THEO 2 3 CHU YEN
• B oi difdng hoc s inh gioi
• C hu a n b i t h i Tii ta i, D a i hoc va Cao da ng
(Tdi ban i dn thvt ba, c6 svCa chUa bo sung)
N H A X U A T B A N D A I H O C Q U O C G I A H A N O I
Trang 3A N
Q I
16 H an
g C hu
oi
- H
ai Ba Tr cfn
g H
-a N
pi
Die
n t ho ai:
B ien ta
p C he b an : ( 04 ) 3 97 14 89
-6
H an ln ch inli : ( 04 ) 3 97 14 89 9;
T o ng B ien ta p:
(0 4) 39 71 50
11
• Fa
x : (0 4) 39 71 48 99
*
* *
Ch iu tr dc
h nh ie
m xu at
b an :
Gid
m do
c T on
-g bie
n ta p:
TS
HA
M TH
I TR
AM
Bie
n ta p:
THU
Y HO
A
Sa
a bd i:
THA
Nha sac
h
HONG
AN
Tr in
h ba
y bia :
THAI
AN
SACH
0 B
A I
T O
A N H
J NH K
H O NG G
I A
N C
H O
N L OG
M a so: 1
L 195OH2014
-In 1.000 cuon, kh
o 1
7 x
24c
m t
ai Con
g t
i C
o phan V3
n h
o a
V Sn La
- 2014/C
X B/
01
- 127/
O H
Q G
H N ng
ay 10/03/201
4
Q uy
et din
h xuat ba
n so:
198LK
ay 15/04/201
4
in xo
ng
v a nop
IIA J
chieu qu
y
il
n Sm 201
4
Trang 4NhSm phuc vu cho viec r e n luyen va on t h i vao D a i hoc b k n g phucrng phdp t i m
hieu cac de t h i dai hoc da ra, de tiT nang cao va chuan b i k i e n thiJc can t h i e t
De phuc vu cho cac do'i tUcfng t\ i hoc : Cac bai g i a i luon chi t i e t va ddy d u , p h a n
nho tCrng loai toan va dua vao do cac phucfng phap hop l i
Mac du chiing t o i da co g^ng het siic t r o n g qud t r i n h bien soan, song vSn k h o n g
t r a n h k h o i nhiJng t h i e u sot Chiing t o i mong don n h a n moi gop y, phe b i n h tii quy
dong nghiep ciing doc gia de Ian xuat ban sau sach ducfc hoan t h i e n hcfn
Cuoi Cling, chiing toi x i n cam cm NIlA X U A T B A N D A I H O C Q U O C G I A H A N O I da
NGUYEN DtfC DONG
3
Trang 5BANG KE CAC KI HIE
U TOA
N HO
C vA
CAC Tl/ VIE
g
(il
• [(ABC)
; (EFG)] :
• =
> : (i) ke
tUdn
g dilcfn
g
• C > :
Phep tin
h tie
n vectc
• d>
g tru
e A
• = : don
g nha
t
• D
o : Phep
doi xiiTng tru
e
0
•
i : khon
g don
g nha
t
• Q(
0;
cp ) : Phe
= S(ABC) =
dt(ABC) : dien.tic
0;
k) : Phep
AH
c =
V(S.ABC
) : the tich
hin
h cho
p
• VT(
0;
k) : Phep
• Stp
ly
• Sxq
•
V :
The tich
• CM
R : chiJng
minh rin
g
• A' =
''7(a
i A
: A' l
g (a)
• TH
i : trudng
hop
xuong
dtfcfn
g thftn
g (d)
• V
T :
ve tr
• BD
T :
bat di ng
thijfc
• d[M
; (
ABC)
I :
khoang each
• dpc
m :
dieu
phai chuCng min
h
• (a
; P):
goc
nhi die
n tao
a (P)
(AB) :
nhi die
n ca nh
AB
• K
L : ket lua
n
• (3r3
^ :
goc
tao bd
i ha
i
dUomg thin
g d
• D
K : dieu kien
va d'
• P
B : phan ban
• [HTCABCT
n ba
n
va mp(ABC)
4
Trang 6Chuyen de 1 : T O N G Q U A N V E C A C K H A I N I E M
T R O N G HINH H O C K H O N G G I A N
• H i n h hoc k h o n g gian la m o t mon hoc ve cac v $ t t h e t r o n g k h o n g g i a n ( h i n h h i n h hoc
t r o n g k h o n g gian) ma cac d i e m h i n h t h a n h nen v a t the do t h u d n g thiTcrng k h o n g ciing n f t m
t r o n g mot m a t phang
• Nhif vay ngoai d i e m v a d i i d n g t h d n g k h o n g drfoTc d i n h n g h i a nhiT t r o n g h i n h hoc
phAng; mon h i n h hoc k h o n g g i a n con xay di/ng t h e m mot doi tuong can n g h i e n ciifu nCfa la
k h a i n i # m m g t p h a n g c u n g k h o n g difoTc d i n h n g h i a K h i noi tori k h a i n i e m nay t a
lien tuang den m o t m a t ban b a n g phang, m o t m a t ho nildc yen l a n g , m o t tb giay dat d i n h
sat t r e n mot m a t da di/gc l a m phang No duoc k y hieu b d i cac chCf i n L a T i n h n h a : (P), (Q), (R), hoac cac chCf t h u d n g H y L a p nhU (a), ((5), (y),
• M a t phang k h o n g ducfc d i n h n g h i a qua mot k h a i n i e m k h a c ; n h i f n g thifc te cho thfi'y mSt
ph&ng CO nhutng t i n h chat cu t h e sau, goi la cac t i e n de :
O T I E N D E 1: C o it n h a t b o n d i e m t r o n g k h o n g g i a n k h o n g t h ^ n g h a n g (nghia la luon luon c6 i t n h a t 1 d i e m d ngoai m o t m a t p h ^ n g tiiy y)
O T I E N D E 2: N e u m p t dtfdng th&ng v a m p t m a t p h ^ n g c 6 h a i d i e m c h u n g t h i dUcTng th&ng a y se n S m t r p n v ^ n t r o n g m a t p h a n g n e u t r e n
O T I E N D E 6: M o i d o a n th&ng t r o n g k h o n g g i a n d e u c 6 dp d a i x a c d i n h : t i e n de neu
len sU bao toan ve dp dai, goc va cac t i n h chat lien thuoc da biet t r o n g h i n h hoc p h i n g
• TiT do chung t a c6 m o t so each xac d i n h m a t p h 4 n g n h i / sau :
• Dong t h d i t a phai hieu t h e m r k n g mot m a t phang se r o n g k h o n g bien gidi va dUcmg t h ^ n g c6
do dai v6 t a n mac du t a se bieu dien no mpt each h i n h thiifc hflu h a n va k h i e m t o n nhU sau:
• De thuc h i e n dirge phep ve c h i n h xdc m 6 t h i n h h i n h hoc t r o n g k h o n g g i a n ngoai cac dudng
t h a y ve l i e n net, t a can p h a i n a m chac di/pc k h a i n i e m di/dng k h u a t ve b k n g net dijft doan:
Mpt dtfdng b i k h u a t t o a n bp h a y c h i k h u a t m p t d o a n c u e bp n a o do k h i v a c h i
k h i t o n t a i i t n h a t m p t m a t p h S n g du'ng p h i a t r vC6c h o ^ c p h i a t r e n c h e n o m p t
e a c h t o a n bp h o a c c u e bp ti^cAig uTng
5
Trang 7• Muon x
ac din
h nh
^n
h mo
t m
at ph
^n
g trong khong gia
n ta con cho
n thu thua
c, tii
" gia
c hoac d
a giac ph&n
g (khong genh), dUcfn
h mp
t m^
t phSn
g tron
g khon
g gian Ta g
pi ca
g hinh
th vCc
v
di ca
c ky hip
u
(ABC), (ABCD),
(C),
tx ic tn
g vtn
g
• Ma
t phdn
g hinh thu^
c h
i khua
t ne
u c6 mpt hay nhieu m
^t ph&n
g nao
t
dvi ctn g
thdng n
^m trong m
^t ph&
ng hin
h thd'c m
a ma
t do h
i kh
p va khi dUcTn
g th
^n
g do khong l
a bien cua mat phdng b
g do cun
g tii'oTn
g vl
ng
khuat cue b
p ha
y toan b
p
• Mp
t diem
n hm
trong mpt m
$t ph&n
g hin
h thuTc b
i khua
t th
i g
oi la die
i diem m
a it nha
t c6 mpt die
m khua
t th
i dUp
c mp
t dUcfn
g khua
p : neu h
ai diictag d
o khon
g la bie
n cu
a cac m
^t phAn
g hinh thufc
C HINH ANH MIN
H HQ
A
\(d)
• (d)
bi (a) ch
e khua
t c
ue bo,
do (d) c6
1 doa
n
ve
ne
t dijft doa
n nk
m dud
i (a)
S
• (d)
bi ma
t ph^
ng (SAC) ch
e khua
t c
ue bo, d
e duf
t doan nkm sa
u (SAC) (h
ie
n
nhie
n (d) cung d sa
u c
ac ma
t (SAB), (SBC))
• Canh A
C
bi ha
i m
at phan
g (SBC)
v £l (SBC) ch
e
khua
t toa
n b
o,
do
ca doan A
C xe
m nh
u hoa
n to
an
d
sau
don
^n
g (SAB), (SBC)
-A A.
c /—
1—
^V FJ L^
• A]
H
bi ch
e toa
n b
o d
o c
a doan A]H nkm sa
u
ma
t
phin
g (AiADDi), m
Sc dij n
o
d
t rU
<Sc ma
t ph
an
g
(ABBjAi) va d tre
n m
at phan
g (ABCD)
• (d)
bi ch
e khua
t c
ue bo v
i c
6 doa
n EF v
e net
d
uT
t
doan nam sa
u ha
i ma
t phan
g (ADDiAj);
(CDDjCj
),
ma
c dij doa
n EF
d
phia t rU cJ e h
ai ma
t ph
ang
(ABBjAi);
(BCCiBi);
v
a
d tre
n m
at phan
g (ABCD)
•
CAC
K
Y HIEU
AN ^fHd
Thiir tr
f
Ky hie
u
Y nght
em A thuo
c ducfn
g thing (d) ha
y dadng
thin
g (d) chu
ra
A
Ha
y vie
2
A
i
(d) Di
em A or ngo
ai difdn
g thin
g (d) ha
y
dUcfn
g thing (d) khon
g chti
fa
A
Ha
y vie
d)
3 (d)
c (a) DU
&ng thin
g (d) nk
m trong m
at phin
g (a)
ha
y (a) qu
ay quanh (a) ne
u (a) lu
u don
g
Ha
y vie
e (a)
4 (d)
/ /
(a) Dif
crn
g thing (d) son
g son
g
\6
\t ph in
g
(a )
Ca ch v ie
n (a)
=
0
5 (d)
n (a)
=
A Difdn
g thing (d) ei
t m
at phin
g (a) ta
i A each vie
t k
hd
c :
(d)
n (a)
=
{A
}
Trang 86 (d,) n (da) = A H a i dUcfng t h i n g ( d i ) , (da) dong quy t a i A Cach v i e t khac :
Cling chijfa 3 d i e m A , B, C p h a n biet k h o n g
t h i n g hang
Cach v i e t khac : (a) = (p)
Co so cua phiiong phap t i m giao tuyen cua
hai m a t p h l n g (a) va (P) can thUc h i e n 2 budc
• B , : T i m h a i d i e m chung A , B cua (a) va (P)
n Ba : Difdng t h i n g A B l a giao tuyen can t i m
hay A B = (u) n (P) (ycbt)
n P H i r O N G P H A P ,
• Ti/ong t u nhtr phaong phap 1 k h i chi t i m ngay dtfoc 1 d i e m chung S
• Luc nay t a c6 h a i trifcfng hap :
> H a i m a t p h l n g (a), (P) thuf tif chiJa h a i difdng
t h i n g ( d i ) , (da) ma (dj) n (da) = I
=> S I la giao tuyen can t i m
> H a i m a t p h l n g (a), (P) thuf t i f chtifa h a i difdng
t h i n g ( d i ) , (da) ma ( d i ) // (da)
S _
D i f n g xSy song song v d i (dj) hay (da)
=> xSy la giao t u y e n can t i m
7
Trang 9m C AC B AI T OA
N CO B AM
oi ABCD c
6 ca
c canh d
oi khon
g song son
g va die
m
S
d ngoa
n cii
a :
a/ (SAC) va (SBD)
hi
(SAB) va (SDC)
; (SAD) va (SBC)
Gia
i
a/ Xe
t ha
i ma
t phan
g (SAC) va (SBD), c
6 :
•
S la die
m chun
g
th
uf
nhat
(1)
•
Tron
g tuT gia
c lo
i ABCD, ha
i ducm
g cheo A
C
n
BD = O : diem chung
thijf
nhi
(2) ^
Ti/
(1 ) v
a
(2)
suy r
a :
(SAC)
o
(SBD)
= SO (ycbt)
hi
Xe
t ha
i ma
t phan
g (SAB) va (SDC) cung c
6 :
•
S la mot die
m chun
g
•
Ha
i canh ben A
B va C
D cu
a ti
l gia
c ABCD
theo gia thiet khong son
g song
^
AB ^ C
D
=
E : l
a diem chung
o : (SAB)
n
(SDC)
= SE (ycbt)
Tucfn
g tif:
(SAD)
n
(SBC)
= SF (ycbt);
vd
i
F
= AD ^ BC;
do AD/
/ BC
Ba
i 2
Ch
o ti
l die
n ABCD Go
i Gj,
Ga la trpng tar
n ha
i ta
m gia
c BC
D va ACD La
y th
m cii
a BD, AD, CD.Tim cac gia
c tuye
n :
aJ
(G
1 G2C)
o
(ADB)
hi
(G
1 G2B)
n
(ACD) c/
(ABK
n
(ABD)
= IJ
hi
(GiGaB)
n
(ACD)
= Gg
K
hoSc
A
K
d
(ABK)
^ (CIJ)
= G,G
cho
p
S
ABCD
c
6 da
y ABCD l
a
hinh
bin
h hanh tam O
aJ
Ti
m giao tuyen cua h
ai ma
t phSn
g (SAD) va (SBC)
hi
Ti
m gia
o tuye
n cu
a ha
i mS
t phin
g (SAB) va (SCD)
c/ Ti
m gia
o tuye
n cii
a ha
i ma
t ph
^n
g (SAC) va (SBD)
i ma
t phSn
g (SAD) va (SBC), c6 :
•
S la die
m chun
g thur nhat
•
De y A
D
c (SAD);
BC c (SBC) ma A
D //
B
C
Ta dun
g xS
y //
A
D hoac B
C
[(SAD)
= (xSy;
AD)
^
|(SBC)
= (xSy;
BC)
=^ (SAD) n (SBC)
= xS
y (ycbt)
hi
Tifang tir, difng uSv //
A
B hoftc C
D
8
Trang 11Giai
• D
e y den K
D
Do do trong (BCD) KN
o CD = I
Ma K
N c (MNK) CD
(MNK) =
I (ycbt)
• Taon
g t
a xe
t IM
c (MNK), tron
g (ADC)
Ta
C O : AD n I
M =
E
= > AD
n (MNK) =
E (ycbt)
Ba
i 7
Cho tiJ die
n ABCD La
y diem
M tren A
C v
a ha
i die
m N va
m cu
a C
D v
a AD
\ di
(MNK)
HtfdTng din
Doc gi
a tu gia
i, xe
m hinh ben
a/ CD (MNK) =
P (ycbt)
b/ AD
n (MNK) =
h cho
p tu
f gia
c S.ABCD
La
y tren
m
M,
N, P theo
P khon
g th
m gia
o die
m cu
a S
C v
a AC v
di (MNP)
Gi
ai
ThUdng thudn
g d
o ycb
t ti
m gia
o die
n (MNP) =
K (ycbt)
Trong mp(SAC)
MK
o A
C = H1
ma MK
c (MNP) |
= > AC r>
(MNP) =
H (ycbt)
Ba
i 9
Cho m
ot ta
m gia
c AB
C v
a mo
t diem
S d ngoai ma
t phin
g chil
a ta
m giac
a tron
g ma
t phin
g (ABC) t
a la
y mo
t die
m O Dinh ro giao
diem
cua
(MNO) v
di ca
c dudn
g thing A
B, BC, AC va
u, do
c gi
a tu gia
i (xe
m hinh ben)
AB
n (MNO) =
E (ycbt)
BC
o (MNO) =
F (ycbt)
AC
n (MNO) =
G (ycbt)
SC
n (MNO) =
H (ycbt)
10
Trang 12Loal 3 : Cf l l /NG MWfl B A D I £ M T R O N G K H O N G G I A N T H A N G H A N G
I pm ro NG P H A P
Co so cua phiiong phap can phai chufng min h ba diem
trong yeu cau b ^ i toan la diem chu ng cua 2 mSt phSng nao
do (chfing b a n A, B, C nSm tr en giao tu yen (d) cua h a i ma t
phSng do nen A, B , C th a n g hang)
O day khong loa i triJ kh a n& ng chiJng min h difoc difdng
thang AB qua C => A, B, C t h i n g hang
n C A C B A I T O A N C O BA M
Ba i 10
Xet ba diem A, B , C kh on g thuoc ma t p h i n g (u) Goi D, E, F Ian lu ot la giao diem ciia AB ,
EC, CA va (g) ChCifng m i n h D , E, F th a n g hang
G i a i
De y tha y D, E, F viTa a tr on g mp(AB C ) vifa d trong mp(a)
Do A, B, C g (a), nen (a) va (AB C) pha n b iet nhau
Trang 13to al 4 :
C mi UG
M Wf
l
MQ
T D
tf CiN G
T H AN G
T RO NG K HO NG G IA
N
QU
A MO
I.
P Hi rO NG
P HA P,
Ca
sd
cua phucfn
g phap chuTng min
h diXcrn
g thing (d)
qu
a mo
t diem co din
h :
Ta can tim tre
n (d) ha
i diem tuy y A
;
B va chuTng min
h
2
diem d
o thin
g hang vdi mot die
m
I co din
h c6 sSn trong
khon
g gian
=> (d) qua
I
C O din
h (dpcm)
IL
P Ht fO NG P HA
P,
Co s
d cu
a phiTcfn
g phap can thu
c hien b
a bifdc cc
f ba
n :
n
Bi : Ti
m dUctn
g thin
g
a co din
h
d
ngoa
i mS
t ph5n
g co
dinh (a) m
a (a) chil
a
d (li
Oi dong)
• B2 : Ti
m
giao
die
m co din
h ma d d
i qu
a
m C A
C BA
I
TO AN
C
O B AN
m co din
h tron
g khon
g gian
d
v
e ha
i phia
kha
c
nhau cua
t diem M lu
u dong trong khong gia
n sa
o ch
o MA n a =
I va M
g thin
g IJ luo
n di qua mot die
m co dinh
> O co din
h (v
i
A,
B co din
Ta CO : mp
(P )
= (MA;
MB)
n (a)
= IJ
De y tha
y : O e I
J
=>
O, I, J thing han
g
Nghi
a la dacfn
g thin
g IJ d
i qu
a
O co din
h (dpcm)
ABC
D
(A
B //
C
D va A
B
>
CD)
Xe
t diem S
e
(ABCD) va mat
C vd
i
a '-^
S
B
= M, a n S
D
= N
ChuTn
g minh difdn
g thin
g MN luo
De tha
y
dx ia
c
ngay
M
N
c (SBD) va
AC
c (SAC) va M
N
o AC = O thi O e
BD = (SBD) n (SAC)
=> M
N qu
a
O co din
h (dpcm)
12
Trang 14Bai 15
Ch o h a i d i f d n g t h f t n g d o n g q u y O x , O y v a h a i d i e m A , B k h o h g n S m t r o n g m a t p h i n g ( x O y) M o t m a t p h a n g l i f u d o n g ( a ) q u a A B l u o n l u o n c a t O x , O y t a i M , N C h i i f n g t o M N q u a
Trang 15O
Ca ch
h rS ng
F q ua O = I
G n C
F
do ng
q uy
g ia
c
AB C, A B
C sa
o ch
o AB c at
A 'B
t A
C
d F;
C ca
g mi nh
b
a
di em
E , F ,
G
th Sn
g ha ng
b/ C hi Jn
g mi nh d if cf ng t ha ng
A A' ,
BB ',
C
C
do ng
q uy
E , F ,
G la b
a
di em c hu ng
c ua h ai m at
p h^
ng p ha
n bi et
(a )
^
(A BC )
va ( P) =
( AB 'C ).
Do
d
o : E , F ,
G
e (A ) = ( a)
n
( P)
b/ N ha
n
xe
t nh
u s au :
: A
A',
B B'
cr
( EA A' );
A A'
o
BB ' #
0
^ B
B' ,
CC
c
(G BB ')
; BB
' r
^
CC *
0
Ice
,
AA ' c
( FC C)
;
CC
n
A A'
#
0
^
AA ', B' , C
C
do ng
q uy t ai O
( dp cm ).
Chuyen de
2 :
Q UA
N H
E S ON
G SO NG
to ai 1: C Ht JN
G M Wf
l HA
I D LfC JN G
T
H A
N G
S ON
G SO NG
I.
PHirONG
p
ca
n
th ii
c hi en
h ai
h xid c
CO b an c ho
d in
h ng hi
a
a //
b
ja ,b
c:
( a)
Ki em
t ra h ai
d if dn
g th an
g
a
cu ng t ro ng
m ot m at
ph an
g
ha
y
hi fe
u ng am r an
g hi en n hi en d ie
u
do x ay
a
ne
u ch un
g tr on
g
1
hi nh p ha ng
n ao d o.
( 1)
•
B2 :
Du ng d in
h
ly
T ha le s,
t am
g ia
c do ng d an g, t in
h ch at
b ac c au
( ti nh c ha
\
6i
di fd ng t hi
J
ba ) la h ai
c an
h
cu
a
hi nh t ha ng ,
ha
y ha
i
ca nh
d oi c ua
h in
g di nh
h ai
d if cf ng t h^
ng
d
o
kh on
g
c6
d ie
m ch un g.
( 2)
=
>
(y cb t)
p S.
AB CD
c
6 Gj , G2 ,
G3
,
G, I an
lu cf
t
la
t ro ng
t am c ac t am
g ia
S DA C
hu mg m in
h
tiJ
f
gi ac G iG aG gG ,
la
h in
h bi nh h an h.
14
Trang 16Cho diem S d ngoai ma t phSng h in h b in h h a n h AB C D Xet mS t phdng a qua A D c^t SB
va SC Ian lucft d M va N Chiirng m i n h A M N D la h in h tha ng
G i a i S D6 y thay ha i mSt phSng (a) va (P) c6 2 diem M vfl N 1^ d i^ m chu ng
Cho tuT dien AB C D G oi M , N Ia n li^gt la tr u n g diem cua B C va B D G gi P la diem
tren canh AB sao cho P ?t A va P # B Xet 1 = PD A N va J = PC o A M
ChiJng min h rSng : I J // C D
tu y y
G i a i Xet ha i ma t pha ng ( A M N ) va (PCD ) c6 h a i diem chu ng la I va J
Co so ciia phu ong phap mot la sii du ng d in h ly phu ong giao tu yen song song
De chiing m i n h d // a ta can thUc h ien h a i bade CO b a n chufng m i n h : d
• E l : Chufng m i n h d = y o p ma
y r- a = a
p n a = b a//b
1 5
Trang 17n PHOONG PHAP^
Ca sd
ciia phifcn
g phap la st
f dun
g die
u kie
n ca
n
va du
chijf
ng minh di/d
ng thin
g (d) son
g song vc
Ji ma
t phan
g (a)
ban
g ha
i b
t fd
rc :
• Bi
: Qua
n sat va qua
n ly gia thie
t tim dudng thing o
u
vie
t (
A) cz
(a) va chiJ
ng minh (d) / / (A)
• B2
: Ke
t luan (d) / / (a) theo die
u kie
n ca
n va dii
m cA
c BA
I TO AN C
O BA
M
Bai2
1
Tron
g
t uf die
n AB
CD, chufn
g min
h rSn
g dean no'i ha
i tron
g ta
m Gi
hi son
g song
v6 [
(ACD)
Giai A
Go
i Ai
,
A2
la trung die
m BC v
a BD theo th
ut tiT d
o, ta c6 :
AG)
AG2
2
AA, ' AA
g
3
Theo din
h ly Thales, t
a c6 :
'0,02/
2
//C
D (tinh ch
at dU
c rn
g tru
ng binh)
Theo tin
h bS
c ca
u
=>
G1 G2
//
C
D c:
(ACD)
=j
G1 G2
//
(ACD) (dpcm)
Ba
i 22
Cho hin
h chop S
ABCD day la hin
h binh han
h AB
g minh : MN //
(SCD) va A
B / / (MNCD)
Gi
ai
Theo tin
h ch
at dudn
g trun
g bin
h tron
g ta
m gia
c
=>
MN //
A
B, ma A
B / / CD
=>
MN //
CD
cz
(SCD)
Theo die
u kie
n ca
n va d
u
=>
MN //
(SCD) (ycbt)
O Cach kha
n
(SAB) va trong h
ai ma
t phan
g
do
chiJa theo thijf tiT ca
c doan thing C
D / / AB D
MN //
B va C
D
=>
MN //
(SCD)
3
C
D (ycbt)
TifOng
tyl :
A
B / / MN
c
(CDMN)
=>
AB //
CDMN) (dpcm)
Ba
i 23
Xe
t ha
i hinh bin
h hanh ABC
D
va ABEF khong don
g phln
C va B
N
= B
-F Chufn
g min
h ring M
N / / (DEF)
3
3 Gi
ai
De
y tha
y
M,
N la trong tam cu
a ba
i ta
m gia
c ABD v
a
AB
E theo thijf tu d
o
Keo d
ai th
a trun
g die
m AB
PM P
X
1
^ PD P
E
3
Theo din
h ly Thal
es
^ MN //
E
D
c
(EFDC) ^ (DEF) (dpcm)
D
16
Trang 19c kc
B AI
b
a t
ia
c un
g ch ie u, s on
g so ng
v
a
Ic ho ng d on
g ph
^n
g
Ax , By ,
B' , C s ao c ho
c kh on g.
C hO fn
g mi nh ( AB C)
A'B' II
AB
c
(ABC)
= C
C'
=j
A'C
//
AC
c
(ABC)
Ne
n
ta c
6 ha
i d
Uc rn
g th
^n
g do ng
q uy
A B' ,
A
C
tr on
g mp (A 'B 'C ') t ho
a di eu k ie
n (I ).
=> ( AB 'C )
//
AB C) ( dp cm )
h ha nh A BC D.
T ir
A
a C k
e A
x c
a Cy
on
g so ng c un
g ch ie
g
ma
t
ph Sn
g (A BC D) Ch ii
g mi nh
( B;
x) //
( D;
C y)
G i&
i
Ti ra ng
t
u x et
ai
m at
hi ng
( B;
A x)
th uT
t
a
ch uT
a
ca
c c ap
d ud ng t hi ng
do ng
q uy
fAB/
/C
D IAx/
/C
y
=>
( B;
x) //
( D;
y)
( dp cm )
F
d t
ro ng
h ai m at
p h^
ng k ha
c nh au
//
BC E)
v
a (
BC E) th iif
ti
T c
hu Ta
c ac
ap
d ir dn
g
th dn
g do ng
q uy
/ A;
iA F/
/B
E
AD//
BC
(A DF )
//
BC E) ( dp cm )
D an
g 2 : C
H UfN G
M
I N H
CA
C D
l /d
N G TH
A NG
D 6N G P
H A
N G
LP Bi rO NG PB AP
g ph ap c hi if ng m in
h
ca
c
du dn
g th in
g
di , d2 , dg
d on
g ph in
c hi
^n
h ai
b i/<
g mi nh
d ], d g, d s,
d oi m ot c at
n ha
u
va
c un
g so ng s on
g
vd
i mp
t ma
1 8
Trang 20• B2 : Ket luan d], d2, ds, c (a) // (P) => d i , d2, d^j, dong p h i n g trong (a); (a) phai
chufa cac giao diem cija d,, da, ds,
Goi A t i , At2, Ata la ba diTdng phan giac
ngoai ciia goc : fiAfc, CXt), I5A6 theo thuT t u do
Do cac tam gidc can tai dinh A nen cac
phan giac ngoai song song vdi canh day, nen :
At, / / B C c (BCD)
A t a Z / C D e (BCD)
; A t 3 / / B D c ( B C D )
=> A t , , At2, Ata dong ph^ng (trong (P) // (BCD) \k (P) qua A) (dpcm)
Htfdng d i n
Doc gia t u giSi iMng t\l hai bai toan tren
19
Trang 21DE SH L i"
HA IJ ES T RO N
G KH 6 N
G GI AN
•k
Din
h ly
i (thu|ln)
: Ha
i dit an
g th in
g tu
y
y d,, d
2 tr on
g
kh on
g gia
n ch dn tr en c dc in
^t ph dn
g so ng s on
g nh au (a )
II (P ) II (y ) t ao r
a cd
c do an th an
g tU cm
g l in
g ty le :
A,A.
-k
Dinh
l y2
( da o) :
• Tr Ud
c kh
i xe
t di nh l
y da o, t
a qu an t ar
n de
n ha
i kh ai
ni em s au
hi
et d en c ac d ay t
y so , c hi ng h an :
A,
A
B1 B9 (*
• (A i;
]) l
a ca
p go
c cu
a d ay t
y so (
*)
• (A 2;
B2 ) v
a (A 3;
B3 ) la c ac c Stp n go
n cu
a d ay t
y so
*)
• Do an n oi c ap g oc v
a cd
c c ft
p ng on l
a ( do an ) ba
c t ha ng c ua d ay t
y so
*)
• Dinh l
y
: N eu c
6 da
y ty s
o tr on
g kh on
g gia
n :
A,A
(*
) da , x dy r
a tr
g (d ,) (d 2) th
i cd
c ba
c th an
g AiB ,, A2B
2, A3B
3 cu ng s on
g so ng v
ai mo
t mg
i ch
u
: Ta
c
6
ph at b ie
u kh ac c ua d in
h ly
Th al es d ao n hi
f sa
u :
Va
i die
u kie
n c6 d ay ty s
o (*
) da x dy r
a tr en h
ai
du dn
g th dn
g (d j)
fd
^)
th
i mo
t tr on
g
3 ba
c
th an
g A,B ,, A2B
2, A^B
^ se s on
g so ng v
di mo
t
ma
t ph dn
g ch da h
ai ba
c th an
g co
n la
i
"A ,B
i (a )
= ( A2 B2 ; A3 B3 )
A2 B2
//(P)
-(
A3 B3
;A iB i) ( A)
A3 B3 //
(Y )
S (A ,B
i
;
A2 B2 )
(d i) (g oc )A
i
(n gp
n tr en ) A
2
(n go
n dif di) A
3
(d
z)
^ B,
o d in
h)
\
Dan
g 3 : CH
U fN
G M
I N
H D JC
i N
G TH AN
G S ON
G S ON
G M AT P HA NG
BA NG D
I N
H L
Y T HA LE
S
L
PH ir ON
G
PH AP ,
Co s
d cu
a ph uo ng p ha
p ch uf ng m in
h dU dn
g th in
g so ng s on
g vd
i mS
t ph in
h ly T ha le
s da
o tr on
g kh on
g gi an g om
ai b ud
c ca b an s au d ay :
• Bi
: Xa
c d in
h tr en h ai d ud ng t hi ng t ii
y
y ch an
g ha
n ( di ), ( d2 ) d
e ti
m t re
n do d
1 B
2
Aj As B ,B
3
Xd
c di nh c Sp ( Ai
; B j) l
a cS
p go c, c dc c Sp ( Aj
; B 2) v
a (A
3
B3 ) la h ai
Sp n go n.
n
B2 : Lu
c do c ac d oa
n ba
c th an
g Ai Bi , A2 B2 ,
A3 B3
d ir ac k et l ua
n cu ng s on
g (P ) ( xe
m • >
20
Trang 22• pmroNG PHAPj
Ta chutng m i n h dUdng t h i n g (d ) n am tro ng m at p h i n g (a) / / (()) => (d ) / / (p )
m cAc B A I T O A N C O B A N
Bai 32
Cho tut d ien A BC D c6 A B = CD Go i M v a N la hai d iem lUu d o ng tre n A B v a C D sao cho
A M = CN Chutng m i n h M N luo n so ng so mg vdi mSt p h I n g co d inh^
Giai
Neu d at A B = C D = a; A M = C N = x De y thay tre n A B v a C D ta co d ay ty
A M ^ CN
A B CD
i(A; C) la cap go'c
|(M; N) va (B; D) la hai cap ngon tUcJng ufng
Ap d ung d i n h l y Thales dao tro n g kho ng g ian t h i ba bac
thang A C, M N v a BD ciing so ng so ng v<Ji mot mSt phIng (a)
due nay (a) chUa co d i n h v i d ay ty so — chUa la h k n g so)
a
Ta diTng (a) n h u sau : go i E, F, G la tru n g d i e m cac canh A B,
DC, CB theo thuf t i l do t h i (a) = (EFG) v a (a) tho a y eu cau la
Vay M N / / (EFG) = (a) co d i n h (d p cm)
Bai33
Cho hai h i n h binh h an h A BC D v a A BEF kho ng dong phIng; tren cAc dUOng cheo A C v a
BF Ian lucft lay cac d iem tuy y M , N sao cho
Cho h i n h v uo ng A BC D v a A BEF d tro n g hai m at p h I n g khac nhau Tre n cac d ifd ng cheo
A C v a BF, ta Ian lug t lay cac d i e m M , N sao cho A M = BN Chutng m i n h ran g M N / / ( CEF)
A p d ung d i n h ly Thales cho cac d o an bac thang :
A B, M N , CF voti de y EF cz ( CEF) ; A B / / EF c (CEF)
^ M N / / (CEF) (d p cm)
2 1
Trang 23Bai
35
Tr en h
ai ti
a Ax v
a By ch6o n ha
u, ta I an
lua
t
la
y ha
i di em
M N sao
c ho A
h rS ng M
N lu on l uo
n son
g son
g vd
i mp
t mS
t ph Sn
g c
o di
nh
Tr ad
e he t:
HU oT ng
dim
By la'y d ie
m
N, di nh b
di : B
N, =
1
Ax l ay d ie
m
Mj di nh b
di : A M; =
k (v
i k > 0 , ch
o tn /d c)
Hi en n hi en 1^
h
ai di em M
j \k
N ] c
o di nh
Theo g ia t hi et v
a tii
each d an
g tr en h in
h ta
co :
AM , AM , AM
i BN
i
BN ,
BN AM
y da
o cu
a di nh l
y Th al
^s M
N
lu on l uo
n son
g son
g vd
i mS
t ph in
g c
o di nh ((5) =
(A
; Bd ) cha
a AB v
a da dn
g th in
g d q ua
B son
g
song v
di N, M]
(dpcm )
i da dn
g th in
g che
o nh au d
j va
d 2.
M la m ot d ie
m ch uy en dong t re
n don
g tr en
d 2.
im q uy t ie
h tr un
g di em
I cu
a doa
n MN
Hu&ng dan
Go
i AB l
a doa
n vu on
g go
e ch un
g cu
a
di va
d
2
(A
e dj , B
d2 );
O la t ru ng d ie
m eii
a AB
N'
OB I
X
Theo d in
h ly
T ha le
s da
o th
i 01
nkm
t ro ng m at p hl
ng
(P )
qu
a O song song v
di
di va
da, tiif
c la m at p ha ng x
ac
di nh b
ai ha
i da dn
g th in
O Ia
n lacr
t son
g
song v
di d]
va
d-^
Giai han
; M v
a N chay t re
n d]
va k ho ng
co ra
ng
huge n en
I cha
y
ti
y tr en
( P)
• Dao :
L ay m ot d ie
a I t
a dO ng dacfng t hi ng song
song v
di d
'2 ,
da dn
g th in
g na
y ci
'l
do'i xO ng vdri O q ua E
MI
c lt
d'2
d N' Di nh
l
y
da dn
g tr un
g bi nh c ho t ha
y I l
a
tr un
g di em c ua M 'N ' TC
f M' va N ' di fn
g ca
c da dn
g th in
g son
g
song v
di AB Ch un
g Ia
n la
gt el
t d] d
M va
d
2 d
N
Ha
i ta
giac O M' MA v
a ON 'N
B de
u la n hf ln
g hi nh c hS n ha
t :
=> , ^ ^ ^ _^
M N' NM ' la m ot h in
h bi nh h an
h d
o do
I la t ru ng d ie
m cu
y ti eh t ru ng d ie
m I c ua doan M
N la
m at p hi ng
( P)
i qu
a O song song v
di
dj
va
22
Trang 24lidc le cung la du
Co so ciia phifong phap la sii du ng sii c^n th iet cua h a i tien de 5 va tien de 6 d4 xay diTng
va chufng min h mot so b ai toan co b a n tr on g khong gian k h i h in h th a n h nen cac va t the (hien
nhien 4 tien de d trirdc da duoc nga m hieu la lu on lu on di/gc sOf dung)
B a i 37
Cho a, b, c la ba difdng t h i n g khong ciing nkm tr on g mpt ma t phAng va doi mot cSt nhau
Chufng min h rSng : a, b, c dong guy
G i a i Tha t vay : gia sijf a, b, c kh on g dong quy, th i cac giao diem ciia chiing lap th a n h ba diem
khong th a n g ha ng va ba difcfng thftng cung nam tr on g mot ma t phang Tr a i vdi gia th iet
Theo phep chufng m i n h p h a n chiifng ycb t dUcrc chijfng m i n h xong
B a i 38
Cho 3 tia Ox, Oy, Oz doi mot vu ong goc
a/ Chufng min h r k n g ba tia do kh on g cung n k m tr on g mot ma t phang
b/ Ijay tren ba tia Ox, Oy, Oz Ian lifgt cac diem A, B, C (khac goc O) Chijfng min h r a n g :
(AB + BC + CAf ^ eiOA' + OB^ + OC^)
c/ Ky hieu a, p, y la ba goc tarn giac AB C, a, b, c la do dai OA, OB , OC Ti n h cosa, cosp, cosy
va chufng to r a n g a, [3, y nhon
G i a i a/ Tha t vay : gia sCf ba tia cijng thuge mot ma t
phang, vi Ox va Oy ciing vuong goc v6i Oz, nen Ox va
Oy cung n a m tr en mot du'dng tha ng D ieu do tr a i vdi
gia thiet
Do do ycbt di/gc chufng min h b a ng phep chufng
min h phan chufng
b/ Ap dung bat da ng thufc B u nhiacovky, ta eo :
(AB +BC +CA)^ < 3( AB ' + BC^ + CA^) = 3(0A^ + 0B ^+ OB^ + OC^ + OC^ +OA^)
(AB + BC + CAf <i 6(0A^ + OB^ + OC^)
c/ Ap du ng djnh ly h a m cos cho AAB C, ta c6 :
BC^ = AC^ + A B ' - 2AC.AB.cosa
2 3
Trang 25cosa =
< =>
a nhon (dpcm)
>0
Tirang ti
f t
a c
6 : cos(i
= Va
^ + b^
Vb
^+
c^
Do d
o : P, Y cun
g nho
n (dpcm)
Ba
i 39
>
0;
cos
y = Vc
2 + b2 V a^
g khong gia
n ba tia Ox,
Oy,
Oz do
i mo
t ta
o vdr
i nha
u mo
t goc 120
Oy,
Oz ph
ai dong phSn
g
Gi
ai
Gia si
if
Ox,
Oy,
Oz khon
g dong phSn
g
va ta cho
n
sAn
tre
n Ox
; Oy ca
c die
o : O
A
= OB =
1 (dvcd)
Dong
th
di
tren tia d
oi Oz' cu
a tia Oz, ta cho
n die
m C sa
o ch
AC =
OC = OAcos60"
OC =
Dinh ly ham cosi
n tron
g A BOC c
ho ta :
BC
^
= OB' + OC
- 2OB.OCcos60°
« BC'
=
1 +
i
~ 2.1.-.i =
« BC =
Do d
o : AC = BC = (1)
Tifon
g tu : AB
^
= OA' + OB
^ 2OA.OBcosl20''
1
) =
3
« AB =
Va
(2)
Ttf (1)
va (2) ta difg
c : CA + CB = AB <=>
C
e AB <=>
Ox, Oy;
Oz dong ph^
ng (v
f ban dau)
ai dong phan
g
(dpcm)
Ba
i 40
Cho ba tia Ox,
Oy,
Oz sao ch
o xO
y ^ x
&
= 45
" v
a y(5
z = 90
"
ChiJ
ng min
c m
ot ma
t phang Hi^c
Tn
g da
n
Gia sU Ox,
Oy,
Oz khon
g dong phSn
g
va chon tre
n
do th
m A,
B,
C sao ch
o : O
a V
2
Do gia st
f =
> A
e (OBC)
Stf dung din
h ly ham cosi
n
=> AB = AC = VOC
^ + OA
^
- 20 C.
OA C OS 45
"
AB = AC
=
ha^
a '
- 2.a>/2 a ^
=
=
a
Ma : BC =
a
^/2.^/
2 = 2a
24
Trang 261/ G i a sd O x ; O y ; O z d o n g p h ^ n g t r o n g m p ( a ) n a o d o , t a co h a i k h a n&ng :
T i a O y h o a c n a m t r o n g m i e n goc xOz ( x e m h l ) h o a c m i e n n g o a i goc ic8z ( x e m h 2 ) t h i
xOy = 3 0 ° * 6 0 ° ( h 2 ) h o a c xOy = 1 5 0 ° * 6 0 ° ( h l ) ( v 6 l y v d i g i a t h i e t xOy = 6 0 ° )
Trang 27c d
o, (1) + (2) ch
o t
a gia thi§
't:
2 c
os fli Ot)
1 OA O
'
=.1 oO
E
= 2cosf^
; OC co din
h trong khong gia
n ne
n tia pha
n gia
c O
D cung c6' din
h
Ha
i tia OB;
OD co din
h tron
g khon
g gia
n ne
n tia pha
n gia
c OE co din
h, ma
t ch
o t
a die
m
E
co din
h trong khong gian
Va
y kh
i A,
B,
C lo
u dong sa
o ch
o
nhun
g luo
n qua E co din
h
Ba
i 42
hi ma
t ph
^n
g (ABC)
h chop S
ABCD co day la hin
h binh han
h ABCD Tren ca
c can
g c
^c die
m A], B
i,
Cj sao ch
o SA
SC : k (k >
0,
k c
ho san)
ChuT
ng min
i
Ci thay d
oi th
i mp(AiBiCi) ca
t S
O ta
i 1 die
m
co din
h (vd
i
O
= AC
o BD)
Gi
ai
Go
i AM la trung tuye
n cu
a ZiABC tu
y y con
B', C tu
y y
thijf
ti
i tre
n A
B
va AC (h.2)
Kh
i AM
o B'C = M', ta co nga
y h
e thu
fc :
+ — = 2
— (*) (D
oc gia t
u chufn
g min
Do d
6, ne
u g
oi SO ^ A,C,
= O', th
SO
SAi SCi SO'
(1) (h.l)
NenSA SC ,
SAi SC]
(2)
< =>
„ SO , SO'
0, ch
o
< => O' CO
in
h (ycbt)
Ba
i 43
(h
.2
)
Cho hin
h chop deu co canh ben v
a can
h da
y de
u ban
g
a
Tim die
m
M
e SA sa
nho nha
t, ha
y ch
i r
a gia t
ri nh
o nha
n tic
h AMBD S =
i BD.M
O
=
|
aV2
M0 (1)
=>
min
S xa
y ra minMO xay r
a
Nhun
g minMO = dlO
; SA]
= OH
Vi
t Of die
n de
u ne
n AC n B
D
=
O th
i S
O la dudng cao
=> ASO
A vuong t
ai
O (2)
26
Trang 28(3)
^ S = 4SO^ + AC'^
Be y trong (3) chi c6 SO la thay doi, do do S nho
nhat khi va chi khi SO nho nhat Trong mp(0; d) co
dinh ha OH 1 d tai H
=> OH = d[0; (d)] = minSO (do (d) co dinh)
=> minS = 40H^ + AB^ xay ra k h i S = H (ycbt)
Bai 45
Cho 3 diem A, B, C khong thuoc mat phang (P) Gia sd cac doan t h i n g AB va BC deu c l t
(P) Chufng minh rang doan t h i n g AC khong c l t (P)
• NhUng M , N , I la ba diem n l m trong ba canh cua AABC
ma t h i n g hang t h i dan den di6u v6 ly
Vay doan AC khong the nao c l t mp(P) difoc (dpcm)
Trang 29a si
f A, B, C 1^
g
di qu
a
A, B va
C Dudn
g thin
g na
y
cung v
di diem
D xa
c dinh m
ot ma
t phftn
g (a) Ta c6 : / ^rv
De
y tha'
y (1)
t
"khong c6
4 diem nao /
tron
g n die
\
Vay khong the c6
3 diem nao trong
n diem ay thing han
g (dpcm)
2/ Ba
y gid t
a xe
t n die
m kha
c vd
i tinh chat l
a 4 diem bat ky nao trong chiing
deu
dong
phang
Goi n die
m a
y la
• Kh
i n = 4 t
hi ba
i an difang nhien dung
m Ai
; A 2;
3 xa
c dinh m
at phln
g (a) X6
t di
em
Aj (v(J
i 3 < i <
n) The
o gi
a thie
t 4 die
m Aj
a A
j e (a) vd
i m
oi i = 4
t c
a n die
m a
y thup
c mp(a) (dpcm)
Ba
i
47
Cho tiJ
ie
n ABCD Go
i I;
J Ia
n lug
t l
a trun
g diem cua h
ai can
h do
i AB v
m tuyy tre
n can
h AC Ma
t phln
g (IJM) ca
t can
h BD t
ai
N Chufn
g min
t die
n IMJN thanh h
ai phan dien tic
h ban
g nhau
Tron
g ma
t phing (IJM)
h ly Thales dao t
hi AC
; BD
; IJ nam trong
ba
ma
t phan
=> O la trung die
K tron
g tam giac MIJ
va
NI
J la ban
g nhau
dt (MIJ) = d
t (NIJ)
Vay I
J chi
a thie
t dien IMJ
N than
h ha
i pha
n die
n tic
h
bang nhau (dpcm)
Ba
i
48
Cho tuf die
n ABCD Ti
m diem
M tron
g khong gia
n sa
o ch
o I = MA
^ + MB^
i nh
o nhat
Gi
ai
Goi I,
, G Ian lifcrt la trung die
m cii
a AB;
CD va I
J
Dinh l
y difcfn
g trung tuye'n cho :
Trang 302
^ /c /- i 2 T T 2 A B ^ + C D ^ ^ A B ^ + C D ^ , , 2 L i
=> L = 4 M G ^ + IJ'' + > + IJ'' = h a n g so
2 2 Dang thufc xay ra k h i va chi k h i M = G => E = M A ^ + M B ^ + M C ^ + M D ^ d a t gia t r j nho nhat k h i va chi k h i M d G, t r o n g tarn cua tuT d i e n (ycbt)
Ta CO : VQ.MNP = VAO.NP + VA.OMP + VA.OMN
Khoang each tif A den ba m a t p h l n g (Oyz); (Ozx) va (Oxy) la :
Trang 31Chuyen de
4 :
QUAN H
E VU
6
NG G
OC
Loai
1: DU CI NG T HA NG WONG
GOC fdJ^
T P HANG
Dang
1
: C
HQ NG
M IN H
Ol/
G
O C Vd
l MAT P
U KI EN
C
A N VA
DU
L PHiroN o
vdi ma
t phln
g a bSng dieu ki^n can va du
hai difcfn
g th^
ng
a, b dong
d_La (dpcm)
n
CA
C B
AI T OA
diy ABCD la tiJ gid
c loi Bie
CI
(SAD)
^ ^A B L DA c (SAD)
AB
1
(SAD) (dpcm)
Ba
i 5
1
Cho hinh chop S.ABCD
c6 day ABCD la hinh binh hanh tam
O v
a S
A = SC
m gia
c ca
n ta
i S : ASA
tSO L BD c (ABCD )
^ is O i AC c (ABCD )
= > S
O 1
(ABCD) (dpcm) A
\k hin
h tho
i tS
m O
= > AClBDc(SBD) (1
AC
J _ S
O c (SBD) (2)
TC r (1) v
a (2) ch
o : AC
1
(SBD) (dpcm)
30
Trang 32(Sau nay t a c6 t h e chufng m i n h (1) bSng d i n h l y 3 dadng
vuong goc se n h a n h h d n hoac b d n g t i n h c h a t giao tuyen
cua h a i mftt p h i n g vuong goc)
Tif (1) vk (2) cho : E A _L (SBC) 3 SC SC 1 E A (3)
Tif (3) va (4) => SC 1 ( A E F ) (dpcm)
B a i 54
Cho h i n h chop S.ABCD c6 day A B C D l a h i n h chuT n h a t , goi I , J l a t r u n g d i e m A B , C D v^
gia sii SA = SB ChOfng m i n h r S n g C D 1 ( S I J )
Cho tijf d i e n A B C D c6 H , K l a true tarn cdc tarn gidc A B C va D B C G i a sC( r k n g H K 1
(DBC) Chufng m i n h A H , D K va BC dong quy
I i ^ I Vfiy A H , D K v ^ BC dong quy t a i I
Trang 33ai
a / Ch
o A
H o B
C
= A'.
D
e c hii ng m in
h S
; K;
A' th in
g
ha ng ta ch ufn
g m in
h : S A'
± BC
BC
^A A'
'B CI SA (d
o SA
X (AB O)
Ta
C
O :
Tif do ta su
y r
a : B
C 1 (S AA ')
= >
BC
1 SA '
Va
y C
O t
he no
i : A H;
SK v
a B
C d on
g q
uy (d pcm )
b/ Th eo g ia th ie
t
ta c6 : S
C 1 B
K (1
)
Ma tk ha ct ac
o :
\^^^^^
J BHXSA (doSAKABO)
ne
n : BH
1 (S AC )
^ BH
1 SC
Tif (1 ) va (2 )
ta su
y r
a : S
C ± ( BH K) (d pcm )
d
Th eo ca
u a /
ta c6 : BC ± (S AA ')
= >
BC ± H
K
Th eo c au b /
ta
c 6 : SC
_L
BH K)
= >
SC J_
H
K
Tif (3 ) v
a ( 4)
ta su
y r
a : H
K ± ( SB C) (d pcm )
Ba
i
57
(2 )
(3 )
(4 )
Ch
o hin
h v uo ng A BC
D na
m tro ng m
at ph An
g ( P).
Qu
a A d ita
g
n ijf
a d Ucm
g t hin
ot die
m lU
u d on
g tre
n Ax
Bad
n g
th an
g qu
a M v uo ng g
oc vd
i m p(M
ng th Sn
g q
ua
M vu on
g g
oc
\6i
m p(M CD ) c
at (P ) t
ai
S
1 / Ch ufn
g m in
h : A
; B
;
R t ha ng h an
g
2 / Ti
m q
uy tic
h t ru ng d ie
m I c
ua do an R
S k
hi
M l ifu d on
g t re
n
n ijf
a d ud ng t hi ng A
x
Gi
^i
1 / Th eo g ia th ie
t t
a c
6 : MR
1 (M BC ) MR
1 BC
Ma d a
C O
: AD
1 AM ^ A
D 1 (M AR ) =
>
AD
1 AR
Va
y AR
; A B;
AD c un
g
a
tr on
g mp (P )
ma AR v
a AB
cu ng v uo ng g
oc vd
g ha ng (d pcm )
TiJ on
g t
if tre
g
2 / Do M
R ± ( MB C)
^ MR ± M
B
Ta
m g ia
c M BR v uo ng d M c6 d ifc
r ng ca
o MA n en :
MR
1 AD (v
= AB A
R
Tifc
r ng ti f:
MA ' = A D.A
S
AB A
R = A D.A
S
^ AR = A
S
= j>
I th uo
c d ifd ng t hi ng A
C
Do R c ha
y t re
n tia A
u ( la ti
a d
oi cii
a
tia A B) va S c ha
y tre
n tia A
v ( tia d
oi tia A D) ne
n I
or
n go
ai hin
h v uo ng A BC
D
Va
y,
I c ha
y t re
n tia d
oi
At cu
a t ia A
C ( bo d ie
m A )
Va
y s au k
hi la
m p ha
n d
ao th
i q
uy tic
h c
ua
I l
a t ia A
t ( kh on
g k
e d ie
m A ) ( ycb t).
32
Trang 34Dang 2 : C H J N G MI N H Dl/ dNG T H AN G V U ON G GO C Vdl MAT P H A N G
BA N G T R U C Dl/ CiNG T RO N
L PHirONG P H A P
Ca stf ciia phi/ang phap chiirng min h difdng t h i n g d vu ong
goc v6i mat pha ng a bftng van du ng d in h nghia t r u e dxidng
t ro n: l a dxtiing t h S n g v u o n g g o c vdri m a t p h a n g c h i i ' a
dUdng t r o n t a i t a m c u a n o b a ng h a i btfdp ca b an nhU sau :
n B i : Ti m mot diem S a d in h each deu cac d in h da giac
day ABC n h a sau : SA = SB = SC =
Tim diem O d day each deu cac d in h da giac day ABC
OA = OB = OC =
• Ba : No'i h a i diem S, O do th a n h tru e d cua di/crng tr 6n
No la dudng thftng vu ong goc vd i moi ma t pha ng ehiJa
duac di/cfng tr on (AB C)
n. C A C B A I T O A N C O B A N
B a i 58
Cho h in h vu ong AB C D canh a Ve cung ve mot phia (AB C D ); cac doan AA'' C C vu ong goc
(ABCD) sao cho AA' = C C = a Chufng min h : A'C 1 ( B C D )
B C = 2C I = 2 ^ = a V s (ASIC 1^ niJra A d e u)
Ta CO : •iCA = a (.\ASC d e u)
A B = a>/2 (AASB v u o n g c a n t a i S)
[CA^ - AB^ = a^ - 2a^ - Sa^
Theo d in h l y Pythagore dao => ACAB vu ong ta i A (dpcm)
3 3
Trang 35b/ The
o ti nh c ha
t dUcfng
t ru ng t uy en
Cifn
g v
di ca nh h uy en cua t am
g'lAc
A BC v uo ng
B = I
C (1)
Ha
n nf fa d
a
CO
S
A = S
B = S
C (2)
ch
o : S
I la
tru
e ducrng t ro
n
ng oa
i ti ep zVABC =>
S
I 1 ( AB C) (d
pc
m)
Ba i6
0
Ch
o hi nh chop S A BC
D da
y AB CD l
a hi nh t ho
i c
6 IJ AC = 60
" v
a SA = SB =
g SG
x (A BC D) Vd
i G l
a tr on
g ta
m ta
m gia
c AB
: i
BA
- BC ( ca nh h in
h th oi ) AA BC d eu
i
g AC 6 0"
(gt)
=>
G la t am d ud ng t ro
n AB
C ng oa
i ti ep t am giac d eu A BC
Do d
o ; G
A = G
B = G
a du dn
g tr on ( AB C)
Gi
a th ie
t c
6 : S
A = S
B = S
C S
e (d )
To
m la
i SG
c (d ) ha
y SG
1 (A BC ) ha
y SG
1 (A BC D) ( dp cm )
D c
6 SA = SC = SD v
a AD
t = 9 0"
G
oi I l
a tr un
g di em
A
C ChuTn
g
mi nh r kn
g SI -L ( AB CD )
Gi
ai
De
y ti
f t am giac A DC (
A = I
C = I
D
Kc
t hcr
p gi
a th ie
t SA = SC = SD
=i> SI l
a tr ue d ud ng t ro
n (A CD ) ng oa
i ti ep
\A CD
=^ S
I 1 ( AC D) ^ (A BC D)
« S I
l (A BC D) ( dp cm )
D c
6 AB CD l
a nijf
a lu
c gia
c de
u c
6 SB t) - SCT) = 9 0"
m AD v
a SD Ch ij
g m in
h rf tn
g 01
1 (B CD ) va S
A 1 ( AB CD )
Gi
ai
De
y de
n ti nh c ha
t ci ia d ud ng t ru ng t uy en ufng
\'6i
c an
h
hu ye
n cu
a ta
m gia
c vu on
g, ta eo :
AS BD (
fi = 9 0"
) :>
I
B = I
D
AS CD (C 9 0°
) :r>
C = I
D
Xe
t nijf
a lu
c gia
c de
u AB CD ( la
m ci ia l uc giac d eu l
a O)
=>
O
B = O
C = O
D (2)
Ti
r (1)
va
(2 )
=>
1
0
la t ru
e di /d ng t ro
n (B CD ) ng oa
i ti ep t am giac B CD
=>
I
O 1 ( BC D) (d pc m)
IB = IC =
ID
(1)
Ma S
A / / - O
SA
1 (A BC D) = (B CD ) (d pc m)
34
Trang 36tool I: DUdNG T H A N G W O N G G ^ C DUdJNG T H A N G
OUdNG THANG VUONG GOC Vdl MAT PHANG
L P B U O N G P H A P
Co sd cua phiTOng phap chOfng m i n h dudng t h i n g d vuong goc vdfi diTcfng
thSng a k h i t a sit dung d i n h n g h i a : d 1 a => d 1 a (tuy y t r o n g a),
qua 2 bade ca b a n :
• B i : Quan sat v a quan l y gia t h i e t t i m mp(a) chijfa dudng t h d n g
a can chufng m i n h no vuong g6c v d i d
Goi I la t r u n g d i e m c a n h C D v a de y h a i t r u n g tuyen cung l a
dudng cao t r o n g h a i tarn giac can cung ddy C D l a : A A D C v a ABCD
Cho h i n h chop S A B C D c6 A B C D l a niJfa h i n h luc giac deu v a S A 1 ( A B C D ) M o t m a t
phang qua A vuong goc v d i S D t a i D ' cat SB; SC t a i B', C ChuTng m i n h t i l giac A B ' C ' D ' n o i tiep difoc
Trang 37Theo eac
h difng (a)
^ (AB'C'D')
=>
AB'
1 SD (5
)
Tif (4) va (5)
=>
AB'
1 (SBD)
; ma (SBD)
3
B'D'
=>
A B'
± B'D '
« AB TT = 9 0"
(6 )
Cung ti
f (5) va (6) =
> T
u T gia
c AB'C'D' no
i tie
p du
ac (dpcm)
n ABCD ChiJn
g minh
D IE
U KI EN
DA I
s
6 sa
u
de
tijf die
n c6 can
h do
i nha
- AD'
= BC'
- BD
l
Gia
i
Ta chiln
g minh die
u kien b
^ng h
ai trtfcrn
g hop :
• Die
u ki
#n
(=>
) : Gia si
jf AB
1 CD C
D
± (ABH)
H
la chan dUcm
g cao BH =>
C
D
± AH
Ap dun
g he thiJc luan
g tron
g ta
m gia
c vdri
M
la trung die
m CD
f
A C'
- AD
' -_
2 CD
.M
H
=> <i
iB C'
-B D^
- 2C D.
MH
=> AC'
- AD'
= BC'
- BD' (dpcm)
• Di^
u k i$
n
(<=) : Gia AC'
- AD'
= BC'
- BD' (1)
Gp
i
M
la trung die
m CD, AH
j, BH
2 l
a cac cha
n di/
dn
g cao
.MH7
( 2)
tuon
g tfn
g, ta
C
O :
\
;B C'
- BD '
= 2
CD M H2
( 3)
S ijf dun
g (1) ch
o (2) va (3) :
2C D.
MH,
= 2
CD M H2
=>
M
H,
= MH
2
<= >
Hi =
H
2
(4)
Nghia la
\.
\S
(4) ta c6 C
D
1 (ABHi)
^
(A BH 2) ,
ca h
ai ma
t phSn
g (ABHi);
(ABHj)
o CD
1 AB (dpcm)
O Ke
t lu gin
: Die
u kien ca
n va d
u (da
i so) de h
ai can
h do
i AB v
a CD cu
a tiJ d
g go
c nhau la AC'
- AD'
= BC'
- BD' (dpcm)
Ba
i
67
Chiifn
g minh rkn
g ha
i can
h do
i b
at ky ciia tu
f die
n de
u th
i vuong g
oc v<J
i nhau
m can
h AB Theo tin
h cha
t cua ta
m gia
c de
u
d
cac ma
t ti
l dien:
'A
B
^ C E
c
( CD E)
|A B D
E C ( CD E)
=> A
B
1 (CDE);
m
a CD
c (CDE)
AB
1 CD (dpcm)
Tuan
g tir t
a chiifng min
h difa
c B
C
1 AD v
a AC
L
B
D (dpcm)
O Ghi ch
u
: B
oc gid xe
m
eac
h
ch iin
a i
d ii
c tn
g th
nh
ch
a t
nay, ch un
g toi xi
n nh
d c : rdt ti
^n ich tr on
g qua tr
c til d ien dS
u
Doc gid cU
ng c6 the d un
la
B ai
66
36
Trang 38Chufng m i n h rSng : T r o n g mot t i l di$n neu c6 2 cSp canh doi vuong goc nhau t h i c&p can h
doi thuT ba cung vuong goc nhau
Dang 2 : CHUfNG MINH HAI OUCiNG THANG VUONG GOC NHAU
L P H O D N G P H A P
Ca sd cua phuang phap can v a n dung d i n h l y ba dudng vuong goc n h u sau :
, » , T , > I A M la dildng xien (so vdi (a))
Gia stf A H 1 (a) => < ,
; H M la hinh chieu (ciia AM xuong (a))
t h i difcrng (d) n'km t r o n g (a) thoa :
(d) 1 A M (ducrng x i e n ) c* (d) J. H M ( h i n h chieu)
Do do philcfng phdp gom 2 budc thuc h a n h :
• B i : Xac d i n h dudng vuong goc v d i m o t m a t phSng (a) t ^
Trang 39n cA
c BA
I T OA
N C OBA
1 (ABCD)
De
y tha
y : S
A
1 (ABCD)
Ma B
C
1 AB
Ch
o hinh chop S.ABC
D c6 SA
1 (ABCD) va ABC
D la hin
h ch
a nhat
Chuto
g min
u I
k
nhflng tarn gia
c vuong
JA
S A
B vuong d A (ycbt)
ISA
1
AD ^ [ASA
D vuong d A (ycbt)
SB : l
a d
U cJn
g xie
n
AB : l
a hin
h chieu
=>
B
C
1 SB (dinh l
y b
a dtfcrng vuong g6c)
=>
ASB
C vuong
a
B (ycbt)
Tiran
g t
ii DC
1 SD (dinh l
y 3 dudng vuong goc)
=>
ASD
C vuon
g d
D (ycbt)
To
m la
i hin
h chop c6
4
m &
t
ben deu la nhifng tam gia
c vuong (dpcm)
n ABCD c6 A
B _ L CD
vk
A
C
1 BD Go
i
H la hin
h chie
u cua
A xuon
g (BC
g
H la tr
Uc ta
m ta
m gia
c BCD v
a A
D 1 B
i :BH sa
CH saochoCHnBD = C
i
DH sa
o ch
o D
H n B
C = D
j Ta
C
O :
CD ± AB (g
ia thiet)
CD
1
AH (v
i A
H 1
(BCD))
=> CD1(AB
H) 3B
H
=> C
D _ L BH t
ai
Bi ha
y BB, la dUcfn
g ca
o ABCD
(1 )
Ti/on
g t
a B
D
± (ACH) z C
H BD ± CH t
ai Cj
=> C
H l
a dudng ca
o ABCD (2
)
Tii
(1) va (2) cho ta :
H la tr
Uc ta
m ABCD (dpcm)
AD
j
: \k
dudng xie
HD, : l
a hin
h chieu
Ma B
C
1 HD
i (
vi
H la trifc tam ABCD)
=>
B
C
J _ AD
j
=> B
C
1 (AHDi)
^ (ADDi) 3 A
D BC ± AD (dpcm)
ai dUdn
g vuong g
oc
v6i
m
at ph
^n
g hinh ch
C ? nh
at ABCD MQ
t Cx, Dy t
g min
h ran
g ABEF la hin
h ch
Q nh
^t
Gi
ai
Bi
y EC
1 (ABCD) EB
: I
k
udng xie
h chieu
Ma A
B 1 C
B
=>
A
B 1 E
B (1)
Theo din
h ly gia
o tuye
n song son
g th
i ABEF la hin
h binh
h^nh v
a n
o thoa (1) ne
n la hin
h ch
if nh
at (dpcm)
O Ca ch k ha
c
: D
l y tha
y DC
1 (EBC) ma AB/
/C
D
=> A
B X
(CDE
)
r
EB =>
A
B 1 E
B (1)
=>
(dpcm)
Trang 40Bai 73
Trong h i n h chop S A B C D d a y la h i n h chC n h a t A B C D G o i S H la diTcfng cao h i n h chop va
SK; SL thijf t u la dirdng cao cac t a m giac S A B va SCD Chijfng m i n h r S n g H , K , L t h S n g h a n g
D e y v d i S H I ( A B C D )
G i a i
fSH : la dudng xien
^HK : ]k hinh chieu
MaAB 1 S K (each difng) A B i H K ( d i n h l y ba dif&ng vuong goc)
TucJng t u C D ± H L ( d i n h l y ba di/cing vuong goc)
Cho tiJ dien SABC c6 A B C l a t a m giac deu canh a, cac mftt (SAB); (SBC) v a (SCA) h a p v d i
(ABC) cac goc bftng nhau v a bftng a
1/ Chiitng m i n h rftng : h i n h chieu H cua S l e n (ABC) l a t a m du&ng t r o n n o i t i e p AABC
2/ Tinh tong dien t i c h 4 mftt cua tuT dien S.ABC
: 1
1/ Goi 1, J , K I a n lifot la h i n h chieu ciia H l e n BC; C A ; A B
Do d i n h l y ba dUcfng t h f t n g vuong goc
BC 1 S I ; C A 1 SJ; A B 1 S K
Do d6 goc p h i n g cua cac m f t t ben (SBC); (SAC) v ^ ( S A B )
tao vdi (ABC) I a n lugt la S ^, SJi?, gS^
g l i l =S3tl - SKfi = a
De y t h a y t a m giac vuong S H I , S H J , S H K bftng nhau n e n :
H I = H J = H K
Vay, H l a t a m dUdng t r o n HQI t i e p AABC ( H cung l a t r o n g t a m , true t a m , t a m difdng t r 6 n
ngoai tiep cua AABC) (dpcm)
2/ Theo d i n h l y dien t i c h v a h i n h chieu t a c6 : •JSHBC = ^sac cos a <=> -ISSBC