Phuomg trinh, bat phuang trinh la nhOng noi dung can ban trong chuong trinh toan ph6 thong.. Co dugc ky nang t6t trong viec giai phuang trinh, bSt phuang trinh se khong nhung gop phan qu
Trang 1THI TRirOfNG CHUYEN
^ O N THI THPT QUOC GIA
Trang 25^1 g
TS LE XUAN SdN (CB) • ThS PHAN VIET BAC
ThS TRAN NHAN - C N LE PHUC L Q
N H A X U A T B A N D A I H Q C Q U O C G I A H A N Q I
DTR:
Trang 3; lon
g bie
n tSp : (04 ) 3971501
1
Fax: (04 ) 3972943
6
* *
*
Chiu trdch nhi^m xuat
ban:
Gidm doc
- Tong bien tdp:
T
S
PH AM T HI T RA
M
Bi^n tdp:
V AN A NH
- P HU ON
G AN
G
AN
Trinh bay bia:
NH
A SA CH H ON
G
AN
Doi tdc lien ket
xuat ban:
NH
A SA CH H ON
L O
G AR
I T
Ma s5 : 1
L 99OH2015
-In 2.00
0 cudn , kh
6 1
7 x
24cm tgi C
Dia chl : S
6 ' 6 Nguy§n Trun
g Tri;
c P5 - Q.
1 20
-1 5/
C XB / 4 - 74 / DH
Q GH
N , nga
y 09/02/2015
Trang 4Phuomg trinh, bat phuang trinh la nhOng noi dung can ban trong chuong trinh toan ph6 thong Co dugc ky nang t6t trong viec giai phuang trinh, bSt phuang trinh se khong nhung gop phan quan trong dS hinh thanh va phat trign nang lire giai quyet van de ciia hoc sinh ma con giup cac em dat k6t qua t6t trong nhtjng ky thi quan trong nhu: thi vao truang Chuyen, thi dai hoc, thi hoc sinhgioi cac d p
Vai muc dich ay, chung toi bien soan cuon sach nay nham cung cap cho ban doc mot he thdng bai tap phong phu, da dang vai nhi§u bai mai la va cac phuang phap giai hieu qua ve phuang trinh, bdt phuang trinh
Noi dung ciia cu6n sach dugc trinh bay thanh ba chuong:
Chmmg 1 de cap den phuang trinh bat phuang trinh dang da thuc va huu ty; ChiroTig 2 de cap den phuang trinh, bat phuang trinh v6 ty;
ChiroTig 3 va Chirong 4 theo thu tu de cap den phuang trinh, bat phuang trinh
Chung toi hy vgng rang cuon sach "Phuang trinh, bat phiromg trinh va
phuang phdp gidi" se thuc su huu ich cho cac em hoc sinh cung nhu cac thay,
CO day Toan a truang pho thong
Du da hit sue c6 ging trong qua trinh bien soan, nhung bg sach kho tranh
khoi nhung thieu sot nhat dinh Cac tac gia chan thanh cam an y kien dong gop cua cac thay giao, c6 giao va cac em hoc sinh gan xa de Ian tai ban bg sach se dugc hoan thien hon
Mgi y kien dong gop cho tac gia xin quy ban dgc gai ve:
nhasachhongan@hotmail.com
C A C T A C GIA
Trang 51
ChUctng 1
PHLfdNG TRINH, BAT PHtTdNG TRINH HlTU TI
§1 TAM THlTC, PHirONG TRINH, BAT PHlTOfNG TRINH BAG HAI 1) DIU cua tarn thipc bac hai
Tom tit ly thuyet
7.7 Dinh ly ve ddu cua tarn thuc
Cho tarn thuc bac hai f{x)^ax^+bx + c,a^Q Dat A = b^ - 4ac Khi do: NSu A<0 thi af (x)>0 vai moi xeR;
NSu A = 0 thi af (x)>0 voi moi x^-2a
moi xe{x^;x2), trongdo x, <X2 la hai nghiem ciia /(x)
7.2 Dieu kien khong doi ddu cua tarn thuc
Cho tam thuc bac hai f{x) = ax^+bx-\-c,a* 0 Dat A = b^ -4ac Khi do
1.3 Gid tri Ian nhdt, gid tri nhd nhdt cua tam thuc
Cho tam thuc bac hai f(x) = ax'^+bx + c,a^ 0 Ta c6
Trang 6Vdfi a < 0, / (x
2a
Vi du
Tim gia tr
i lo
m nhd
t
cuabiduthuc A = 9xy
+ I0yz
+
1 Izx
LcigiaL Tha
y z
= \-x-y
vao ^ tac
6
A = 9xy + \(iyz +
nzx^9xy + z(\Qy +
\\x)^9xy + (\-x-y){\Qy +
+llx + 10>;-12x
v
-^
• =
llx'+
(ll-12
>;
)x-I0/
+10>
+ A = 0
»-+176
;/ + 121-44^
>0
' ll
ciia A
la
495
148 0-
2y
2 •
(Di thi dgi hoc
khoi B 2008)
X
2fx
^+
6xv) 2(
x^
+6xy) 2/^+12
^
Vai>
;^0,da
tr =
-tac6
P^-^
-^ = -
2x
v + 3
/ t^+2t
+ 3
Dodo P[t'+2t + 3)
= 2t^+\2tc>{P
-2y+2{P-6)t
+ 3P = 0.
Trang 7Voi P^2, phuomg trinh c6 nghiem khi vachi khi
Ket hop lai ta c6 gia tri nho nhdt cua P la - 6 , gia tri Ion nhdt cua P la 3
Vi du 3 Cho a,b^O Tim gia tri nho nhdt cua bi^u thuc
P = a' +b' +^ + -
- a a L&igidL Xem P nhu la mot tam thuc bac 2 doi voi bien b
Taco P = b' +2b— + -K +
D4U bang xay ra khi
b = 2a
-a' = 4a' 2
Vi du 4 Cho cac so duong a, b, c thoa man a + b + c = 3 Chung minh rang
Dat / ( a ) = (2c + l)a^ +(2c^ - 5 c - 4 ) a + ^ > 0 Tachung minh / ( a ) > 0
Ta CO / ( a ) la mot tam thuc bac hai c6 he so ciia a' la 2c +1 > 0, va lai c6
A = ( 2 c ' - 5 c - 4 ) ' - 1 8 ( 2 c + l ) = ( 2 c - l ) ' ( c ' - 4 c - 2 ) < 0 do 0 < c < 3
Trang 83 1
Tir d o/( a) >
0 Da
u ban
g xa
y ra khi a = — ;6 = l:c = —
2 2
Vi d
u 5.
Cho 4 s6 thu
c a,6,c,£/tho
a man : + 6^ = 1; c - <i = 3
Chung min
h rSn
g F
= ac + bd-cd<
3)c - 3b
{a + b + 3)
= (a
- 6) + 2a
1 tre n [-72;V2]
ta c
6 /(r ) < 9 +
6V2
Do d
o F <
, a =
— , 6
cY-a(b + c) +
>0
8
Trang 9<;=>(Z) + c) -2-{b + c) + — + >0
b + c
+ • 12a > 0, luon dung vi > 36
Vi du 7 Cho hai s6 x,y thoa man -2xy-2x + 4y-7 = 0 Tim gia tri
cua x \ihi y dat gia tri Ion nhit
(Di thi tuyin sinh THPT Chuyen Qudng Ngai 2013)
ti
<::>x^ - 2{y + \)x + y^ +Ay-1 = 0
De ton tai gia tri cua x thi phuomg trinh tren phai c6 nghiem, do do
Khi y = A thay vao phuong trinh ta c6 x = 5
4 Cho cac so thuc a,b,c,d sao cho \ <2 \k a + b + c + d-6
Tim gia tri lom nhat cua P = a^ + b^ +c^ +d^
(Di thi tuyin sinh THPT Chuyen Long An 201 A)
5 Cho a,b la cac s6 thuc thoa man a + b = a^ -ab + b^
Tim gia tri Ion nhat ciia +b^
Trang 10- x +1) +
x^ + y^ + z^ <ll
Hir on
g d an giai ba
i ta
p p ha
n 1.
1
1 Ta
<=
>6 x^
+7 /- 8x -8
>; + 8xv +
/-; +
l =
0 ,
ta c6
A'
= 16(:
i;
-1)'-6
(7 /- 83
; +
1) =-26/
+16>
^-Do do
z l
a ha
i nghie
m cua phuong
trinh
- (
5 x)/
+ x
^ 5x +
8 =
0
Phuong trinh c6 nghiem
A' >
0 <
= > (
5 x)^
- 4(x
^ 5x +
+10x-7
u v
oi y,z
ta c6 dieu phai chun
g minh _ '
T'
3 Vo
i >
; = 0,tac
6 x;
tO, P = l
' ' ^^r^^^i ^il^
ml
Trang 11V a i a = 2,6 = 2,c = 1,^/ = 1 hoac cac hoan v i t h i P = 10
Vay gia tri Ian nhdt ciia P la 10
y.rs
1
5 Tir a + b = a^-ab + b" =(a + b)^-3ab>(a + bf -^{a + bf =-^(a + bf
Dodo {a + bf-4(a + b)<0<^0<a + b<4
T a c o +b' =(a + b)[a^-ab + b^)^{a + bf <16
Trang 12c + l ) + 3|2x-l|=-(2x-l)'+3|2x-l|-
3
= 2x- lp+
-3|2 x-l
3^' t
-3 3'
3 1 Da — — <
u ' = ' xa
= z +
l Tac
o a,b,ce[-2;2],
a + b + c =
(x2; + co)
Trang 13• Tap nghiem S cua bat phuong trinh / ( x ) > 0 ducrc xac dinh boi bang sau
13
Trang 14Lai d
o X, + ^2 =
Vay a
<0 hoac
0
L&igidL Taco 2x +
\4p^-7 = 0^x =
-lp^
Vi -7/?
^ + < + ^ ne
'
Gia s
u a
la mot nghie
a + — >
-S — + -
i vo
i ye
u cku
bai toan
voi
2<-7/7'+
-<
3<
p'+
—<
4,nentaco—
</
?'<
—
2 4 14
14
Vi d
y 3 Chun
Trang 15Bat dang thiic can chung minh tra thanh
Vay nghiem ciia bat phuomg trinh la 6 < x < 8
Vi du 5 Tim m sao cho bat phuomg trinh dung vai moi x e ^
Trang 162m<0
x^ +{m + 7)x
—z
<
1
ax -4x + a-3
3 Ch
o f[x)
= x^+ax + l
voi 3<a<
—
Giai hit
phuong trinh
+ m-\>0
5 Ti
m m
de bat phuon
1 K
i hie
u
Huang dan giai ba
w + 2)x + 2m<
0 (1)
+(7w + 7)
x + 7m<0
w-^>
0
;A2=
(m-7)^
>0
Ta
CO phuon
g trin
h (m + 2) x + 2
) x + 7
e v
6 nghiem
Voi m^2\m^l,
m>0 nghie
m cu
a (l) l
a 5, =(w;2) hoa
c S^-[2•,m)•,
'nghiem cua (2) l
a ^2
=(
-m
7) hoac
^3
=(
-7
w) R
Voi m<0
nghiem cua (l) la
5,
=(
w;
2), nghie
m cu
a (2) l
a -{-l;-m)
16
Trang 17Ta CO iS", n <S'2 ?t 0 nen he luon c6 nghiem Vay w < 0
2, Ta tim diSu kien dS ox^ - 4x + a - 3 9^ 0, Vx e R
Taco ca^-4x + a-3^0yxsR^
Trang 18'/'{x)-x'] + a[f{x)-x] =[f{x)-x][f{x)
+ x + a] e
l
^(x^ +(a-\)x + \)[x'
+{a + \)x +
a + 2)
Bat g{x) = x'+{a-l)x
+ lc6 A^=a'-2a-3
| ne
n
^^, dod
6 h{x)
= x^
+{a+ \)x + a +
2>0,\fxeR,
tudo f(f{x))-x>0
l-a -V a'-
2a -3
<=>g(x)>0<=>x^ +
-l)
x + l>
Oo
x>
2
l-a + V a'-
fm -l>
0 A<0
x + 4>0,VxGl
A,=
m)' -16
t phuon
g trin
h c6 tap nghie
m la
R
Trang 193) Mot s6 dang phu 'O'ng trinh hCeu ti dipa v§ b^ic hai
Dang t6ng quat: au^ (x) + bu{x) + c = 0
3.1 Dang trung phuong ox^ + + c = 0
Cdch gidi: Dat = ^ > 0 dk dua wh phuong trinh bac hai theo t
3.2 Dang (x + a)"^ + (x + Z?)'* = c
Cdch gidi: Dat x + = t se thu dugc phuong trinh trung phuong theo /
3.3 Dangnghich dao ox'* + bx^ + cx^ ±bx + a ^ 0, a ^0
Cdch gidi: Chia ca hai ve cua phuong trinh cho x^ 9^ 0 thu dugc phuong trinh
trinh tren se thu dugc phuong trinh bac hai theo t
3.4 Dang h6i quy ax"^ + bx^ + cx'^ + dx + e = 0, voi — =
k - ~ -) k~
Dat x + —= bieu dien x + ^ theo t, thay vao phuong trinh tren se thu
dugc phuong trinh bac hai theo t
3.5 Dang (x + a)(x + fe)(x + c)(x + c/) = e, voi a + <i = 6 + c
CflcA ^ifl/; Viet phuong trinh duoi dang
((x + a)(x + ^))((x + 6)(x + c)) = e
«> ^x^ +{a + d)x + ad^{x^ +{b + c)x + bc^ = e
D?lt x^ +(a + d)x = r thu dugc phuong trinh bac hai theo /
19
Trang 203.6 Dan
g (
x +
a)(x + b)(x +
c)(x
+ d)-ex ,\(n ad
+ c)) = ex^
<=>(x^
+(a + (i)
x +
fl<ij(x^ +(b
+ c)x + bc^^ex^
Cdch 1.
Dat x
^ +
a + b-\-c +
d
x + ad-t th
u tru
e tiSp
Xet X ?t 0, chi
i t
X
ad
x + {a + d) +
— X +
x +
a
X
Dat = ?, th
X +inx + k
X +nx + k
Cdch giai:
Xet x = 0 Khon
Xet X ^ 0 Vid
Dat x
+ — = t,
phuong trinh tra thanh
—
^ + —
^ =
c,
tu do dua
phuong
X
t +
m t + n
trinh bac hai the
o
Trang 21Cdch gidi: Gia sii v(x) ^ 0 Chia ca hai vg cho v^(x) ^ 0, r6i dat = f d6
v(x)
dugc phucmg trinh bac hai theo t
3.10 Dang au^(x)v^(x) + b{u{x) + v{x)f +c = 0, vai u(x)-v(x) = k
Cdch gidi: Viet phuong trinh da cho ve dang
aw^ (x)v^ (x) + 46w(x)v(x) + c + 6yt^ = 0
Dat u{x)v(x) -1, thu dugc phuong trinh bac hai theo t
3.11 Dang x'=ax^+bx + c
Cdch gidi: Ggi a la s6 thuc thoa man 6^ = 4(a + 2a)(c + «^)
(Day la mot phucmg trinh bac ba d6i vai a nen luon ton tai a) j Khido: x'=ax'+Z>x + c ^x' +2ax' ={a + 2a)x^ +bx + (c + a')
<^(^x^ +af ={a + 2a)x^ +bx + (^c + a^y
NSu a + 2a ;t 0, khi do vl phai (a + 2a)x^ + 6x + (c + ) la mot tam thuc bac hai CO A = b^-4{a + 2a)[c + a^) = Q
NIU <3 + 2a < 0 thi FP < 0, > 0, do do ding thuc khong xay ra
NSu fl + 2a = 0=>6 = 0.Tac6: (x^ + a)^ =(c + a^), tu do tim dugc x
Trang 22LoigidL
DiSukie
n: +Ax
+ 2^Q, +lx +
2^Q
Ro rang x = 0 khong pha
= 1
<:>9/ +
12 = (/
+ 4)(
r + 2)
or-3/-
4 = 0
<»
t = -\
t =
4
Va
i f = -
l tac6
x + — = -l<
=>
x^
+x + 2 = 0, v6nghie
<::
>x
4x + 2 = 0
ciia phuang
trinh lax = 2 ± V2
Vi du
-(De thi tuyin sink
i
x'+4-3x + - -2 = 0
Dat ?
= X
, kh
<»
x — = 2
«x
2x-2 = 0
^-«x =
Wai t = l<^x = l<i:>x^
-x-2 = 0^
x =-
x =
2
Vay nghiem
cua phuang
trinh la
x =
1 ± V3 , x = -l;
x = 2 •
- {
Vi du
+ x + 2) =
12
(Di thi tuyin sink
THPT Chuyen
DH Vinh
2008)
Trang 23L&igidL Qat +x + l = t,(t >0) phuang trinh da cho tra thanh: /(r +1) = 12
» r^+^-12 = 0»r = 3,dor>0
''x = l
Vay nghiem cua phuang trinh la x = -2; x = 1,
Vi du 4 Giai phuang trinh jc" + - 8JC -12 = 0
(Di thi tuyin sinh THPT Chuyen DH Vinh 2006)
Vay nghiem ciia phuang trinh la x = -1 ± V?
(De tuyin sinh THPT Chuyen Lam Son Thanh Hoa 2013)
L&igidL *) Dieu kien x^-5
Phuang trinh da cho tuomg duang vai
Trang 24Vay phucm
g trin
h c6 hai nghie
m x = 1±V
x + 5 ) =82
(Di tuyin sink THPT
Chuyen Lam San Thanh
H6a 2013
)
LM giaL
Dat ? = + 3x + 4 T
a c
6
(^ -1 )'+
x + 6 = 0 (v6nghi?m )
^ +3
x + 2 = 0
o x = -l x = -2
Vi d
u 7 Bil
6 nghiem Chun
THPT Chuyen
Ha Tinh
XQ + OXQ
+ 6X 0
+ OXQ
1 =
0 <=
> XQ + OX
Q +
6 + — + ^ =
+ b = 2-t^
Trang 25Do do ( 2 - f = (at + bf <{a'+b'){t'+!)<:> a'+b'>
— + 4 4
luon dung v i \t\>2
Vay ta c6 di6u phai chung minh
V i du 8 Chung minh rang phuomg trinh sau khong c6 nghi?m nguyen
(x-y)(x-2y)(x-3y)(x-4y) + /+2 = z \ (De thi tuyin sink THPT Chuyen Phan Boi Chdu Nghe An 20\4)
L&igiaL Ta c6 (x-y)(x-2y){x-3y)(x-4y) + y' +2 = z^
<=> ((X -y){x- 4y)){{x - 2y){x - 3y)) + /+2 = z'
^[x^-5yx + 4y^)[x^-5yx + 6y^) + y*+2^z\
Bat t = x^-5xy + 5y\Tac6
(t'-/)(t'+/) + /+2 = z'<^t'+2 = z'<=>(z-t')(z + t') = 2
Khong m4t tinh tong quat gia su z > 0, khi do ta c6 • ^ ' ^ ^ ^ ,
Vay phuong trinh da cho Ichong c6 nghiem nguyen
V i du 9 Giai phuong trinh = ~x^ - 4x + 3
Trang 26x(2xl) "-^
-(Di thi tuyin sinh
THPT Chuyen Quang Trung
= 0
(DJ thi
tuyin sinh THPT Chuyen
Lam Som Thanh H6a
x - 8)
^ = 16
i la nghiem ^
• ^
Voi X ^ 0 , chi
6 /^-5
? + 4 = 0
Trang 27Vay nghiem ciia phuong trinh la x, ^ = ^ - +
3 Taco x'-4yf3x-5^0^x' =4yf3x + 5
Trang 28x'-2x + - -0
x^+2x +
- =
0
V2-
6 r '-2 r-3 = 0
«
Voi / = -1 , ta
CO
x^ 2x = -1
<:> X =
1
Voi ? = 3,tac
6 x^-2
x = 3o x^- 2x -3 = 0<:^
t = -l t = 3
6 Dieukie
n x^±2 Da
t fl = ^
^; 6 = ^
^
x+2
x-1 x + 1
1
<»(x-l)(x-2) = (x + l)(x +
2)<»x
=
3-<»(x-l)(x-2) = 3(x +
l)(x +
«2x'+12x +
4 = 0o
24)(x^ +
1 Ix + 24 ) = 4
Trang 29Voi X = 0, khong phai la nghiem
Voi X 0 , tir phuong trinh (x^ +\4x + 24)(x^ + l l x + 24) = 4x^ chia cahai v l
^~ 2
29
Trang 30Vod ^ = -tac
6 12x'+ll
x + = -<=>12x'+llx-
-2 = 0o
x = -
^^
^^
Voi ' = taco 12x^+ll
x + ^ = -|<::>12x^+ll
x + 3 = 0(v6nghi?m)
0,
taco
X
— = 0<»x^-
2 = 0«
x =
Vdir = 2,tac6x —
= 2 ox
^-2 x-2 = 0<::>
16<»f'+6r'-7 = 0<=>f'=l (v
Taco /'=
Trang 311.2 Dinh ly Bezout ^ j ^ y;^ ^ =
Cho P(x) = aQx" + + a„_,x + a„,('3o ^ 0 , « > 1) va XQ K h i do XQ
la nghiem ciia P(x) khi va chi khi P{x) = (x - Xo)S(x), trong do Q{x) la da
Bo so 6o,6j, 6„ do dugc xac dinh bai 6o = ^c^* - ^o^*-i +cii^,k = 1,2, ,«
Chu y rang Z?„ = P(XQ), nen XQ la nghiem cua P(x) khi va chi khi Z>„ = 0
1.4 Dinh ly ve nghi?m hihi ti
Gia su s6 huu t i r = —(p e Z , o eN*,(p,flr) = l ) la nghiem ciia da thuc he s6
nguyen P{x)^aQx"-^a^x"'^+ + a„_^x->ra„,{aQ^Q,n>\) K h i do p\a„
Trang 32" + + +
<3„_,
x + a„
deu la so nguyen
b) Mo
" +a,x"
"' +
+ a„_,x + a
„
deu lauac ciia a
„
7.5 Dinh
ly ton tai nghiem
thuc
a) Mo
b) Gi
a s
u a,b{a<b)
la hai s
6 thu
c v
a P(
x) la da thuc thoa
man
P{a).P{b) <
0 K
hi d
o P(
x) c6 nghiem
thuoc khoang
(a;b)
1.6 Dinh
ly phdn tich da
-(
^^
+PiX + qi),
a da
y pf
-4^, <0,k +
2l =
n N
oi eac
h khac, mo
i d
a thu
c dku
phan tich
dugc
thanh cac thua s6 bac
"' +
+fl„
_,x+
da thirc.
Gia su
a 0 va
x) = a(
x XjXx
0,l,
ki P(
x) c6 dau nguac
L&i gi&L
Dat P(
x) = x'+
l
Ta c6 c6 P(l)P(-l) = l.(
-3
)<
0 ne
n
Trang 33Matkhac v o i m o i x < X Q , P{x) = + x-I < xl + -1 = 0 vayai moi X > X Q ,
P{x) = x^ +x-\>xl+Xo-l = 0, nen phuang trinh da cho Idiong c6 nghiem
Vi du 2 Cho da thuc P{x) = x' +x'-9x' +ax^ +bx + c
BigtrSng P(x) chiahStcho ( x - 2 ) ( x + 2 ) ( x + 3 ) Hay tim P(x)
L&igidL Taco P{x) chiahgt cho ( x - 2 ) ( x + 2 ) ( x + 3) nen
P(2) = 0; P(-2) = 0; P ( - 3 ) = 0 T u do thay vao ta c6 a = - 1 ; 6 = 20; c = - 1 2
Da thuc can tim la P(x) = x^ + x^ - 9x^ - x^ + 20x - 1 2
Vi du 3 Tim m de phuang trinh ~x ^ - x + m + - = 0c6 3 nghiem phan
x , ^ > 1 4 <=>|An| > 1
Vi du 4 T i m m de phuang trinh x^ - 3mx^ + 9A: - 7 = 0 (1)
CO 3 nghiem phan biet lap thanh cdp s6 cong
m
Trang 34CO
-2m^ + 9m -
5 2 -1-Vl5
_ , , , -l->/l5
-m + l)
x - 2 = 0 c
i do
ta c6 :
gix) = {x-x^){x -
){X - X^
)
jCj +
^2 + JC3 =
3m
X^X2 + X2XT +
-m -1 =
4 + \/2.3
m <=
> m = —
m thi
y tho
a man Va
6 4 nghie
m pha
Bai 2 Ti
o 2
a + 6
6 +19
c = 0 Chun
Trang 35Bai 4 Cho P{x) la da thiic xac dinh tren [a; b] va n dilm x^, , ,x„ e [a;6] Chiing minh r&ig t6n tai c e [a; b] sao cho P{c) = — [ ) + P(x^) + + )
n
Bai 5 Cho da thuc vai he so thirc ^
> P ( x ) = x"+a„_ix""'+ + a,jc + ao, Q{x) = x^ +X + 2
Bik ring da thiic P{x) c6 « nghiem thuc phan biet va da thuc
khong CO nghiem thuc Chung minh ring P(2)> —
Huang dan giai bai tap phan 1
l.Taco jc'*-(3m + 2)x^+3m + l = 0
Tir do de phuong trinh da cho c6 4 nghiem phan biet deu nho hon 2 khi va chi
khi (2) CO hai nghiem phan biet khac ±1 va nho hem 2
0<3m + l < 4 f 1
<=> \
Dat t^x^,t>0 thi (1) tro thanh: /(t) = - 2(m +1)? + 2m +1 = 0
Goi < ?2 la 2 nghiem cua /(O = 0, khi do cac nghiem cua (1) Idn lugt la:
<^ X2 - x^ - x^ - X2 = x^ - x^ <=> t2
-it
Trang 365m = 4(
m + l)
<»
5m = 4m+ 4
Z?x + c
„ „
) + +
gix,) = P{x,) [Pix,) +
P(x,) + + P(x„)
g{x„ [P{x,) +
P{x,) + +
Do d
o g(x,) + g
(x 2) +
+ g(x„) =
o d
o t6
n tai
c
nSm giua
0, t
a c
6
P{c) = -[P{x,) +
P{x,) + + P{x„)\
5 D
o P{x)
CO «
nghiem thirc pha
M,(/
= 1,2, ,«)
<;:^x'+
X +
2
-X , 9^0,Vxe]
R
Trang 37o A < 0 <=> < 2 - X,, (/ = 1 , 2 , n ) ,
Dod6P(2) = ( 2 - x , ) ( 2 - x , ) ( 2 - x „ ) > i ,
2) Phiro'ng phap giai
2.1 Phuang phdp phan tich
Vi du 1 Giai cac.phuang trinh sau
Lei giai 1) Nhan thay phuang trinh c6 cac nghiem x = 2, x = 3 Tu do ta phan
tich thanh nhan tii
^x = 2 , x^- 8x^+21x-18 = 0<:^(x-2)(x^-6x + 9) = 0 o
2) Ta nhSm x-yjl la nghiem Khi do, phan tich dugc:
Trang 38o (3x
+ 2)[9x^
- 21x-18) =
3
x = -3
x = —
2
4) T
a C
O X = V
x ^/
-3 =
0 3
-V3 x'
- 2V3x' + 2.3
x +
X V3
= 0
" x = V3
<=>(x-V3
)(x'-2V3x + l) =
x^
+j
c + 6) = 0<»
phuang trinh
2x^ + lOx = 1
2 <
^ + 5x
- 6 = 0 «
0 ox
-^ + 5mx + 2m^ =
0 c
6 3
nghiem phan biet
Lai giai
Ta c
6 x
^ (3 + 2w)x
-^ + 5/nx + 2w^ =
0
X =
2m
x'-3x-
m = 0(2)
De phuan
g trin
h c
6 3 nghiem
phan biet kh
i v
a ch
i kh
i (2) c
uiifi,^ -(Ism
m^O;m^ —
4 -9
Vi d
u 3 Gia
i phuan
g trin
h (x
^ + 3x
- 4)
^ + 3(x^
+ 3
x 4) =
+ 3(x
^ +
4) = x + 4
Trang 39x-( x - l ) x-( x + 4)] +3x-(x-\)x-(x + 4) = x + 4
o ( x + 4 ) ( ( x - l ) ' ( x + 4) + 3 ( x - l ) - l ) = 0
(x + 4)(;c' + 2x' - 4x) = 0 <=> X ( x + 4)(x' + 2x - 4) = 0 , ^ , ^ ^ y
Vay nghiem ciia phuong trinh la x-0;x 4;x \±^
Vi du 4 Giai hk phuong trinh (x +1)(x + 2)(x + 3)(x + 6) > 35x'
L&igidL Taco (x + l)(x + 2)(x + 3)(x + 6)>35x'
>35x' (x + l)(x + 6)][(x + 2)(x + 3)
Vi dy 5 Giai bdt phuong trinh (4x + l)(l2x - l)(3x + 2)(x +1) < 4
Trang 40x +
+ 2015x'''"'
Phuang trin
h da cho tr
a than
h (x -1 )^
5 = 1 (1 )
Taco x
5 = x + 2x
2015x''"' - (
l + x + x' + + x'°''), ha
^+
+ x^""") ) = 1
«(x-l) 2015x'''''-
-m =
Bai 2 Ti
40