Nhưng nếu một, hai hoặc cả ba chiều bị hạn chế - hệ quả của việc thu hẹp kích thước vật liệu – thì các hiệu ứng lượng tử bắt đầu xuất hiện và đóng vai trò quan trọng, nói cách khác, vật
Trang 1B Ộ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP.HCM
Trang 2B Ộ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP.HCM
NIÊN KHÓA: 2008 – 2012
TP H Ồ CHÍ MINH-2012
Trang 3M ỤC LỤC
MỤC LỤC 1
LỜI CẢM ƠN 3
MỞ ĐẦU 4
CHƯƠNG 1: CƠ SỞ LÝ THUYẾT 9
1.1 Lý thuyết vùng năng lượng 9
1.1.1 Hoàn cảnh lịch sử 9
1.1.2 Mô tả định tính 10
1.1.3 Phương trình Schrödinger cho chuyển động của electron trong trường thế tuần hoàn của tinh thể 11
1.1.4 Lỗ trống 15
1.2 Bán dẫn hệ thấp chiều và sự hình thành exciton 16
1.2.1 Tổng quan về hệ thấp chiều 16
1.2.2 Vật liệu bán dẫn nhiều lớp 17
1.2.3 Cấu trúc giếng lượng tử 2D 18
1.2.4 Sự hình thành exciton 22
CHƯƠNG 2: EXCITON TRUNG HÒA 24
2.1 Khái niệm 24
2.2 Phân loại – tính chất 25
2.2.1 Exciton Mott-Wannier 25
2.2.2 Exciton Frenkel 26
2.3 Hàm sóng và năng lượng của exciton trung hòa 27
2.3.1 Exciton Mott-Wannier 27
Trang 42.3.2 Exciton Frenkel 30
2.4 Kết luận 32
2.5 Phương trình Schrödinger cho exciton trung hòa trong từ trường 32
CHƯƠNG 3: EXCITON ÂM 37
3.1 Định nghĩa 37
3.2 Phương trình Schrödinger cho exciton âm 38
3.3 Phương trình Schrödinger cho exciton âm trong từ trường đều 39
KẾT LUẬN 45
TÀI LIỆU THAM KHẢO 46
PHỤ LỤC 49
Trang 5L ời cảm ơn
Để thực hiện được đề tài này, bên cạnh sự nỗ lực cố gắng của bản thân, em luôn nhận được sự quan tâm giúp đỡ và hướng dẫn tận tình từ các thầy cô, sự ủng
hộ nhiệt tình của gia đình, bạn bè
Em xin gửi lời cảm ơn sâu sắc đến:
Ban chủ nhiệm Khoa Vật Lý – Trường Đại học Sư phạm TP HCM và các
thầy cô trong khoa đã tận tình truyền đạt tri thức và những kinh nghiệm quý báu cho chúng em trong suốt khóa học
Thầy Lê Văn Hoàng, người đã mang đến những giờ học cơ lượng tử thú vị, giúp em có những kiến thức vững chắc khi bắt đầu với luận văn này
Cô Hoàng Đỗ Ngọc Trầm, người đã hết lòng hướng dẫn, động viên, và giúp
đỡ em trong suốt thời gian thực hiện và hoàn thành bài luận văn này Một lần nữa,
em xin chân thành cảm ơn cô!
Sau cùng em xin cảm ơn và kính chúc sức khỏe Hội đồng xét duyệt luận văn Khoa Vật lý – Trường Đại học Sư phạm TP.HCM
Do thời gian tương đối ngắn, kiến thức của bản thân chưa sâu nên dù đã cố
gắng nhưng luận văn cũng không thể tránh khỏi hạn chế và thiếu sót Em rất mong được được sự đóng góp ý kiến, phê bình xây dựng từ phía thầy cô, bạn bè
Em xin chân thành cảm ơn!
TP Hồ Chí Minh, 05-2012 Sinh viên thực hiện
Vũ Thị Lan Anh
Trang 6M Ở ĐẦU
Trong những năm gần đây, các nhà vật lý và hóa học ngày càng quan tâm hơn đến các vật liệu thấp chiều, những lợi ích có được từ chúng cũng đang tăng đáng kể và dự định sẽ còn hơn thế trong tương lai, đơn cử một lý do sau: chỉ xét riêng nhu cầu trong ngành điện tử, độ phức tạp của bộ vi xử lý và bộ nhớ của các con chip ngày càng tăng thể hiện ở chỗ cứ mỗi hai năm mật độ chip lại tăng gấp đôi
Điều này dẫn đến các thành phần điện tử riêng biệt phải có kích thước cỡ 100 nm
trở xuống, làm một số chiều trong không gian tinh thể bị hạn chế
Trong các tinh thể thông thường, các phân tử sẽ tương tác với nhau trong không gian ba chiều (3D – 3 Dimensional) Nhưng nếu một, hai hoặc cả ba chiều bị
hạn chế - hệ quả của việc thu hẹp kích thước vật liệu – thì các hiệu ứng lượng tử bắt đầu xuất hiện và đóng vai trò quan trọng, nói cách khác, vật liệu hệ thấp chiều thể
hiện những tính chất mà không thấy được trong các tinh thể thông thường, ví dụ như việc trong phổ hấp thụ xuất hiện những đỉnh hấp thụ lạ, không phải là của các
hạt hoặc các hệ hạt đã biết; vật liệu hệ thấp chiều “hành xử” như thể bên trong chúng không chỉ chứa các electron rời rạc mà là chứa các “giả hạt” là trạng thái liên
kết của các electron đó Dựa vào số chiều không bị giới hạn, vật liệu thấp chiều
được chia thành các loại không chiều (0D), một chiều (1D), hai chiều (2D) Các vật
liệu 0D được tìm thấy trong hầu hết các tinh thể nano bán dẫn (chấm lượng tử - Quantum Dot) và họ fullerene Các vật liệu 1D tồn tại ở các hình thức khác nhau có
cấu trúc dạng chuỗi, ví dụ ống nano, dây nano, vòng nano, vành nano Chất liệu cấu thành chúng có thể là cacbon, phân tử hữu cơ (để tạo thành polyme), kim loại, chất bán dẫn, hoặc oxit kim loại Ống nano cacbon là một trong những vật liệu một chiều được nghiên cứu nhiều nhất Quá trình nghiên cứu vật liệu 2D bắt đầu với giếng lượng tử, nhưng giờ đây việc nghiên cứu đã chuyển sang vật liệu có cấu trúc nhiều
lớp với kích thước bề dày cỡ nguyên tử trong đó graphene và cấu trúc bán dẫn siêu
Trang 7mạng (supperlattice) là những khám phá nổi bật trong lĩnh vực đang phát triển nhanh chóng này [25]
Đi kèm với nhu cầu sử dụng ngày càng tăng của các vật liệu hệ thấp chiều là quá trình nghiên cứu không ngừng nghỉ của các nhà vật lý học, thể hiện ở rất nhiều công trình nghiên cứu gần đây về đặc tính của các vật liệu này trong các ngành khoa
học vật liệu cũng như nỗ lực phát minh và nâng cấp các công cụ tính toán trong các
mô hình lượng tử như phương pháp nhiễu loạn, phương pháp biến phân, phương pháp toán tử, phương pháp đại số, … [4-7], [10], [11] Chúng ta đã biết, một trong
những thành tựu lớn của lý thuyết lượng tử trong chất rắn là việc xây dựng sơ đồ Bloch - vào cuối những năm đầu thế kỷ XX – mô tả chuyển động của các hạt mang điện là điện tử và lỗ trống Vượt ra ngoài khuôn khổ đó, năm 1931 Frenkel đã đề
xuất quan điểm về sự tồn tại của một giả hạt – exciton – là trạng thái liên kết của điện tử và lỗ trống, nhằm giải thích sự xuất hiện các đỉnh (peak) lạ trong phổ hấp
thụ của một số chất bán dẫn thấp chiều [1]
Mặc dù đã gần một thế kỷ trôi qua nhưng cho đến nay, exciton và những tính
chất đặc biệt của nó luôn hấp dẫn các nhà vật lý lý thuyết và thực nghiệm; đồng thời cũng nhận được sự quan tâm đặc biệt trong quá trình phát triển của vật lý chất rắn Điều đó có nhiều nguyên nhân Trước hết, exciton là mô hình xuất hiện trong tất cả các chất rắn (trừ kim loại): người ta đã tìm thấy exciton trong các tinh thể halogen
kiềm (vào những năm 30), tinh thể phân tử (vào những năm 40), tinh thể bán dẫn (vào những năm 50) và cả trong các tinh thể ion, tinh thể khí hiếm và một số liên
kết đất hiếm Sự tham gia của exciton đã được ghi nhận trong rất nhiều các hiện tượng vật lý và trong các thí nghiệm quang Thứ hai, quang phổ của exciton thường
có cấu trúc rõ nét và cho phép nghiên cứu lý thuyết một cách chi tiết Thứ ba, lý thuyết về exciton không đơn giản có thể hiểu được bằng cách áp dụng lý thuyết nguyên tử hay sơ đồ vùng Bloch, mà khá hấp dẫn và lôi cuốn các nhà thực nghiệm
bởi sơ đồ năng lượng giả hydro [9], [17]
Trang 8Các bài toán exciton trong bán dẫn đã được giải cụ thể trong đó nghiệm là hàm sóng và năng lượng của exciton đã được kiểm chứng bằng thực nghiệm và bài toán sẽ gần với thực tế hơn khi xét đến sự tồn tại của trường ngoài Nghiên cứu cho
thấy có rất nhiều hiệu ứng quang – điện xảy ra đặc biệt khi exciton tồn tại trong bán
dẫn mà trường ngoài xuất hiện như hiệu ứng Stark, sự thay đổi tính dẫn điện, hiện tượng quang phi tuyến trong pha kết hợp, sự phụ thuộc năng lượng liên kết exciton vào điện trường và từ trường, hiệu ứng tách vạch Zeeman trong từ trường [23], … Nhưng không chỉ dừng lại ở đó, với sự phát triển như vũ bão của khoa học kỹ thuật
và công nghệ, thế giới đã chế tạo thành công những lớp vật liệu mỏng kích cỡ nanomet bằng các phương pháp như MBE (Molecular Beam Epitaxy, tạm dịch “cấy chùm phân tử”), MOCVD (Metal Organic Chemical Vapor Deposition, tạm dịch
“kết tủa hơi kim loại hóa hữu cơ”) [6], [17], [20] Các lớp vật liệu này được ghép
với nhau thành cấu trúc nhiều lớp thấp chiều, trở thành một “môi trường” rất tốt để nghiên cứu các tính chất và hiệu ứng lượng tử của exciton, đơn cử là giếng lượng tử GaAs/AlxGa1-xAs, (với 𝑥 ≤ 0.45) là một loại vật liệu có cấu trúc tinh thể nhiều lớp được sử dụng trong hầu hết những nghiên cứu gần đây về exciton bởi những điều
kiện rất thuận lợi mà nó mang lại như việc có thể kiểm soát chặt chẽ nồng độ của
từng loại hạt tải điện bằng cách thay đổi nồng độ Al khi cấy ghép giếng lượng tử
Cũng chính nhờ loại vật liệu bán dẫn đặc biệt này mà năm 1993 Kheng et al [10],
[11] đã phát hiện exciton mang điện trong giếng lượng tử CdTe/CdZnTe và sau đó
là trong GaAs/AlGaAs năm 1996 bởi G Finkelstein et al [15], A.J Shields et al năm 1997 [8], M Hayne et al năm 1999 [18]; và cho đến nay việc nghiên cứu về
exciton mang điện vẫn còn thu hút sự quan tâm đặc biệt của rất nhiều nhóm các nhà khoa học khi cả thực nghiệm và lý thuyết đều cho thấy sự phụ thuộc của năng lượng liên kết exciton và sự biến đổi trạng thái spin khi vật liệu thấp chiều được đặt trong
từ trường [12], [18], [20]
Thực tiễn trên đã làm tác giả phát sinh nhu cầu tìm hiểu các vấn đề cơ bản sau: bản chất của exciton là gì? Có những loại exciton nào? Phương trình Schrödinger mô tả trạng thái của các loại exciton có dạng như thế nào? Tình hình
Trang 9giải các phương trình đó? v.v Nghiên cứu các tài liệu liên quan, tác giả nhận thấy,
hầu hết mỗi tài liệu là một công trình đóng góp về một trong rất nhiều vấn đề xoay quanh exciton nhưng chưa có một tài liệu nào mô tả đầy đủ những thông tin cơ bản
về exciton, đặc biệt là exciton 2D Vì vậy, mục tiêu của luận văn này là tìm hiểu
mô hình exciton trung hòa và eaciton âm 2D, nhằm khái quát hóa các kiến thức về exciton thành một tài liệu mạch lạc và tường minh cho những ai bắt đầu nghiên cứu vào các bài toán cụ thể của exciton ở các đề tài tiếp theo Đây cũng là một công việc quan trọng trong việc tiến hành các nghiên cứu về phương pháp toán tử (Operator Method – OM) giải phương trình Schrödinger mà giáo viên hướng dẫn luận văn này đang thực hiện, trong đó các dạng exciton là một trong những đối tượng chính để áp
dụng phương pháp
Như đã nói ở trên, có nhiều dạng exciton khác nhau: exciton trung hòa (trạng thái liên kết giữa một electron và một lỗ trống); exciton mang điện bao gồm: exciton âm (hai electron liên kết với một lỗ trống), exciton dương (một electron liên
kết với hai lỗ trống) Trong đó bài toán exciton trung hòa đã tìm được lời giải chính xác cho trường hợp có mặt từ trường ngoài với cường độ bất kì bằng phương pháp toán tử [4] Bài toán exciton dương khi sử dụng gần đúng Born-Oppenheimer có thể đưa được phương trình động lực học về dạng phương trình của exciton trung hòa nên về nguyên tắc có thể giải được Trường hợp exciton âm là đối tượng đang được nghiên cứu để áp dụng OM tìm lời giải chính xác Vì những lý do đó, cũng như trong giới hạn về thời gian thực hiện luận văn, tác giả xin được phép trình bày tập trung về exciton trung hòa và exciton âm 2D Trong quá trình tìm hiểu và thực
hiện luận văn, tác giả cũng đồng thời học được nhiều kĩ năng cần thiết cho việc nghiên cứu khoa học: tìm kiếm, đọc, phân tích, đánh giá, tổng hợp tài liệu và kĩ năng trình bày mạch lạc, tường minh trong luận văn
N ội dung cụ thể:
Tìm hiểu lý thuyết vùng trong vật lý chất rắn
Tìm hiểu phương pháp tạo ra mô hình 2D trong chất bán dẫn
Trang 10 Phân loại, thiết lập phương trình Schrödinger cho các loại exciton trung hòa cho hai trường hợp không có từ trường và có từ trường ngoài đều, các tính chất của exciton trung hòa
Thiết lập phương trình Schrödinger cho exciton âm 2D cho hai trường
hợp không có từ trường và có từ trường ngoài đều
Tìm hiểu tình hình giải các bài toán exciton
Phương pháp: tìm kiếm tài liệu, đọc, đánh giá nội dung, phân tích, tổng
hợp, trình bày lại theo một bố cục hợp lý, logic
B ố cục luận văn: dựa vào mục tiêu và các nội dung trên, trừ phần mở đầu và
phần kết luận, luận văn này được chia thành ba chương, cụ thể như sau:
• Chương I: CƠ SỞ LÝ THUYẾT Chương này trình bày các
kiến thức về cấu trúc vùng năng lượng trong chất rắn nhằm dẫn đến sự hình thành các vùng năng lượng, sau đó là sự xuất hiện của giả hạt “lỗ
trống” khi electron hóa trị bị kích thích lên vùng dẫn và sự xuất hiện
trạng thái liên kết giữa chúng khi khoảng cách giữ chúng bị thu nhỏ lại
bởi sự giam giữ của các hệ thấp chiều – đặc biệt là mô hình cấu trúc
giếng lượng tử 2D – dẫn đến sự hình thành exciton
• Chương II: EXCITON TRUNG HÒA Giới thiệu những nét cơ
bản về exciton trung hòa: định nghĩa, phân loại, tính chất, phương trình Schrödinger trong hai trường hợp không có từ trường và có từ trường ngoài đều, và tình hình giải các bài toán này
• Chương III: EXCITON ÂM Chương này trình bày các kiến
thức về exciton âm: định nghĩa, phương trình Schrödinger cho exciton âm trong hai trường hợp không có từ trường ngoài và có từ trường ngoài, tình hình giải các bài toán và một số kết luận thu được từ nghiệm của phương trình có từ trường ngoài đều
Trang 11CHƯƠNG 1: CƠ SỞ LÝ THUYẾT
Trong chương này, ở tiểu mục đầu tiên, tác giả trình bày lại lý thuyết vùng năng lượng nhằm tạo dựng tiền đề cho việc khảo sát trạng thái của exciton ở những
phần sau Trong phần này sẽ mô tả hoàn cảnh lịch sử hình thành lý thuyết vùng và ý tưởng của thuyết này một cách định tính, sau đó là giới thiệu phương trình động học cho chuyển động của electron trong trường thế tuần hoàn của tinh thể với các phép
gần đúng Born-Oppenheimer, gần đúng một electron, gần đúng thế tuần hoàn của tinh thể (mô hình Kronig-Penney) để dẫn ra nguyên nhân xuất hiện các vùng năng lượng: chính trường thế tuần hoàn của mạng tinh thể đã làm các mức năng lượng
của electron mở rộng thành các vùng năng lượng – nơi tồn tại các trạng thái khả dĩ
của electron – xen kẽ các vùng cấm [1-3], [17] Tiếp theo giới thiệu một loại giả hạt
tồn tại trong cấu trúc vùng năng lượng của tinh thể là “lỗ trống” – xuất hiện khi các electron trong vùng hóa trị nhận kích thích nhảy lên vùng dẫn Cùng với các electron, lỗ trống chính là một trong hai thành phần cấu thành exciton – đối tượng nghiên cứu chính của luận văn này Lý thuyết và thực nghiệm đều chứng tỏ khi kích thước tinh thể càng thu nhỏ (các hệ thấp chiều) thì lực tĩnh điện giữa electron và lỗ
trống cũng bắt đầu lớn dần, trạng thái liên kết trở nên bền vững hơn, năng lượng liên kết đo được do vậy cũng đủ lớn để xuất hiện trạng thái liên kết giữa điện tử và
lỗ trống Tiểu mục tiếp theo sẽ mô tả về hệ thấp chiều và sự hình thành exciton Nội dung của chương này được tham khảo chủ yếu trong các tài liệu [1-3], [17]
1.1 Lý thuy ết vùng năng lượng
1.1.1 Hoàn c ảnh lịch sử
Mẫu electron tự do của kim loại giúp ta hiểu rõ được bản chất của nhiệt dung, độ dẫn nhiệt, độ dẫn điện, độ cảm từ và điện động lực học các kim loại Tuy nhiên mẫu này tỏ ra còn hạn chế khi không giải thích được một số hiện tượng quan
trọng sau [2]:
Trang 12 Theo mẫu electron tự do, độ dẫn điện của chất rắn tỉ lệ với mật
độ electron, nhưng thực tế có một số kim loại có hóa trị II (như Be, Cd,
Zn, …) hay thậm chí kim loại hóa trị III (như Al, In, …) lại có độ dẫn điện kém hơn những kim loại hóa trị I (như Ag), mặc dù chúng có mật độ electron cao hơn
Thực tế một số kim loại có hằng số Hall dương, trong khi đó theo mẫu electron tự do thì hằng số Hall luôn âm
Đo đạc thực nghiệm cho thấy mặt Fermi thường không có dạng hình cầu, điều này trái ngược với mẫu electron tự do, mẫu này khẳng định
1.1.2 Mô t ả định tính
Trong tinh thể vật rắn các electron phân bố theo các vùng năng lượng cách nhau bởi các miền giá trị năng lượng mà tại đó không tồn tại bất kì electron nào Khoảng giá trị năng lượng bị cấm đó gọi là vùng cấm hay khe năng lượng Sự xuất
hiện của vùng năng lượng là kết quả tương tác của các sóng electron dẫn với các lõi ion của tinh thể Để hiểu một cách định tính, ta lấy kim loại đồng (29Cu) làm ví dụ:
Gọi khoảng cách của hai nguyên tử đồng kề nhau trong kim loại đồng là d
Xét hai nguyên tử đồng đặt cách xa nhau hơn nhiều so với khoảng cách d, nên ta
xem như hai nguyên tử này là độc lập nhau Mỗi nguyên tử được mô tả với một tập
hợp các trạng thái lượng tử gián đoạn mà đặc trưng bởi bộ bốn số lượng tử (n, l, m l ,
m s) Ở trạng thái cơ bản, 29 electron của nguyên tử đồng trung hòa chiếm 29 trạng thái lần lượt có năng lượng thấp nhất và mỗi trạng thái chỉ chứa một electron duy
nhất, theo nguyên lý loại trừ Pauli
Trang 13Khi hai nguyên tử được đưa lại gần nhau cỡ khoảng cách d thì các hàm sóng
của chúng bắt đầu xen phủ nhau, và cuối cùng ta có một hệ duy nhất có hai nguyên
tử gồm 2×29 = 58 electron Việc số electron tăng gấp đôi trong hệ mà vẫn đảm bảo
phải thỏa mãn nguyên lý Pauli dẫn đến việc mỗi mức năng lượng của một nguyên
tử cô lập ban đầu phải tự tách thành hai mức nhỏ cho hệ hai nguyên tử sau đó Lập
luận tương tự khi ta xét tinh thể đồng có N nguyên tử thì mỗi mức phải tách thành N
mức nhỏ, với N trong thực tế là rất lớn (cùng bậc số Avogadro) Với số lượng
nguyên tử như vậy thì mặc dù các mức năng lượng vẫn là gián đoạn nhưng khoảng cách giữa các mức là rất bé, nghĩa là mỗi mức năng lượng riêng rẽ đã bị mở rộng thành vùng năng lượng gồm rất nhiều mức gián đoạn bên trong, và được gọi là vùng năng lượng Giữa các vùng năng lượng là các khe, nơi không có sự tồn tại của bất kì electron nào, gọi là vùng cấm Điều này cũng được suy ra khi biện luận nghiệm phương trình Schrödinger của electron trong trường thế của tinh thể [2]
1.1.3 Phương trình Schrödinger cho chuyển động của electron trong trường thế tuần hoàn của tinh thể
Để mô tả tính chất của electron trong tinh thể cần phải xét một hệ gồm rất nhiều hạt tương tác với nhau: các electron, các hạt nhân nguyên tử
Phương trình Schrödinger cho electron trong tinh thể có dạng
Số hạng 1: động năng của các electron
Số hạng 2: động năng của các hạt nhân
Số hạng 3: thế năng tương tác giữa các electron
Số hạng 4: thế năng tương tác giữa các electron và hạt nhân
Số hạng 5: thế năng tương tác giữa các hạt nhân
Trang 14Đây là một phương trình rất phức tạp bởi số lượng electron và hạt nhân rất lớn, cùng bậc số Avogadro (cỡ 1023
), nên khi tính toán, ta phải lập và giải một hệ phương trình rất lớn, đến mức ngay cả các máy tính mạnh nhất hiện nay cũng không
giải được Vì thế ta cần chọn một mô hình gần đúng với bài toán đang xét, sao cho
dựa vào đó, bài toán mà ta đang khảo sát sẽ đơn giản hơn Ta thực hiện các phép
gần đúng cho bài toán nêu trên:
G ần đúng đoạn nhiệt (gần đúng Born-Oppenheimer): giả thiết rằng các lõi
nguyên tử (bao gồm hạt nhân và các electron khác electron hóa trị) đứng yên đối
với nút mạng và chỉ xét chuyển động của electron hóa trị trong trường lực tuần hoàn
của các lõi nguyên tử đó, tức là bỏ qua số hạng 2 trong (1.1) Dù vậy, bài toán vẫn
rất phức tạp vì còn phải xét khoảng 1023electron tương tác với nhau
G ần đúng một electron: giả thiết rằng có thể xét chuyển động của từng
electron hóa trị riêng rẽ trong một trường thế 𝑉(𝑟⃗) gây bởi tất cả các electron còn
lại cùng với tất cả các lõi nguyên tử trong tinh thể, tức là gộp số hạng 3, 4 và 5 vào trường thế 𝑉(𝑟⃗) Do tính đối xứng tịnh tiến của mạng tinh thể nên 𝑉(𝑟⃗) là hàm tuần hoàn trong không gian với chu kì là một vector mạng
𝑉�𝑟⃗ + 𝑅�⃗� = 𝑉(𝑟⃗),
với 𝑟⃗ là vector vị trí, 𝑅�⃗ là vector mạng
Hình 1.1: Thế tuần hoàn do các ion nút mạng gây ra trong tinh thể chất rắn
𝑉(𝑟⃗)
R
Trang 15Như vậy, qua hai phép gần đúng ta thu được một hệ phương trình độc lập,
mỗi phương trình mô tả chuyển động của một electron, có dạng
�−2𝑚ℏ2 𝛻𝑖2+ 𝑉𝑖(𝑟��⃗)� 𝛹𝚤 𝑖(𝑟��⃗) = 𝐸𝚤 𝑖𝛹𝑖(𝑟��⃗), 𝚤 (1.2)
với: 𝑉(𝑟⃗): thế năng của electron trong trường tuần hoàn của tinh thể
𝛹(𝑟⃗): hàm sóng của electron
E: năng lượng của electron
Tiếp theo, ta chọn mô hình Kronig-Penney để mô tả hàm thế 𝑉(𝑟⃗) - do tính
đơn giản nhưng vẫn đảm bảo tính tuần hoàn cho hàm thế - và vì sử dụng mô hình
này để tính toán sẽ nhận được lời giải chính xác Để đơn giản, ta giải (1.2) cho
trường hợp thế tuần hoàn theo một chiều Trường thế của tinh thể theo một chiều có
dạng
𝑉(𝑥) = �0 , 𝑘ℎ𝑖 0 ≤ 𝑥 ≤ 𝑎,𝑉
0 , 𝑘ℎ𝑖 𝑛𝑅 + 𝑎 ≤ 𝑥 ≤ (𝑛 + 1)𝑅,
với 𝑅 là chu kì mạng một chiều
Hình 1.2: Đồ thị hàm thế năng của electron trong mô hình Kronig-Penney
⟹ �−2𝑚ℏ2 𝑑𝑥𝑑22+ 𝑉(𝑥)� 𝛹(𝑥) = 𝐸𝛹(𝑥) (1.3)
Giải (1.3) cho hai trường hợp bên trong và bên ngoài giếng, ta có nghiệm
𝛹1(𝑥) = 𝐴 𝑒𝑖𝑘1𝑥+ 𝐵 𝑒−𝑖𝑘1𝑥 với 𝑘12 =2𝑚𝐸ℏ2 ,
R V(x)
V o
Trang 16bằng cách giảm độ rộng của rào thế (cho 𝑏 ⟶ 0) nhưng đồng thời lại tăng V0 (cho
𝑉0⟶ ∞) sao cho 𝑉0𝑏 = 𝑐𝑜𝑛𝑠𝑡 Thực hiện các bước gần đúng, ta được
Trang 17Hình 1.3: Đồ thị hàm F(E) Các giá trị được phép của năng lượng E được cho ở các
khoảng hàm hàm F(E) nằm giữa khoảng +1 và −1
K ết luận: Như vậy phổ năng lượng của electron trong trường tuần hoàn có
cấu trúc vùng Cần nhấn mạnh là tính gián đoạn của phổ năng lượng electron là hệ
quả của các điều kiện biên, còn sự hình thành các vùng năng lượng là do tính tuần hoàn của hàm thế
1.1.4 L ỗ trống
1.1.4.1 Khái ni ệm lỗ trống
Ở gần không độ tuyệt đối, vùng năng lượng cao nhất bị electron chiếm là
một vùng đầy, gọi là vùng hóa trị Vùng năng lượng cao hơn là một vùng hoàn toàn
trống gọi là vùng dẫn Giữa vùng hóa trị và vùng dẫn là vùng cấm, bề rộng vùng
cấm được tính bằng hiệu năng lượng của đáy vùng dẫn và đỉnh vùng hóa trị Xét
một tinh thể điện môi hoặc bán dẫn ở nhiệt độ cao hơn 0K hoặc bị chiếu ánh sáng thích hợp vào tinh thể, một electron ở đỉnh vùng hóa trị nhận được năng lượng sẽ vượt qua vùng cấm và nhảy lên chiếm phần đáy của vùng dẫn Trạng thái ở đỉnh vùng hóa trị không bị electron chiếm gọi là lỗ trống
�𝑃𝑢� 𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢
cos(𝑘𝑎) = 1
cos(𝑘𝑎) = −1 𝑢
Trang 181.1.4.2 Tính ch ất của lỗ trống trong mạng tinh thể
Vector sóng: 𝑘�⃗ℎ = −𝑘�⃗𝑒
Điện tích: 𝑞ℎ = −𝑞𝑒
Năng lượng: 𝐸ℎ�𝑘�⃗ℎ� = −𝐸𝑒�𝑘�⃗𝑒�
Khối lượng hiệu dụng của lỗ trống: 𝑚ℎ∗ = −𝑚𝑒∗
Mật độ dòng điện do lỗ trống sinh ra khi chuyển động: 𝚥⃗ℎ = 𝑒𝑣⃗ℎ�𝑘�⃗ℎ�,
với 𝑣⃗ℎ là vận tốc của lỗ trống
1.2 Bán d ẫn hệ thấp chiều và sự hình thành exciton
Sự xuất hiện của lỗ trống ở vùng hóa trị khi electron bị kích thích lên vùng
dẫn gây ra lực hút tĩnh điện giữa electron và lỗ trống Tương tác này trở nên mạnh
dần khi khoảng cách giữa electron và lỗ trống bị thu hẹp, đến lúc thắng được tương tác đẩy gây bởi các electron tự do trong tinh thể - tức là năng lượng liên kết của electron và lỗ trống đủ lớn - thì exciton được hình thành Các exciton được quan sát
bằng thực nghiệm đầu tiên bởi sự nghiên cứu và chế tạo thành công cấu trúc bán
dẫn hệ thấp chiều
1.2.1 T ổng quan về hệ thấp chiều
Trong những năm gần đây, các nhà vật lý và hóa học ngày càng quan tâm hơn đến các vật liệu thấp chiều, những lợi ích có được từ chúng cũng đang tăng đáng kể và dự định sẽ còn hơn thế trong tương lai, đơn cử một lý do sau: chỉ xét riêng nhu cầu trong ngành điện tử, độ phức tạp của bộ vi xử lý và bộ nhớ của các con chip ngày càng tăng thể hiện ở chỗ cứ mỗi hai năm mật độ chip lại tăng gấp đôi Điều này dẫn đến các thành phần điện tử riêng biệt phải có kích thước cỡ 100 nm
trở xuống, làm một số chiều trong không gian tinh thể bị hạn chế
Trong các tinh thể thông thường, các phân tử sẽ tương tác với nhau trong không gian ba chiều (3D – 3 Dimensional) Nhưng nếu một, hai hoặc cả ba chiều bị
hạn chế – hệ quả của việc thu hẹp kích thước vật liệu – thì các hiệu ứng lượng tử bắt đầu xuất hiện và đóng vai trò quan trọng, nói cách khác, vật liệu hệ thấp chiều thể
Trang 19hiện những tính chất mà không thấy được trong các tinh thể thông thường, ví dụ như việc trong phổ hấp thụ xuất hiện những đỉnh hấp thụ lạ, không phải là của các
hạt hoặc các hệ hạt đã biết Dựa vào số chiều không bị giới hạn, vật liệu thấp chiều
được chia thành các loại không chiều (0D), một chiều (1D), hai chiều (2D) Các vật
liệu 0D được tìm thấy trong hầu hết các tinh thể nano bán dẫn (chấm lượng tử - Quantum Dot) và họ fullerene Các vật liệu 1D tồn tại ở các hình thức khác nhau như các cấu trúc dạng chuỗi, ví dụ ống nano, dây nano, vòng nano, vành nano Chất
liệu cấu thành chúng có thể là cacbon, phân tử hữu cơ (để tạo thành polyme), kim
loại, chất bán dẫn, hoặc oxit kim loại Ống nano cacbon là một trong những vật liệu
một chiều được nghiên cứu nhiều nhất Graphene là một khám phá nổi bật trong lĩnh vực vật liệu 2D, bên cạnh đó việc nghiên cứu cũng bị hấp dẫn bởi sự chế tạo thành công một loại bán dẫn cấu trúc nhiều lớp, trong đó các lớp lần lượt đóng vai trò như các rào thế và hố thế giam giữ các hệ nhiều hạt (còn gọi là giếng lượng tử 2D) [25]
1.2.2 V ật liệu bán dẫn nhiều lớp
Esaki và Tsu là những người đã đề xuất và chế tạo thành công cấu trúc mạng
tuần hoàn – là cấu trúc gồm nhiều lớp xen kẽ nhau của hai loại bán dẫn khác loại
nhưng có hằng số mạng gần bằng nhau độ dày cỡ nm, thường được gọi là siêu mạng
(SL – superlattice) – với hai loại bán dẫn GaAs và AlGaAs [20] Điều đặc biệt là các công trình nghiên cứu đều cho cấu trúc siêu mạng GaAs/AlGaAs có những tính
chất khác biệt so với hai loại bán dẫn riêng biệt GaAs và AlGaAs, nổi bật nhất là sự
so sánh về phổ photoluminescence (PL) [17], [20] Sau đó là sự ra đời của một loạt các siêu mạng của các loại bán dẫn khác như CdTe/CdZnTe, GaInAs/AlInAs, InAs/GaSb/AlSb, … với sự tiến bộ song song của các kĩ thuật cấy ghép tinh vi như (Molecular Beam Epitaxy, tạm dịch “cấy chùm phân tử”), MOCVD (Metal Organic Chemical Vapor Deposition, tạm dịch “kết tủa hơi kim loại hóa hữu cơ”) có thể
kiểm soát được mật độ hạt tải trong vật liệu để phục vụ các mục đích nghiên cứu khác nhau như là tạo môi trường vật liệu có mật độ electron cao, hoặc mật độ lỗ
Trang 20trống cao, và cả việc kiểm soát kích thước hạn chế của một chiều nào đó trong chất bán dẫn [19], [20], [24]…
Lưu ý rằng điều kiện tiên quyết để tạo nên một bán dẫn nhiều lớp hữu dụng
là hai hoặc ba chất bán dẫn thành phần đó phải có hằng số mạng gần bằng nhau Sự phù hợp về hằng số mạng rất quan trọng vì bất cứ một sự chênh lệch nào cũng có
thể dẫn đến sự “trật khớp” khi cho các bán dẫn tiếp xúc nhau, và nhiều nghiên cứu cho thấy các hạt tải – cụ thể là electron – có thể bị tán xạ hoặc xuất hiện các hiệu ứng ngoài mong muốn gây nhiễu cho kết quả đo đạc [24]
1.2.3 C ấu trúc giếng lượng tử 2D
1.2.3.1 C ấu trúc vùng tại bề mặt tiếp xúc của hai bán dẫn
Ta đã biết, các vật liệu khác nhau có các cấu trúc khe vùng khác nhau Gọi
𝐸𝑐 và 𝐸𝑣 lần lượt là mức năng lượng tại đáy vùng dẫn và đỉnh vùng hóa trị, bề rộng khe vùng là 𝐸𝑔 = 𝐸𝑐 − 𝐸𝑣 Xét hai bán dẫn A và B (có hằng số mạng gần bằng nhau) nhưng cấu trúc khe vùng khác nhau (tức là khác nhau các mức 𝐸𝑐 và 𝐸𝑣), ta
sẽ được một trong những trường hợp cấu trúc vùng năng lượng mới như hình (1.4)
Hình 1.4: Một trong những trường hợp về cấu trúc vùng tại vị trí tiếp giáp giữa loại
chất bán dẫn có hằng số mạng gần bằng nhau Đây là trường hợp tiếp xúc loại I [17]
Trang 21Ta thấy vì bề rộng vùng cấm của hai bán dẫn khác nhau nên đáy của vùng
dẫn cao hơn sẽ có thêm một phần năng lượng bù vào gọi là phần bù vùng dẫn ∆𝐸𝑐
(conduction band offset) Khi hai bán dẫn A và B tiếp xúc với nhau thì phần bù
vùng dẫn sẽ ngăn không cho electron ở gần đáy vùng dẫn của A nhảy sang B, nghĩa
là phần bù vùng dẫn đóng vai trò là một hàng rào thế Tính chất của hàng rào thế
này khác nhau phụ thuộc vào sự tiếp xúc của hai vùng cấm 𝐸𝑔𝐴 và 𝐸𝑔𝐵 Nếu bề rộng
vùng cấm của chất bán dẫn này nằm lọt trong bề rộng vùng cấm của chất bán dẫn
kia thì ta có tiếp xúc loại I, như hình (1.4), đó là trường hợp tiếp xúc của loại bán
dẫn nhiều lớp GaAs/AlGaAs Ngược lại, nếu bề rộng vùng cấm của chất bán dẫn
này không chứa hoàn toàn bề rộng của chất bán dẫn kia, ta có tiếp xúc loại II, như
hình (1.5), đây là trường hợp tiếp xúc của loại bán dẫn nhiều lớp InAs/GaSb/AlSb
(tại vùng tiếp xúc InAs/GaSb và AlSb/InAs)
Hình 1.5: Cấu trúc khe năng lượng của loại bán dẫn InAs/GaSb/AlSb Tại những vị
trí tiếp xúc InAs/GaSb, AlSb/InAs là tiếp xúc loại II, tại vị trí tiếp xúc GaSb/AlSb là tiếp
xúc loại I (đơn vị năng lượng: eV) [17]
Ứng với những cách ghép các lớp khác nhau xen kẽ nhau, ta lại có một siêu
mạng mới với những tính chất vật lý thay đổi
Trang 22lợi cho việc khảo sát chúng, và thường thì 𝑥 ≤0.45 để đảm bảo vẫn là loại bán dẫn
trực tiếp [17] Cho tới nay, GaAs/AlGaAs vẫn được sử dụng nhiều trong các công trình nghiên cứu về khí electron trong cấu trúc tinh thể 2D, trong đó vùng GaAs
hoạt động như là hố thế năng còn vùng AlGaAs đóng vai trò là bức tường thế
Hình 1.6: Cấu trúc siêu mạng GaAs/AlGaAs
1.2.3.3 Gi ếng lượng tử GaAs/AlGaAs 2D
Trong phần trên, ta đã phân tích cấu trúc vùng năng lượng tại những vị trí
tiếp giáp giữa hai lớp bán dẫn khác loại Quan sát năng lượng và cấu trúc phần bù vùng dẫn được mô tả trong hình 1.7 dưới đây, ta thấy lớp GaAs đóng vai trò như
chất bán dẫn A, còn lớp AlGaAs đóng vai trò như chất bán dẫn B trong hình 1.4 Tương tự như những lập luận ở trên, khi hai lớp GaAs và AlGaAs cứ xen kẽ được
xếp sát nhau thì electron bị giam nhốt trong vùng dẫn còn lỗ trống bị giam nhốt
AlGaAs
d 2
d 1
GaAs
Trang 23trong vùng hóa trị đầy của lớp GaAs (cấu trúc siêu mạng) Vấn đề ở chỗ, khi lớp
GaAs được cấy rất mỏng (cỡ nm) xen giữa hai lớp AlGaAs thì các hạt tải được xem như gần đúng chuyển động tự do trong mặt phẳng (2D) vuông góc trục z (mặt phẳng
hình vẽ) hay nói cách khác là chuyển động tự do trong giếng lượng tử 2D vô hạn
(do d 2 rất mỏng)
Hình 1.7: Một cấu trúc lớp được vẽ chiều tăng theo trục nằm ngang Chúng được đặt sát nhau và luân phiên nhau Năng lượng E phụ thuộc vào vector sóng của electron lan truyền trong hai chất bán dẫn
Hình 1.8: Lớp GaAs đóng vai trò là hố thế, lớp AlGaAs đóng vai trò là rào thế đối
với electron Cả electron và lỗ trống đều bị giam trong cùng lớp GaAs Đường nét đứt mô
tả năng lượng của các hạt bị giam
Trang 24Bài toán khảo sát hạt chuyển động trong hố thế vô hạn một chiều là bài toán khá quen thuộc và cơ bản trong cơ lượng tử, ta biết rằng, các electron bị giam nhốt trong giếng một chiều có phổ năng lượng bị gián đoạn, vì vậy ta cũng có kết luận tương tự cho năng lượng của các hạt tải trong giếng lượng tử GaAs/AlGaAs: năng lượng electron và lỗ trống trong giếng bị lượng tử hóa
Ngoài ra, khi kích thước vật liệu bị thu hẹp, nghĩa là độ bất định tọa độ của các hạt tải trong giếng lượng tử càng giảm (theo phương z, hình 1.8) thì độ bất định
về xung lượng của chúng cũng tăng lên do hệ quả của nguyên lý bất định Heisenberg, dẫn đến độ tăng năng lượng cực tiểu của các hạt tải; nhờ đó mà năng lượng liên kết giữa electron và lỗ trống cũng tăng Điều này lý giải tại sao các hiệu ứng lượng tử nói chung cũng như bằng chứng về sự tồn tại và tính chất của exciton (đặc biệt là exciton mang điện) bắt đầu xuất hiện rõ ràng hơn khi vật liệu 3D tiến
dần về giới hạn 2D Điều này một lần nữa khẳng định tầm quan trọng của vật liệu
thấp chiều trong việc nghiên cứu các hệ hạt lượng tử, mà gần nhất là hệ 2D
1.2.4 S ự hình thành exciton
Xét chất bán dẫn, electron chịu ảnh hưởng thế tương tác từ rất nhiều “đối tượng” khác nhau như hạt nhân, lỗ trống, các electron khác Trong hệ 3D, tương tác hút giữa electron và lỗ trống không đủ mạnh để thắng được tương tác đẩy giữa các electron với nhau Kết quả là năng lượng liên kết giữa chúng rất yếu Muốn chúng hút nhau mạnh hơn thì phải làm cách nào đưa electron và lỗ trống “lại gần” nhau hơn Ý tưởng nảy ra là tìm cách giam electron trong các giếng thế, nhưng nếu giếng không đủ sâu thì xác suất để các electron xuyên hầm là rất lớn, việc giam hãm cũng không hiệu quả Vậy ta cần chế tạo các giếng thế đủ sâu, hay đơn giản hơn là giếng
có bề rộng đủ hẹp để có thể xem là giếng sâu vô hạn Khi đó electron sẽ bị nhốt giam trong giếng đó với xác suất xuyên hầm gần như bằng không
Giếng thế có bề rộng rất hẹp chính là một ý tưởng giúp biến vật liệu 3D về
dạng giả 2D, một giải pháp hữu hiệu của hệ thấp chiều cho việc nghiên cứu exciton
Lực tương tác tĩnh điện giữa electron ở đáy vùng dẫn và lỗ trống ở đỉnh vùng hóa trị
Trang 25trở nên lớn hơn khi chúng được giam trong các hệ thấp chiều Khi đó, electron và lỗ
trống không biểu hiện như chúng là các hạt mang điện tự do nữa mà “hành xử” như
thể electron và lỗ trống là một cặp không thể tách rời, người ta gọi trạng thái liên
kết giữa electron và lỗ trống là giả hạt exciton Giả hạt này được tiên đoán bởi
Frenkel từ thập niên 30 - thế kỉ XX, nhưng phải đến hai thập niên sau đó, chúng
mới được thực nghiệm công nhận sự tồn tại [1], [9]