1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tuyển tập các đề kiểm tra học kì của lớp 11

132 382 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 132
Dung lượng 844,34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tuyển tập các đề kiểm tra học kì của lớp 11

Trang 1

Câu 5: Cho sáu điểm phân biệt nằm trên đường tròn Số tam giác

có ba đỉnh làba trong sáu điểm trên là:

Câu 7: Số cách xếp 5 bạn học sinh M, N, P , Q, L vào một dãy ghế

dài có 5 chỗ sao cho hai bạn M, N luôn ở cạnh nhau là:

A 5! B A52 C 2.4! D 4!

Câu 8: Một túi đựng 5 quả cầu đỏ, 7 quả cầu xanh Lấy ngẫu nhiên

ba quả cầu Xác suất để lấy được ba quả cầu đỏ là:

C

A C

3 5 3 12

A

3 5 3 12

C C

Câu 9: Trong các hình sau đây, hình nào không có trục đố xứng?

Trang 2

A Hình chữ nhật B Hình thoi

C Hình bình hành D Hình thang cân

Câu 10:Mệnh đề nào sau đây đúng?

A Phép vị tự biến đường thẳng a thành đường thẳng a’ song song với đường thẳng a

B Phép quay biến đường thẳng a thành đường thẳng a’ cắt đường thẳng a

C Phép tịnh tiến biến mỗi đường thẳng thành chính nó

D Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó

Câu 11: Phép đối xứng trục Ox biến đường tròn tâm I(1;2), bán

kính R=1 thành đường tròn có phương trình :

A (x-1)2+(y+2)2=1 B (x-1)2+(y-2)2=1

C (x+1)2+(y+2)2=1 D (x+1)2+(y-2)2=1

Câu 12: Phép đối xứng tâm O ( O là gốc toạ độ ) biến đường thẳng

(d): 3x+2y-6=0 thành đường thẳng có phương trình:

Câu 14: (2,0 điểm) Gieo 3 đồng xu vô tư

a/ Tính xác suất để có đúng hai đồng xu suất hiện mặt sấp? b/ Gọi X là số mặt sấp suất hiện Lập bảng phân bố xác suất của biến ngầu nhiên rời rạc X

c/ Tính kì vọng của X

Câu 15: (1,0 điểm) Cho ABM có hai đỉnh A, B cố định M

chạy trên đường tròn (O;R) cố định không có điểm chung với đường thẳng AB Tìm quĩ tích trọng tâm G của ABM

Câu 16: (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là

hình bình hành M, N lần lượt là trung điểm của SC, SD

a/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)

b/ Chứng minh MN song song với AB

- Hết -

Trang 3

Câu 5: Cho sáu điểm phân biệt nằm trên đường tròn Số tam giác

có ba đỉnh làba trong sáu điểm trên là:

Câu 7: Số cách xếp 5 bạn học sinh M, N, P , Q, L vào một dãy ghế

dài có 5 chỗ sao cho hai bạn M, N luôn ở cạnh nhau là:

Câu 8: Một túi đựng 5 quả cầu đỏ, 7 quả cầu xanh Lấy ngẫu nhiên

ba quả cầu Xác suất để lấy được ba quả cầu đỏ là:

C A

Trang 4

C C

Câu 9: Trong các hình sau đây, hình nào không có trục đố xứng?

A Hình chữ nhật B Hình thoi

C Hình bình hành D Hình thang cân

Câu 10:Mệnh đề nào sau đây đúng?

A Phép vị tự biến đường thẳng a thành đường thẳng a’ song song với đường thẳng a

B Phép quay biến đường thẳng a thành đường thẳng a’ cắt đường thẳng a

C Phép tịnh tiến biến mỗi đường thẳng thành chính nó

D Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó

Câu 11: Phép đối xứng trục Ox biến đường tròn tâm I(1;2), bán

kính R=1 thành đường tròn có phương trình :

A (x-1)2+(y+2)2=1 B (x-1)2+(y-2)2=1

C (x+1)2+(y+2)2=1 D (x+1)2+(y-2)2=1

Câu 12: Phép đối xứng tâm O ( O là gốc toạ độ ) biến đường thẳng

(d): 3x+2y-6=0 thành đường thẳng có phương trình:

Câu 14 (1,5 điểm) Gieo ba đồng xu vô tư Tính xác suất để có

đúng hai đồng xu suất hiện mặt sấp

Câu 15 (1,0 điểm) Cho cấp số cộng (un) có u1=2; d=3 Tìm n biết rằng Sn=260 ( Sn là tổng n số hàng đầu tiên của cấp số)

Câu 16 (1,0 điểm) Trong mặt phẳng Oxy cho đường tròn (C):

x2+y2-4x+6y-12=0 Tìm phương trình đường tròn (C’) là ảnh của (C) qua phép đối xứng trục Oy

Câu 17 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình

bình hành M, N lần lượt là trung điểm của SC, SD

a/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)

b/ Chứng minh MN song song với AB

- Hết -

Trang 5

ĐỀ 3 – Chương trình nâng cao

Câu 4: Có bao nhiêu số tự nhiên có 5 chữ số được viết theo thứ tự

tăng dần từ trái sang phải?

Câu 6: Nếu a là một nghiệm của phương trình

sin3x.cosx =cos3x(1+sinx) thì sin10a có giá trị bằng :

Trang 6

Câu 11: Chọn khẳng định sai trong các khẳng định sau?

A Hàm số y=sinx đồng biến trong khoảng (0;)

B Hàm số y=tanx đồng biến trong khoảng 0;

Câu 12: Để phân biệt đội thắng , thua trong một trận chung kết

bóng đá bằng thi đấu luân lưu 11 mét Huấn luyện viên của đội bóng có bao nhiêu cách chọn 5 trong 11 cầu thủ của đội trên sân để

đá 5 quả bóng đầu tiên?

Câu 13: Trong mặt phẳng Oxy cho đường thẳng d: 3x+4y-3=0

Phép tịnh tiến theo véctơ có toạ độ nào dưới đây biến đường thẳng

Câu 15: Trong mặt phẳng Oxy, phép đối xứng tâm I(1;2) biến

đường tròn (x-1)2+(y-1)2=3 thành đường tròn có phương trình nào ?

A x2+y2-8x-10y+36=0 B x2+y2-6x+6=0

C x2+y2+6y+6=0 D x2+y2-6y+6=0

Câu 16: Hình nào dưới đây không có tâm đối xứng?

A Đường tròn B Tam giác đều

Trang 7

C Đường elip D Hình bình hành

Câu 17: Trong mặt phẳng Oxy cho đường thẳng d:2x+y-3=0 Phép

đối xứng trục Oy biến đường thẳng d thành d’ có phương trình :

Câu 18: Cho ABC với trọng tâm G, gọi A’, B’, C’ lần lượt là

trung điểm của 3 cạnh BC, CA, AB Phép vị tự tâm G biến ABC thành A’B’C’ có tỉ số vị tự là:

Câu 20: Phép biến hình nào dưới đây không có thính chất biến

đường thẳng thành đường thẳng song song hoặc trùng với nó:

Câu 22 (1,0 điểm) Trong mặt phẳng Oxy cho hai đường tròn

(C1): (x-1)2+(y+2)2=4, (C2): (x+3)2+y2=36 Tìm tâm vị tự trong của hai đường tròn (C1) và (C2)

Câu 23 (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình

bình hành Gọi M, N lần lượt là trung điểm của các cạnh SC, SD

a/ Gọi AN và BM cắt nhau tại K Chứng minh rằng SK//BC b/ Cho mặt phẳng (P) đi qua AM và (P)//BD Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (P)

c/ Gọi E, F lần lượt là giao điểm của (P) với các cạnh SB,

SD Tìm tỉ số diện tích của tam giác SME và tam giác SBC

- Hết -

Trang 8

ĐỀ 4 – Chương trình nâng cao Câu 1 (2,0 điểm) Giải các phương trình sau:

Câu 2 (1,0 điểm) Cho hàm số yf x( )s inx Giải phương trình

2 ( )f x  3 và chứng minh 2 (2)f  3( không sử dụng máy tính)

3/ Một hộp chứa 10 cái thẻ trong đó các thẻ đánh số 1,2,3,4,5 màu đỏ, thẻ đánh số 6 màu xanh và các thẻ đánh số 7,8,9,10 màu trắng Lấy ngẫu nhiên hai thẻ Tính xác suất để lấy được hai thẻ khác màu

Câu 4 (1,0 điểm) Trong mặt phẳng Oxy cho hai đường tròn

(C1): (x-1)2+(y+2)2=4, (C2): (x+3)2+y2=36 Tìm tâm vị tự trong của hai đường tròn (C1) và (C2)

Câu 5 (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình

bình hành Gọi M, N lần lượt là trung điểm của các cạnh SC, SD

a/ Gọi AN và BM cắt nhau tại K Chứng minh rằng SK//BC b/ Cho mặt phẳng (P) đi qua AM và (P)//BD Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (P)

c/ Gọi E, F lần lượt là giao điểm của (P) với các cạnh SB,

SD Tìm tỉ số diện tích của tam giác SME và tam giác SBC

- Hết -

Trang 9

Câu 4: Trong mặt phẳng toạ độ Oxy cho điểm A(1;2) Ảnh của

điểm A qua phép đối xứng trục Ox là điểm có toạ độ :

Ảnh của điểm M qua phép tịnh tiến theo véctơ v

là điểm nào trong các điểm sau:

2

A

Trang 10

C A(4;3) D (1; )1

2

A

Câu 8: Trong mặt phẳng toạ độ Oxy cho điểm M(-1;2) Ảnh của

điểm M qua phép đối xứng trục tâm O có toạ độ là:

Câu 9: Trong mặt phẳng toạ độ Oxy cho đường thẳng d : x+y-1=0

Ảnh của đường thẳng d qua phép đối xứng trục Ox có phương trình:

Câu 10: Trong mặt phẳng toạ độ Oxy cho I(1;2) và điểm M(0;3)

Phép vị tự tâm I tỉ số k=-2 biến điểm M thành điểm M’ Toạ độ của điểm M’ là:

Câu 12: Các tố nào sau đây xác định một mặt duy nhất?

A Ba điểm B Một điểm và một đường thẳng

C Hai đường thẳng cắt nhauD Bốn điểm

Câu 13: Trong không gian cho bốn điểm không đồng phẳng , có

thể xác định nhiều nhất bao nhiêu mặt phẳng phân biệt từ các điểm đó?

Trang 11

Câu 15: Gieo đồng thời hai con súc sắc, một con màu đỏ và một

con màu xanh Xác suất để tổng số chấm trên mặt suất hiện hai con súc sắc bằng 7 là:

a/ Giải phương trình : cos2x+3sinx-2=0

b/ Từ khai triển nhị thức Newtơn của biểu thức (5x-4)17thành đa thức, hãy tính tổng các hệ số của đa thức nhận được

Câu 18 (2,0 điểm) Cho hình chóp S.ABCD có đáy là hình bình

hành Gọi M là trung điểm của SC

a/ Tìm giao điểm I của mặt phẳng (SBD) với đường thẳng

AM Chứng minh IA=2IM

b/ Gọi G, G’ lần lượt là trọng tâm của các tam giác SAB và ABD Chứng minh rằng GG’ song song với mặt phẳng (SBD)

Phần dành riêng cho ban nâng cao

Câu 19a (2,0 điểm)

a/ Giải phương trình : sin3x+cos3x=cosx

b/ Tìm số tự nhiên n thoả mãn:

Cn2.Cnn-2+2.Cn2.Cn3+Cn3.Cnn-3=100, trong đó Cnk là tổ hợp chập k của n phần tử

Dành cho ban cơ bản

Câu 19b (2,0 điểm)

a/ Giải phương trình : 3 s inx cos x1

b/ Cho cấp số cộng, biết số hạng đầu tiên là 9, số hạng thứ n là 49

và công sai bằng 5

2 Tìm n

- Hết -

Trang 12

ĐỀ 6 – BAN KHOA HỌC TỰ NHIÊN

Câu 4: Gieo một đồng xu ba lần Gọi A là xác suất suất hiện 3 mặt

ngửa, B là xác suất suất hiện ít nhất một mặt ngửa P(AB) là:

Câu 5: Xác suất bắn trúng mục tiêu của một vận động viên khi bắn

một viên đạn là 0,6 Người đó bắn hai viên đạn một cách độc lập Xác suất để một viên trúng mục tiêu và một viên trượt mục tiêu là:

Trang 13

Câu 7: Một đội học sinh giỏi của trường THPT gồm 12 học sinh

khối 12, bốn học sinh khối 11, ba học sinh khối 10 Số cách chọn

ba học sinh trong đó mỗi khối phải có một em ?

Câu 9: Phương trình sinx+cosx=-1

A Vô nghiệm B Có một họ nghiệm là 4

Câu 11: Hợp thành của một phép tịnh tiến và phép đối xứng tâm là

phép nào trong các phép sau đây?

A Phép đối xứng trục B Phép đối xứng tâm

C Phép đồng nhất D Phép tịnh tiến

Câu 12: Trong mặt phẳng toạ độ Oxy cho đường thẳng (d) có

phương trình : 3x-2y+1=0 Ảnh của đường thẳng (d) qua phép đối xứng trục Ox có phương trình là:

Trang 14

A (x+4)2+(y-3)2=16 B x2+(y-3)2=16

C x2+(y+3)2=16 D x2+(y-3)2=4

Câu 15: Cho a//(P), b//(P) , a≠b Mệnh đề nào đúng ?

C a chéo b D Cả A, B, C đều sai

SCC   C  C  với 3≤k≤n Rút gọn S ta được:

SC 

Phần tự luận (6,0 điểm)

Câu 17 (2,0 điểm) Giải các phương trình sau:

a/ sin3x.cosx-cos3x.sinx=1

b/ Tìm ảnh của đường tròn (C) qua phép vị tự tâm M, tỉ số k=-2 với M(1;4)

Câu 19 (2,0 điểm) Cho hình chóp S.ABCD có đáy là hình thang

với AB là đáy lớn Gọi M, N theo thứ tự là trung điểm của SB, SC

a/ Hãy tìm giao tuyến của các cặp mặt phẳng sau: (SBC) và (SAD), (AMN) và (SAD)

b/ Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN)

- Hết -

Trang 15

Câu 2: Từ các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự

nhiên có ba chữ số đôi một khác nhau ?

Câu 3: Xét phép thử ngẫu nhiên là gieo một con súc sắc hai lần Gọ

A là biến cố “ Tổng số chấm trên mỗi mặt sau hai lần gieo là một

số chẵn” và B là biến cố “ Tổng số chấm trên mỗi mặt sau hai lần

A A là biến cố chắc chắn

B A và B là hai biến cố xung khắc

C A là biến cố không thể

D A là biến cố đối của biến cố B

Câu 4: Một hộp có sáu viên bi màu trắng , tám viên bi màu xanh và

mười viên bi màu đỏ (mỗi viên bi chỉ có một màu) Số cách chọn bốn trong các viên bi sao cho không có viên nào màu xanh là:

Câu 5: Gieo một con súc sắc cân đối đồng chất Xác suất suất hiện

mặt có tổng số chấm không nhỏ hơn 3 là:

Trang 16

A 0 B 1

C 1

3

Câu 6: Cho ba điểm không thẳng hàng M, N, P và phép dời hình F

biến điểm M thành điểm M, điểm N thành điểm N, điểm P thành điểm P’ khác P Khi đó phép dời hình F là:

A Phép quay B Phép tịnh tiến

C Phép đồng nhất D Phép đối xứng trục

Câu 7: Cho hai đường thẳng d và d’ lần lượt đi qua O và O’ (OO’

không vuông góc với d) Nếu phép dời hình F biến d thành d’, biến điểm O thành điểm O’ và biến điểm O’ thàng O thì F là:

A Phép đồng nhất B Phép đối xứng trục

C Phép đối xứng tâm D Phép tịnh tiến

Câu 8: Mệnh đề nào đúng ?

A Phép tịnh tiến biến mỗi đường thẳng a thành chính nó

B Phép quay biến mỗi đường thẳng a thành đường thẳng cắt đường thẳng a

C Phép vị tự biến mỗi đường thẳng a thành đường thẳng song song với đường thẳng a

D Cả A, B,C đều sai

Câu 9: Cho hình H gồm hình vuông ABCD và đường chéo AC

Khi đó hình H:

A Có ba trục đối xứng B Không có trục đối xứng

C Có một trục đối xứng D Có hai trục đối xứng

Câu 10: Cho đường thẳng d có phương trình y=2x+1 Lấy đối

xứng d qua trục Ox ta được đường thẳng d’ có phương trình là:

Câu 11: Hệ số của hạng tử chứa x12 trong khai triển nhị thức (x+2x3)12 là:

Trang 17

A 1 B 0

Câu 12: Gọi M, N, P theo thứ tự là trung điểm các cạnh BC, CA,

AB của ABC Gọi G là trọng tâm của ABC thì:

b/ cos22x-sin22x-5cos2x=3+2cos2x

Câu 14: Một hộp đựng 20 viên bi trong đó có 15 viên bi màu xanh

và 5 viên bi màu đỏ Chọn ngẫu nhiên 2 bi trong hộp

a/ Tính xác suất để chọn được hai bi cùng màu

b/ Tính xác suất để chọn được hai bi khác màu

Câu 15: Cho tứ diện ABCD, trên AB, AC, AD lấy các điểm

C’,B’,D’ sao cho B’C’ cắt BC tại M, C’D’ cắt CD tại N, B’D’ cắt

Trang 18

ĐỀ 8 – CHƯƠNG TRÌNH CHUẨN Câu 1 (3,0 điểm)

1/ Giải phương trình : sinx+sinx.cosx=cosx+cos2x

2/ Cho hàm số f x( ) 3 cosxs inx

a/ Giải phương trình f(x)=1

b/ Tìm giá trị lớn nhất của f(x)

Câu 2 (1,0 điểm) Sắp xếp bốn học sinh ( 2 nam và 2 nữ) vào ghế

dài có 4 chỗ Tính xác suất của biến cố A:” Hai bạn nữ ngồi gần nhau”

Câu 4 (1,0 điểm) Trong mặt phẳng Oxy cho A(1;2), B(3;4) (C) là

đường tròn đường kính AB Viết phương trình đường tròn (C’) là ảnh của (C) qua phép đối xứng trục Ox

Câu 5 (3,0 điểm) Cho hình chóp S.ABCD có đáy là tứ giác lồi,

AB và CD không song song Gọi O là giao điểm của AC và BD, M

là trung điểm của OC, N là trung điểm của SC

1/ Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)

2/ Chứng minh MN//(SBD)

3/ Gọi (P) là mặt phẳng qua M và song song với hai đường thẳng BD, SO Tìm thiết diện của hình chóp cắt bởi mặt phẳng (P)

- Hết -

Trang 19

Câu 2 (1,5 điểm) Gieo đồng thời hai con súc sắc cân đối, đồng

chất 1/ Xác suất để tổng các số chấm trên hai con súc sắc bằng 7 là:

b/ sin2x+sin22x=sin23x

Câu 4 (1,5 điểm) Tìm cấp số cộng (un) biết: 12 22 32

27275

Câu 5 (2,5 điểm) Cho hình chóp S.ABCD có đáy là hình thang

AB là đáy lớn E là giao điểm của hai cạnh bên , G là trọng tâm

ECD

a/ Xác định giao tuyến của hai mặt phẳng (SAD) và (SBD) b/ Lấy KSE, gọi C’=SCKB; D’=SDKA Chứng minh giao điểm của AC’ và BD’ thẳng hàng với giao điểm của AC và

BD

- Hết -

Trang 20

ĐỀ 10 – CHƯƠNG TRÌNH NÂNG CAO

Câu 4: Gieo hai con súc sắc cân đối Gọi A là biến cố :” Tổng số

chấm trên mặt suất hiện của hai con súc sắc nhỏ hơn hoặc bằng 7” thì P(A) bằng:

Câu 5: Trong không gian Hãy chọn mệnh đề đúng :

A Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau;

B Ba điểm phân biệt cùng thuộc hai mặt phẳng phân biệt thì thẳng hàng với nhau;

C Hai mặt phẳng cùng song song với một đường thẳng thì song song với nhau;

D Hai đường thẳng phân biệt không song song thì chéo nhau

Câu 6: Cho hai đường thẳng song song a và b Có bao nhiêu phép

tịnh tiến biến a thàng b ?

Trang 21

A 0 B 1

Phần tự luận (7,0 điểm)

Câu 7 (2,0 điểm) Giải các phương trình sau:

a/ sin3x.cosx-cos3x.sinx=1

Câu 8 (1,0 điểm) Cho một bình chứa 5 quả cầu màu đỏ, 7 quả cầu

màu xanh Từ bình đã cho lấy ngẫu nhiên 3 quả cầu Tìm xác suất của biến cố ngẫu nhiên sau đây:

a/ Biến cố A :” Lấy được ba quả cầu màu xanh”

b/ Biến cố B:” Trong ba quả cầu lấy ra được có 2 màu”

Câu 9 (2,0 điểm) Cho đường tròn (C): (x+2)2+(y-1)2=9 và đường thẳng (d): 3x-2y+7=0

a/ Tìm ảnh của đường thẳng (d) qua phép tịnh tiến AB

với A(1;-2), B(3;5)

b/ Tìm ảnh của đường tròn (C) qua phép vị tự tâm M, tỉ số k=-2 với M(1;4)

Câu 10 (2,0 điểm) Cho hình chóp S.ABCD có đáy là hình thang

với AB là đáy lớn Gọi M, N theo thứ tự là trung điểm của SB, SC

a/ Hãy tìm giao tuyến của các cặp mặt phẳng sau: (SBC) và (SAD), (AMN) và (SAD)

b/ Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN)

- Hết -

Trang 22

ĐỀ 11 Câu 1 (3,0 điểm) Giải các phương trình sau:

a/ 2cosx-1=0

b/ 3 s inx cos x 2

c/ 3(sinx+cosx)+2sin2x+3=0

Câu 2 (1,0 điểm) Khai triển (x-2y)6 theo luỹ thừa giảm dần của x

Câu 3(2,0 điểm) Một bó hoa gồm 6 bông hồng trắng, 4 bông hồng

đỏ và 2 bông cúc vàng Lấy ngẫu nhiên 6 bông hoa Tính xác suất

để chọn được 3 bông hồng trắng, 2 bông hồng đỏ và 1 bông cúc vàng

Câu 4 (4,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình

bình hành Gọi M, N lần lượt là trung điểm của SA và SB Trên AC lấy điểm P sao cho P không trùng với S và C

a/ Chứng minh MN//CD

b/ Tìm giao điểm Q của SD và mặt phẳng (MNP)

c/ Thiết diện thu được của hình chóp cắt bởi mặt phẳng (MNP) là hình gì?

d/ Tìm vị trí của điểm P để thiết diện thu được là hình bình hành

- Hết -

Trang 23

ĐỀ 12- CHƯƠNG TRÌNH CHUẨN Câu 1 (3,0 điểm) Giải các phương trình sau:

a/ 3 t anx 1 0 

b/ 2

2sin x 3s inx 1 0

c/ 3 sin 5x c os5x 2

Câu 2 (1,0 điểm) Viết khai triển theo công thức nhị thức Newtơn

của biểu thức (x-2y)6

Câu 3 (2,0 điểm) Gieo đồng thời hai con súc sắc cân đối và đồng

chất Tính xác suất để:

a/ Hai con súc sắc đều suất hiện mặt lẻ

b/ Tích các số chấm trên hai con súc sắc là số chẵn

Câu 4 (4,0 điểm) Cho tứ diện ABCD

a/ Hãy chỉ ra các cặp đường thẳng chéo nhau trong tứ diện này

b/ Trên 3 cạnh AB, AC, AD lần lượt lấy P, Q, R sao cho : PQBC=I; QRCD=J; RPBD=K Chứng minh I, J, K thẳng hàng

c/ Hãy xác định giao tuyến của mặt phẳng (DPQ) với các mặt phẳng (ABC), (ACD), (ABD), (BCD)

- Hết -

Trang 24

ĐỀ 13 – CHƯƠNG TRÌNH NÂNG CAO

Câu 1 (2,0 điểm)

a/ Giải phương trình sau: 6sin2x-11sinx+4=0

b/ Tìm giá trị nhỏ nhất của biểu thức A=2cos2x+3sin2x+1

Câu 2 (1,0 điểm) Tìm hệ số chứa x22 trong khai triển (x+x2)16

Câu 3 (2,0 điểm) Từ một hộp chứa 3 viên bi đỏ và 7 viên bi xanh,

lấy ngẫu nhiên 3 viên bi trong hộp Gọi X là biến cố “ Số viên bi

Câu 5 (3,0 điểm) Cho tứ diện SABC Gọi M, N lần lượt là trung

điểm của SA, AB Lấp P thuộc AC sao cho P không trùng với A và

C

a/ Tìm giao điểm I của PN với mặt phẳng (SBC)

b/ Tìm giao tuyến của mặt phẳng (MNP) với các mặt của tứ diện SABC từ đó chỉ ra thiết diện tạo bởi mặt phẳng (MNP) với tứ diện

- Hết -

Trang 25

Câu 2: Từ một tổ gồm 6 bạn nam và 5 bạn nữ Cô giáo chủ nhiệm

muốn chọn ra 5 bạn xếp vào bàn đầu theo những thứ tự khác nhau

Câu 5: Cho lục giác đều ABCDEF tâm O Ảnh của tam giác AOF

qua phép tịnh tiến theo véctơ AB

là:

Câu 6: Gieo một đồng xu cân đối và đồng chất 4 lần.Xác suất để cả

bốn lần suất hiện mặt ngửa là:

Trang 26

Câu 8: Một túi đựng 15 quả cầu màu xanh, 5 quả cầu màu đỏ Lấy

ngẫu nhiên 4 quả cầu Tính xác suất để:

a/ Lấy được 4 quả cầu cùng màu

b/ Lấy được đúng 2 quả cầu màu xanh

c/ Lấy được ít nhất 1 quả cầu màu đỏ

Câu 9: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành

Gọi M là trung điểm của SC

a/ Xác định giao tuyến của hai mặt phẳng (ABM) và mặt phẳng (SBD)

b/ Gọi N là trung điểm của AB Tìm giao điểm E của MN với mặt phẳng (SBD)

c/ Gọi K là điểm tuỳ ý trên cạnh BC Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (AKM)

- Hết -

Trang 27

ĐỀ 15 Câu 1 (3,0 điểm) Giải các phương trình sau:

a/ sin2x-2cosx+2=0

b/ 5cos2x+2sinx.cosx+sin2x=2

Câu 2 (2,0 điểm) Cho đa giác lồi 12 đỉnh

a/ Có bao nhiêu đường chéo của đa giác đã cho

b/ Có bao nhiêu tam giác mà các đỉnh của chúng là các đỉnh của đa giác đã cho

Cho tứ diện ABCD, gọi I, K lần lượt là trung điểm của AB

và CD, trung điểm của IK là G

a/ Tìm giao điểm A’ của đường thẳng AG và mặt phẳng (BCD)

Trang 28

ĐỀ 16 – CHƯƠNG TRÌNH CƠ BẢN Câu 1 (1,0 điểm)

So sánh sự khác nhau giữa phép vị tự và phép đồng dạng

Câu 2 (2,0 điểm)

Cho tứ diện ABCD , MCD, NAD, PAB sao cho M, N,

P không trùng với bất cứ đỉnh nào của tứ diện và NP không song song với BD Dựng thiết diện của hình tứ diện cắt bởi mặt phẳng (MNP)

Câu 3 (3,0 điểm) Giải các phương trình sau:

Trang 29

ĐỀ 17 – CHƯƠNG TRÌNH NÂNG CAO

Câu 1 (4,0 điểm) Giải các phương trình sau:

a/ 2sin 6x 3 cos2x5 cosx2 0

2 osc x2 3 s inx.cosx 1 3 s inx 3 cosx

Câu 2 (1,0 điểm) Tìm hệ số của x4 trong khai triển của biểu thức

12 2 3

Câu 3 (1,0 điểm) Cho một bình chứa 6 viên bi màu đen, 8 viên bi

màu đỏ Từ bình đã cho lấy ngẫu nhiên 4 viên i Tìm xác suất của các biến cố ngẫu nhiên sau đây:

a/ Biến cố A: “ Lấy được 4 viên bi màu đen”

b/ Biến cố B: “ Trong bốn viên bi lấy ra được có 2 màu”

Câu 4 (2,0 điểm) Cho đường tròn (C) : (x-3)2+(y+1)2=4 và đường thẳng d: 5x-4y+8=0

a/ Tìm ảnh của đường thẳng d qua phép tịnh tiến theo véctơ

Câu 5 (2,0 điểm) Cho tứ diện ABCD Trên cạnh AD lấy điểm M

bất kỳ khác A và D; trên cạnh BC lấy trung điểm N Gọi (P) là mặt phẳng chứa đường thẳng MN và song song với CD

a/ Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng (P) b/ Xác định vị trí của điểm M trên AD sao cho thiết diện là hình bình hành

- Hết -

Trang 30

ĐỀ 18 ( 60 phút) Câu 1: Phương trình    2 

3 2 s inx osx- 2 os

1sin 2

x x

Câu 5: Phương trình (m+2)sinx-2mcosx =2(m+1) có nghiệm khi m

thoả mãn điều kiện nào sau đây:

Câu 6: Phép vị tự tâm I biến điểm A(1; 15) thành điểm A’ (1;10) ,

biến điểm B(-2;17) thành điểm B’ (-5; 14) Khi đó toạ độ điểm I là:

Câu 7: Gieo hai con súc sắc vô tư xanh và đỏ Gọi A là số chấm

suất hiện trên hai con súc sắc màu xanh, B là số chấm suất hiện trên con súc sắc màu đỏ Tính xác suất của biến số A chẵn, B lẻ

Câu 8: Cho tứ diện ABCD , gọi M, N lần lượt là trung điểm của

cạnh AB, AC, điểm P tuỳ ý trên cạnh BD ( P khác B và D) Thiết diện của hình tứ diện ABCD với mặt phẳng (MNP) là:

A Một ngũ giác B Một tam giác

C Một hình thang D Một hình bình hành

Trang 31

Câu 9: Có bao nhiêu cách chọn 2 cuốn sách là các môn khác nhau

từ 5 cuốn sách Văn khác nhau, 4 cuốn sách Sử khác nhau và 3 cuốn sách Địa khác nhau:

Câu 12: Cho I(-2;1) và đường thẳng s có phương trình 2x-y+3=0

Đường thẳng nào sau đây là ảnh của d qua phép đối xứng tâm I:

Câu 13: Phép tịnh tiến biến điểm A(1;) tháng A’(3;5) sẽ biến

đường thẳng x+3y-1=0 thành đường thẳng có phương trình là:

Trang 32

Câu 16: Cho tam giác vuông cân ABC tại A , nếu có một phép

đồng dạng biến ạnh AB thành cạnh BC thì tỉ số k của phép đồng dạng đó là:

Câu 18: Cho hai đường thẳng chéo nhau a và b Một đường thẳng

c song song với b Có mấy vị trí tương đối giữa a và c

Câu 19: Tìm số hạng không chứa x trong khai triển

7 3

4

1

x x

Câu 20: Trong mặt phẳng toạ độ Oxy cho hai đường thẳng a, b lần

lượt có phương trình y=-1 và y=3 Thực hiện liên tiếp hai phép đối xứng trục Đa và Đb ( theo thứ tự) Điểm P(7;1) biến thành điểm Q

Câu 22: Trong mặt phẳng Oxy , cho hai đường thẳng a và b lần

lượt có phương trình : 2x+y+7=0 và x-2y-4=0 Nếu có phép quay biến đường thẳng này thành đường thẳng kia thfi số đo của góc quay là:

Trang 33

Câu 23: Miền xác định của hàm số os(1 )

Câu 26: Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ

ba thì chúng song song với nhau;

B Có duy nhất một mặt phẳng chứa hai đường thẳng song song;

C Cho đường thẳng a//mp(P) và đường thẳng b bất kì nằm trong mp(P) thì a//b

D Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau

Câu 27: Hãy xác định chu kì của hàm số 3 tan

Câu 29 : Cho hai hộp, hộp I chứa 5 bi đỏ, 3 bi xanh Hộp II chứa 2

bi đỏ, 3 bi xanh Từ mỗi hộp lấy ra 1 bi Xác suất để 2 bi cùng màu là:

Trang 34

Câu 30: Cho hình chóp S.ABCD có đáy là hình thang với đáy lớn

là AD Gọi M là điểm bất kì trên cạnh AB (M≠ A và B), (P) là mặt phẳng qua M và song song với AD Mp(P) cắt hình chóp theo thiết diện là hình gì?

C Hình thoi D Hình bình hành

Câu 31: Có bao nhiêu cách xếp 9 người bạn ( trong đó có 4 nam )

thành một hàng ngang sao cho các bạn nam luôn đứng cạnh nhau?

Câu 33: Trong một đội văn nghệ có 8 bạn nam và 6 bạn nữ Chọn

ngẫu nhiên hai bạn Xác suất để chọn một đôi song ca nam - nữ gần số nào nhất ?

Câu 35: Cho hình chóp S ABCD có đáy ABCD là hình bình hành

tâm O Gọi M là trung điểm của SC Các kết luận sau, kết luận nào đúng?

(I) Giao điểm I của đường thẳng AM với mp(SBD) thuộc SO

Trang 35

(II) IA=2IM ( I là giao điểm của MA với mp(SBD))

(III) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AB

C Chỉ I và III đúng D Cả I, II, III đều đúng

Câu 36: Cho tứ diện ABCD Gọi I, J là trung điểm của AC và BC

Trên cạnh BD lấy điểm K sao cho BK=2KD Mặt phẳng (IJK) cắt

Câu 37: Cho tập hợp A={0;1;2;3;4;5} Có thể lập được bao nhiêu

số tự nhiên có sáu chữ số khác nhau và lớn hơn 300.000 từ tập A

Câu 38: Có 12 bóng đèn trong đó có 8 bóng tốt Lấy ngẫu nhiên 3

bóng Tính xã suất để lấy được ít nhất 1 bóng tốt

Câu 39: Từ các chữ số 0;1;2;3;4;5;6;7 có thể lập được bao nhiêu số

tự nhiên gồm 4 chữ số khác nhau trong đó luôn có mặt chữ số 5

Câu 40: Cho tứ diện ABCD , gọi AI, AJ lần lượt là các trung tuyến

của ABC, ABD Hai điểm M, N lần lượt lấy trên AI và AJ sao cho M và N chia hai đoạn thẳng này theo cùng một tỷ số 1

4 Ta xét các mệnh đề:

(I) Đường thẳng MN song song với CD

(II) Đường thẳng MN song song với mp(BCD)

(III) Mặt phẳng (BMN) luôn song song với một đường thẳng cố định

(IV) Mặt phẳng (BMN) luôn đi qua một đường thẳng cố định Trong các mệnh đề trên:

A Chỉ có ba mệnh đề đúng B Chỉ có một mệnh đề đúng

C Chỉ có hai mệnh đề đúng D Cả bốn mệnh đề đều đúng

- Hết -

Trang 36

ĐỀ 19 Câu 1:

Câu 3: Trong khai triển (x+6)19 , hãy tìm hệ số của x12

Câu 4: Có một cái hộp đừng vừa đủ các thẻ, số trên mỗi thẻ ghi là

một số tự nhiên có 5 chữ số đôi một khác nhau Mỗi thẻ đều mang

số khác với các thẻ khác

a/ Hỏi có bao nhiêu thẻ đựng trong hộp

b/ Tính xác suất để lấy một lần được 2 thả mang số chia hết cho 5

Câu 5: Cho đường trình (C): x2+y2-4x-2y+4=0 Thực hiện liên tiếp hai phép đối xứng tâm E(1;2) và F(-2;1) ( theo thứ tự ) , đường tròn (C) biến thành đường tròn (C’) Hãy xác định phương trình đường tròn (C’) và tìm tâm vị tự của hai đường tròn này

Câu 6: Cho hình chóp S.ABCD có đáy là hình thang (AD//BC,

AD>BC) Gọi O là giao điểm của AC và BD

a/ Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAD) và (SBC)

b/ Gọi I là trung điểm của CD Gọi M, N,P lần lượt là trung điểm của SB, SI và AO Tìm thiết diện của hình chóp cắt bởi mặt phẳng (MNP)

- Hết -

Trang 37

2 , k3

5

, k12

5

, k2

Câu 2: Gieo hai con súc sắc cân đối và đồng chất Xác suất để hiệu

số chấm trên mặt xuất hiện của hai con súc sắc bằng 2 là

Trang 38

Câu 6: Trong mặt phẳng Oxy cho đường thẳng d có phương trình

x+2y-7=0 Đường thẳng d’ là ảnh của đường thẳng d qua phép tịnh tiến theo véctơ v  (1; 1)

Câu 11 (2,0 điểm) Giải phương trình : sin22x-sin4x+3cos22x=3

Câu 12 (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình

bình hành Lấy M là một điểm thuộc cạnh SB khác với S và B Gọi (P) là mặt phẳng qua M và song song với các đường thẳng BC và

SD

a/ Xác định thiết diện của hình chóp cắt bởi mặt phẳng (P) Thiết diện là hình gì ?

Trang 39

b/ Gọi N là giao điểm của SC với mp(P), chứng minh MN//AD

Phần dành cho học sinh ban C và ban cơ bản (2,0 điểm) ( Thí

sinh chọn câu 13a hoặc 13b)

Phần dành cho học sinh ban A (2,0 điểm) ( Thí sinh chọn câu 14a

2/ Một đội văn nghệ xung kích của khối 11 gồm 12 bạn nam

và 10 bạn nữ Cần lập một nhóm 5 bạn tham gia chương trình “ Nắng sân trường” Hỏi có bao nhiêu cách lập nhóm với điều kiện trong nhóm phải có ít nhất một bạn nữ

Câu 14b:

1/ Tìm hệ số của số hạng chứa x7 trong khai triển (1-3x)202/ Một hộp đựng 6 thẻ màu đỏ, 9 thẻ màu xanh Rút ngẫu nhiên 4 thẻ Gọi X là số thẻ màu đỏ trong 4 thẻ được rút ra

a/ Lập bảng phân bố xác suất của X

b Tính kì vọng, phương sai, độ lệch chuẩn của biến ngẫu

nhiên rời rạc X ( Tính chính xác đến hàng phần nghìn)

- Hết -

Trang 40

ĐỀ 21 – CHƯƠNG TRÌNH NÂNG CAO

Câu 1 (3,0 điểm)

1/ Giải phương trình 2sin 2x  3 3 t an3x 3 0

2/ Cho phương trình ms inx(4 3 ) cos m xm

a/ Nếu chỉ lấy các con số màu đỏ để ghép thành số tự nhiên

có 4 chữ số Hỏi có thể ghép được bao nhiêu con số như vậy

b/ Từ hộp đồ chơi trên có bao nhiêu cách lấy ra 3 con số khác màu và khác số

c/ Từ hộp đồ chơi trên lấy ngẫu nhiên 4 con số, gọi X là số con số màu xanh trong bốn con số lấy ra Tìm tập giác trị của X và tính xác suất để X nhận giá trị 3

Câu 3 (2,0 điểm)

1/ Cho hai tam

giác đều ABC và

vị tự tâm I tỉ số k IA'

IA

Câu 4 (1,5 điểm) Cho hình chóp tsư giác S ABCD Gọi M, N

lần lượt là trung điểm của SB và SD

1/ Tìm giao tuyến của hai mặt phẳng (ABCD) và (AMN) 2/ Trình bày cách dựng giao điểm của SC với (AMN)

Ngày đăng: 24/11/2015, 11:13

HÌNH ẢNH LIÊN QUAN

Câu 16: Hình nào dưới đây không có tâm đối xứng? - Tuyển tập các đề kiểm tra học kì của lớp 11
u 16: Hình nào dưới đây không có tâm đối xứng? (Trang 6)
Câu 5: Hình hộp lập phương - Tuyển tập các đề kiểm tra học kì của lớp 11
u 5: Hình hộp lập phương (Trang 79)
4) Hình chóp  S ABCD .  có đáy ABCD là hình thoi tâm O và SB=SD - Tuyển tập các đề kiểm tra học kì của lớp 11
4 Hình chóp S ABCD . có đáy ABCD là hình thoi tâm O và SB=SD (Trang 91)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w