24 Chương 3: Biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử ..... Lý do chọn đề tài Vào cuối thế kỷ 19 các nhà Vật lí đã phát hiện ra nhiều những hiện tượng và hiệu ứ
Trang 1LỜI CẢM ƠN
Trước tiên em xin bày tỏ lòng biết ơn chân thành và sâu sắc nhất của mình tới thầy Hoàng Phúc Huấn người đã hướng dẫn tận tình và thường xuyên động viên em trong quá trình hoàn thiện đề tài, người đã dành cho em
sự giúp đỡ ưu ái nhất trong thời gian học tập, nghiên cứu cũng như trong quá trình hoàn thiện khóa luận này
Em xin chân thành cảm ơn các thầy cô giáo trong tổ Vật lí lý thuyết đã tạo điều kiện và đóng góp ý kiến để em hoàn thành tốt khóa luận tốt nghiệp Tuy nhiên do thời gian và khuôn khổ không cho phép, đề tài còn hạn chế nên chắc chắn không tránh khỏi những thiếu sót Rất mong sự đóng góp và tiếp tục xây dựng đề tài của bạn đọc quan tâm
Em xin chân thành cảm ơn!
Hà Nội, tháng 5 năm 2013
Sinh viên
Đoàn Thị Thu
Trang 2LỜI CAM ĐOAN
Em xin cam đoan những nội dung nghiên cứu và trình bày trong khóa
luận “Biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử” là
của riêng em dưới sự hướng dẫn tận tình của Th.S Hoàng Phúc Huấn
Nội dung nghiên cứu này chưa từng được công bố trong bất kỳ khóa luận nào khác
Em xin hoàn toàn chịu trách nhiệm về nội dung nghiên cứu trong đề tài của mình
Hà Nội, tháng 5 năm 2013
Sinh viên
Đoàn Thị Thu
Trang 3MỤC LỤC
Trang phụ bìa
Lời cảm ơn
Lời cam đoan
MỞ ĐẦU 1
1 Lý do chọn đề tài 1
2 Mục đích nghiên cứu 2
3 Giả thuyết khoa học 2
4 Đối tượng nghiên cứu 2
5 Nhiệm vụ nghiên cứu 2
6 Phương pháp nghiên cứu 2
7 Cấu trúc khóa luận 2
NỘI DUNG 4
Chương 1: Các tiên đề cơ bản của cơ học lượng tử 4
1.1 Bế tắc của lý thuyết cổ điển 4
1.1.1 Bức xạ của vật đen 4
1.1.2 Tính bền vững của nguyên tử 5
1.1.3 Hiệu ứng quang điện 6
1.2 Các giả thuyết 6
1.2.1 Giả thuyết Plăng 6
1.2.2 Thuyết lượng tử của Anhxtanh (Thuyết photon) 8
1.2.3 Thuyết lượng tử Bo (Bohr) 9
1.3 Hệ tiên đề của cơ học lượng tử 10
1.3.1 Tiên đề 1 10
1.3.2 Tiên đề 2 10
1.3.3 Tiên đề 3 11
Bài tập vận dụng 12
Chương 2: Các đại lượng động lực trong cơ học lượng tử 17
Trang 42.1 Các toán tử tọa độ 17
2.2 Các toán tử xung lượng 18
2.3 Các toán tử moment xung lượng 19
2.4 Toán tử năng lượng 20
2.5 Toán tử spin của electron 21
Bài tập vận dụng 24
Chương 3: Biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử 27
3.1 Tọa độ, xung lượng và năng lượng của dao động tử điều hòa 27
3.1.1 Phương trình Schodinger 28
3.1.2 Hàm sóng 28
3.1.3 Năng lượng 32
3.2 Chuyển các toán tử: tọa độ, xung lượng và năng lượng của dao động tử điều hòa sang biểu diễn số hạt 33
3.2.1Biểu diễn số hạt của toán tử tọa độ và xung lượng 33
3.2.2 Biểu diễn số hạt của toán tử năng lượng 34
3.2.3 Các vectơ riêng và trị riêng của toán tử Hamintonian 35
Bài tập vận dụng 41
KẾT LUẬN 46
TÀI LIỆU THAM KHẢO 47
Trang 5MỞ ĐẦU
1 Lý do chọn đề tài
Vào cuối thế kỷ 19 các nhà Vật lí đã phát hiện ra nhiều những hiện tượng
và hiệu ứng mà Vật lí học cổ điển không thể giải thích được như là: hiệu ứng quang điện, quy luật bức xạ của vật đen,… Và để giải thích được các hiện tượng này, các nhà Vật lí lỗi lạc của thế kỷ 20 như Max Planck, Albert Einstein và Niels Bohr đã lần lượt đề xuất những giả thuyết lượng tử khác nhau mà tất cả đều thừa nhận tính chất gián đoạn của năng lượng của một số loại hệ vi mô
Và như vậy, các hạt vật chất vi mô vừa có tính chất sóng lại vừa có tính chất hạt, chính vì thế mà các đại lượng động lực của nó không xác định đồng thời
Trong cơ học cổ điển, để đặc trưng cho chuyển động của một hạt, ta dùng những đại lượng động lực như: tọa độ, xung lượng, moment động lượng của hạt… Các đại lượng đó gọi chung là các biến số động lực (như tọa độ và xung lượng…) đều có giá trị xác định Vấn đề chủ yếu của việc mô tả chuyển động là tìm sự phụ thuộc của chúng vào thời gian
Trong cơ học lượng tử thì vấn đề lại khác, hạt không được hình dung như một chất điểm chuyển động theo một quỹ đạo, mà là một bó sóng định xứ trong một miền của không gian tại một thời điểm và bó sóng thay đổi theo thời gian Tại một thời điểm ta chỉ có thể nói về xác suất để tìm thấy hạt trong một phần tử thể tích của không gian Hay nói cách khác là xác suất để tọa độ của hạt có giá trị nằm trong khoảng nào đó Nói chung về biến số động lực cũng vậy, ta chỉ có thể nói về xác suất để một biến số động lực có giá trị nằm trong khoảng nào đó chứ không thể nói về giá trị xác định của biến số động lực tại một thời điểm như trong cơ học cổ điển
Trang 6Và để giải quyết các bài toán cho chuyển động của hạt vi mô ta phải giải phương trình Schodinger tức là ta sẽ đi tìm phương trình hàm riêng, trị riêng cho toán tử năng lượng Việc làm này sẽ dẫn đến các tích phân phức tạp và việc giải các bài toán này là rất khó khăn Để đơn giản hơn trong việc giải phương trình hàm riêng, trị riêng ta sẽ chuyển việc giải phương trình tích phân thành việc giải phương trình đại số Muốn vậy ta phải biểu diễn các toán
tử năng lượng và các đại lượng động lực trong biểu diễn số hạt
Đó chính là lí do mà em chọn đề tài “ Biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử ” làm khóa luận tốt nghiệp của mình
2 Mục đích nghiên cứu
- Tìm hiểu về cách biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử
- Tìm hiểu về cơ sở toán học trong cơ lượng tử
3 Giả thuyết khoa học
- Tìm cách giải phương trình Schodinger bằng một phương pháp đơn giản hơn đó là phương pháp đại số
4 Đối tượng nghiên cứu
- Thế giới các hạt vi mô
- Nghiên cứu các đại lượng động lực trong cơ học lượng tử
5 Nhiệm vụ nghiên cứu
- Biểu diễn các toán tử năng lượng, toán tử xung lượng và toán tử tọa
độ của các hạt vi mô qua các toán tử sinh hủy
- Giải các phương trình vi phân trong cơ học lượng tử
6 Phương pháp nghiên cứu
- Đọc và tra cứu tài liệu
- Dùng các phương pháp toán cho Vật lí
7 Cấu trúc khóa luận
Khóa luận gồm có 3 chương:
Chương 1: Các tiên đề cơ bản của cơ học lượng tử
Trang 7Chương 2: Các đại lượng động lực trong cơ học lượng tử
Chương 3: Biểu diễn số hạt của các đại lượng động lực trong cơ học lượng tử
Trang 8NỘI DUNG
CHƯƠNG 1: CÁC TIÊN ĐỀ CƠ BẢN CỦA CƠ HỌC LƯỢNG TỬ
1.1 Bế tắc của lý thuyết cổ điển
Vật lí học cổ điển là Vật lí học không kể đến thuyết tương đối và thuyết lượng tử Theo quan niệm cổ điển thì các loại bức xạ (tia hồng ngoại, ánh sáng, tia tử ngoại, tia Rơnghen, tia Gamma) đều là những sóng điện từ lan truyền trong không gian Năng lượng của sóng tỷ lệ với bình phương biên độ
và có thể biến đổi liên tục Như vậy một vật có thể phát ra (dưới dạng bức xạ) hay hấp thụ (của bức xạ chiếu tới) những năng lượng tùy ý, tức là những năng lượng có giá trị liên tục
Sau đây ta xét một số hiện tượng không thể giải thích được bằng các lý thuyết cổ điển như: tính bền vững của nguyên tử, quy luật bức xạ của vật đen,… Từ đó dẫn đến việc phải xây dựng một khái niệm mới về lượng tử thì mới giải thích được chúng, đó là bước đầu của việc hình thành cơ học lượng
tử
1.1.1 Bức xạ của vật đen
Thực nghiệm chứng tỏ rằng một vật đen ở nhiệt độ T phát ra những bức
xạ điện từ có phổ liên tục, năng lượng của bức xạ phát ra phụ thuộc vào nhiệt
độ của vật Vật phát ra bức xạ đồng thời hấp thụ năng lượng của những bức
xạ chiếu tới Khi năng lượng mà vật hấp thụ được bằng năng lượng vật bức xạ trong cùng một thời gian thì nhiệt độ của vật giữ không đổi Nếu thực hiện được sự cân bằng năng lượng ấy đối với cả hệ thống vật và bức xạ thì bức xạ gọi là bức xạ cân bằng
Xét bức xạ cân bằng có tần số góc từ đến + Năng lượng của bức xạ ấy chứa trong một đơn vị thể tích không gian thì tỷ lệ với và có biểu thức là: ( , )
Trang 9Hệ số tỷ lệ ( , ): gọi là mật độ năng lượng của phổ, đó là một hàm số đặc trưng cho bức xạ cân bằng
Từ giáo trình vật lý thống kê sẽ dẫn tới công thức cho mật độ năng lượng bức xạ gọi là công thức Rêlây:
Với c là vận tốc ánh sáng trong chân không, k là hằng số Bônzơman, T là
nhiệt độ của bức xạ cân bằng Công thức Rêlây phù hợp với thực nghiệm
trong phạm vi các tần số góc nhỏ và các nhiệt độ T tương đối lớn Nhưng
đối với các tần số lớn thì công thức cho kết quả phi lý Ta có thể thấy ngay điều này nếu tính năng lượng toàn phần của bức xạ (tức là năng lượng của bức xạ đối với toàn bộ phổ liên tục, từ tần số thấp đến tần số rất cao) chứa trong một đơn vị thể tích không gian:
Trang 10Các kết quả này mâu thuẫn với thực nghiệm, bình thường thì nguyên tử không phát ra bức xạ, nếu bị kích thích thì nguyên tử phát ra bức xạ mà tần số
có giá trị xác định (phổ gián đoạn), nguyên tử bền vững và không có hiện tượng electron rơi vào hạt nhân
1.1.3 Hiệu ứng quang điện
Nếu ta chiếu ánh sáng thích hợp vào bề mặt một kim loại thì có thể làm bật electron ở mặt kim loại ra ngoài, hiện tượng này được phát hiện lần đầu tiên vào năm 1887
Các kết quả thực nghiệm thu được là:
1 Có hiệu ứng ngưỡng: dòng quang điện chỉ xuất hiện khi tần số của ánh sáng không nhỏ hơn một giá trị ngưỡng nào đó và giá trị của phụ thuộc vào chất bị chiếu sáng
2 Vận tốc của các điện tử và độ lớn của thế hãm không phụ thuộc vào cường độ mà chỉ phụ thuộc vào tần số của ánh sáng và chất bị chiếu sáng
3 Với ν> cường độ dòng quang điện bão hòa tỷ lệ thuận với cường độ ánh sáng gây ra hiệu ứng quang điện
Không thể giải thích những phát hiện trên bằng quan niệm cho ánh sáng thuần túy là sóng, vì năng lượng của sóng có thể thay đổi liên tục, nếu chiếu sáng đủ mạnh, không quan trọng tần số của ánh sáng là bao nhiêu, các điện tử sẽ nhận một lượng năng lượng lớn hơn công tối thiểu (còn gọi là công thoát) của kim loại để thoát ra ngoài và chuyển động càng nhanh khi cường
độ chiếu sáng càng lớn, những điều hoàn toàn trái ngược với các kết quả thực nghiệm
1.2 Các giả thuyết
1.2.1 Giả thuyết Plăng
Để giải quyết điều phi lý trong hiện tượng bức xạ của vật đen nói trên, năm 1900 Plăng đã đưa ra giả thuyết như sau: một dao động tử điều hòa có
Trang 11bằng một số nguyên lần của một đại lượng , gọi là lượng tử năng lượng (hay lượng tử) Ứng với tần số góc , giá trị của là:
= ℏ (1.3) Trong đó : ℏ =1,0545.10 J.s
= 1,0545.10 ec.s
Nếu viết công thức đối với tần số = 2 , thì biểu thức của lượng tử năng lượng sẽ là:
= ℎ , (1.4) với: ℎ = 2 ℏ
= 6,6256.10 J.s
= 6,6256.10 ec.s
Xuất phát từ giả thuyết Plăng và dùng các phương pháp của vật lí thống
kê ta có thể chứng minh được công thức cho mật độ năng lượng bức xạ :
3
2 3
1,
1
kT
T
c e
Người ta thừa nhận giả thuyết Plăng vì nó cho kết quả phù hợp với thực nghiệm trong trường hợp bức xạ vật đen vừa xét, và vì có thể dựa vào giả thuyết Plăng để giải thích những hiện tượng khác nữa
Trang 121.2.2 Thuyết lượng tử của Anhxtanh (Thuyết Photon)
Để giải thích các kết quả thực nghiệm về hiệu ứng quang điện Anhxtanh năm 1905 đã mở rộng thuyết lượng tử của Plăng và đề xuất thuyết lượng tử ánh sáng (còn gọi là thuyết photon) thừa nhận tính chất hạt của ánh sáng Theo Anhxtanh, ánh sáng là chùm các hạt gọi là các lượng tử ánh sáng hay
các photon chuyển động trong chân không với cùng một vận tốc c trong mọi
hệ quy chiếu quán tính Tính chất hạt của photon được thể hiện qua năng
lượng E và xung lượng p liên hệ với tần số và vectơ sóng k bởi các công
thức:
= ℎ , = (1.7) Giữa năng lượng và xung lượng của photon có hệ thức:
là , vận tốc của điện tử sau khi bứt ra khỏi kim loại là và khối lượng nghỉ của điện tử là m Trong kim loại thế năng của điện tử là − Theo định luật bảo toàn năng lượng:
ℎ − = (1.10) Hiệu ứng quang điện chỉ có thể xảy ra nếu ≥ 0, nghĩa là nếu tần số của ánh sáng không nhỏ hơn một giá trị ngưỡng nào đó,
≥ = (1.11)
Trang 13Vì công thoát khác nhau đối với các kim loại khác nhau nên tần số ngưỡng phụ thuộc vào tính chất của kim loại gây ra hiện tượng quang điện Những điều này giải thích kết quả thực nghiệm thứ nhất trong hiệu ứng quang điện
Từ đẳng thức (1.10) cũng suy ra rằng vận tốc của các điện tử không phụ thuộc vào cường độ mà chỉ phụ thuộc vào tần số của ánh sáng và chất bị chiếu sáng
= (ℎ − ), (1.12) hoàn toàn phù hợp với kết quả thực nghiệm thứ hai Đối với thế hãm cũng vậy Vì = (e là giá trị tuyệt đối của điện tích của điện tử) nên theo
các hệ thức (1.10) và (1.11),
= ℎ( − ) (1.13)
Hệ thức (1.13) cho phép xác định hằng số Plăng bằng cách nghiên cứu thực nghiệm sự phụ thuộc của thế hãm vào tần số của ánh sáng trong một loại kim loại nhất định
Thuyết photon còn giải thích được cả kết quả thực nghiệm thứ ba của hiện tượng quang điện Thật vậy cường độ dòng quang điện bão hòa tỷ lệ với
số điện tử bị bứt ra ngoài, mà số điện tử này lại tỷ lệ với số photon và số photon lại chính là cường độ ánh sáng
Giải Nobel Vật lí năm 1921 đã được trao cho Anhxtanh để ghi nhận công lao của ông trong lĩnh vực Vật lí lý thuyết và đặc biệt là việc giải thích trọn vẹn hiệu ứng quang điện
1.2.3 Thuyết lượng tử Bo (Bohr)
Để giải thích hiện tượng bền vững của nguyên tử và phổ phát xạ gián đoạn của nguyên tử khi bị kích thích, Bo đã đưa ra một giả thuyết lượng tử,
Trang 14rồi áp dụng (cùng với cơ học cổ điển) cho nguyên tử và đã thu được kết quả phù hợp với thực nghiệm
Nội dung chính của thuyết Bo là: Năng lượng E của nguyên tử chỉ có thể
có những giá trị gián đoạn:
= , , … , , … (1.14) Khi nguyên tử chuyển từ trạng thái có năng lượng sang trạng thái có năng lượng thì nguyên tử phát ra bức xạ, lượng tử năng lượng của bức
xạ bằng hiệu năng lượng của trạng thái đầu và năng lượng của trạng thái cuối Nếu gọi là tần số góc của bức xạ phát ra thì ta sẽ có:
ℏ = − (1.15) Giả thuyết Bo là bước đầu tiên dùng thuyết lượng tử để nghiên cứu nguyên tử Với các tính toán dựa trên cơ sở cơ học cổ điển và mẫu nguyên tử
Bo người ta thu nhận được các kết quả phù hợp với thực nghiệm
1.3 Hệ tiên đề của cơ học lượng tử
1.3.2 Tiên đề 2
Khi ta đo một biến số động lực nào đó thì ta chỉ thu được các giá trị bằng
số là các trị riêng của toán tử biểu diễn biến số động lực ấy
Trang 15Vì các giá trị bằng số của các biến số động lực là thực nên trị riêng của các toán tử biểu diễn biến số động lực phải là thực, muốn thế những toán tử
ấy phải là Hecmite
Xét một biến số động lực biểu diễn bằng một toán tử , toán tử này có các trị riêng , , … , , … với các hàm riêng tương ứng là: , , … , , … Xét một hệ lượng tử ở trạng thái biểu diễn bởi các hàm sóng
Theo tính chất đủ của hệ các hàm riêng của toán tử Hecmite thì ta có thể phân tích hàm sóng thành một tổ hợp của các hàm riêng , , …
( ) = ( ) (1.17) Dấu ∑ ký hiệu việc lấy tổng theo tất cả các hàm riêng
1.3.3 Tiên đề 3
Nếu hệ ở trạng thái biểu diễn bởi hàm sóng ( ) thì xác suất để khi đo biến số động lực L ta thu được giá trị sẽ bằng | |
Trường hợp riêng: Nếu hàm sóng ( ) trùng với một hàm riêng của toán
tử thì biến số động lực L có giá trị xác định, bằng trị riêng tương ứng với hàm riêng ấy Cụ thể là:
Nếu = thì = và L không thể bằng các trị riêng khác của toán
tử
Chú ý rằng: Xác suất để = là | | là xác suất tỷ đối
Muốn tính xác suất tuyệt đối thì ta phải chuẩn hóa các hệ số phân tích , suất tức là phải nhân chúng với một hằng số thế nào để dẫn tới kết quả: tổng xác suất của các trạng thái có thể phải bằng 1
= 1 (1.18) Xác suất thỏa mãn hệ thức này mới là xác suất tuyệt đối
Trang 16Hệ tọa độ được chọn sao cho một trong các đỉnh của hộp nằm tại gốc tọa độ
và các trục x, y, z là 3 trong số 12 cạnh của hộp Thế năng bên trong hộp là
bằng 0, ngoài hộp là vô cùng
Với điều kiện như trên, ta kết luận rằng hàm sóng bằng 0 ở bên ngoài hộp Bên trong hộp, toán tử thế năng bằng 0, nên phương trình sóng Schodinger không phụ thuộc thời gian sẽ là:
− ℏ + + ( , , ) = ( , , ) (1.19) Giả sử nghiệm của phương trình (1.19) được viết dưới dạng tích của 3 hàm ( ), ( ), và ( ) chứa các biến số x, y, z độc lập, nghĩa là:
( , , ) = ( ) ( ) ( ) (1.20) Phương pháp được dùng để giải phương trình vi phân như trên được gọi
Trang 17Ta thấy vế trái của phương trình (1.26) hoàn toàn không phụ thuộc vào
các biến y và z Trong khi đó, vế phải của (1.26) hoàn toàn không phụ thuộc vào biến x Như vậy để 2 vế phương trình bằng nhau thì phương trình phải
bằng một hằng số Đặt hằng số này là , ta có:
= − ℏ ( )
( ) (1.27) Lập luận tương tự như trên, ta được:
= − ℏ ( )
( ) ; = − ℏ ( )
( ) (1.28) Kết hợp với(1.27) và (1.28), phương trình (1.26) trở thành:
= + + (1.29)
Ta viết lại các phương trình (1.27) và (1.28) như sau:
( ) +
ℏ ( ) = 0, (1.30) ( ) +
ℏ ( ) = 0, (1.31)
Trang 18( ) +
ℏ ( ) = 0 (1.32) Tóm lại chúng ta đã chuyển một phương trình vi phân riêng phần với 3
biến thành 3 phương trình vi phân chỉ chứa một biến Ta thấy phương trình
(1.30) chính là phương trình Schodinger cho hạt trong hộp một chiều với thế
năng trong hộp V(x) = 0 và chiều dài l = a Như vậy nghiệm của (1.30) là:
Trong đó: a, b, c là độ dài của các cạnh theo các trục x, y, z tương ứng
Hàm sóng có 3 số lượng tử , và Chúng biến đổi một cách độc lập với
nhau
Trang 19Hàm sóng có dạng:
( , , ) = ( ) ( ) ( ), (1.42) được chuẩn hóa như sau:
= | ( )| | ( )| | ( )| = 1
hay:
∫| ( )| = ∫| ( )| = ∫| ( )| = 1 (1.43)
Bài 1.2 Tìm bước sóng Đơ Brơi cho các trường hợp sau:
a) Electron bay qua các hiệu điện thế 1 V, 100 V, 1000 V
b) Electron bay với vận tốc v = 10 cm/s
c) Electron chuyển động với năng lượng 1MeV
a) Bởi vì T = eU = 1000 eV rất bé so với = 0,51 MeV nên bước sóng Đơ Brơi của electron trong câu a được xác định bởi công thức:
= , (1.44) trong đó ℎ = 6,626.10 Js = 6,626.10 kg
Trang 20c) Trong trường hợp T = 1 MeV ta phải dùng công thức tính bước sóng Đơ
Brơi của electron tương đối tính:
= (1.46)
Đặt T = 1 MeV = 1,6.10 J, = 8,19.10 J = 0,51 MeV vào biểu thức của ta tìm được: = 8,17.10 m
Trang 21CHƯƠNG 2: CÁC ĐẠI LƯỢNG ĐỘNG LỰC TRONG CƠ HỌC
LƯỢNG TỬ
Trong cơ học cổ điển để đặc trưng cho chuyển động của của một hạt, ta dùng những đại lượng như: tọa độ, xung lượng, mômen xung lượng của hạt,… Các đại lượng đó gọi chung là biến số động lực Hạt chuyển động theo một quỹ đạo và ở một thời điểm đã cho thì tất cả các biến số động lực (chẳng hạn như tọa độ và xung lượng) đều có giá trị xác định Vấn đề chủ yếu của việc mô tả chuyển động là tìm sự phụ thuộc giữa chúng và sự phụ thuộc của chúng vào thời gian
Trong cơ học lượng tử vấn đề lại khác, hạt không được hình dung như một chất điểm chuyển động theo một quỹ đạo, mà là một bó sóng định xứ trong một miền của không gian tại một thời điểm và bó sóng thay đổi theo thời gian Tại một thời điểm ta chỉ có thể nói về xác suất để tìm thấy hạt trong một phần tử thể tích của không gian, hay nói cách khác là xác suất để tọa độ của hạt có giá trị nằm trong khoảng nào đó Nói chung về biến số động lực cũng vậy, ta chỉ có thể nói về xác suất để một biến số động lực có giá trị nằm trong khoảng nào đó chứ không thể nói về giá trị xác định của biến số động lực tại một thời điểm như trong cơ học cổ điển
Vì có sự khác biệt nói trên nên trong cơ học lượng tử biến số động lực không phải mô tả bằng một số như trong cơ học cổ điển Chúng ta phải tìm một cách mô tả khác thể hiện được những đặc tính của các quy luật lượng tử Những nghiên cứu về toán tử cho thấy có thể dùng công cụ toán học này để
mô tả biến số động lực trong cơ học lượng tử
2.1 Các toán tử tọa độ
Xét trường hợp hạt chuyển động trên trục x,trạng thái của hạt mô tả bởi
hàm sóng ( ) Giả sử ( ) đã dược chuẩn hóa Toán tử tọa độ phải là Hermite và có dạng thế nào để trị trung bình của tọa độ cho bởi công thức:
Trang 22= ∫ ∗ (2.1)
Nếu gọi ( ) là mật độ xác suất để tọa độ có giá trị là x thì trị trung bình
của x là:
( ) = | ( )| = ∗( ) ( ) (2.2) Vậy: = ∫ ∗( ) ( ) (2.3)
Ba toán tử , , ̂ lập thành toán tử vectơ bán kính ⃗ = ⃗ + ⃗ + ̂ ⃗
Kết quả việc tác dụng toán tử tọa độ nào đó lên một hàm của tọa độ và thời
gian là việc nhân đơn thuần tọa độ đó với hàm đó
2.2 Các toán tử xung lượng
Đối với hạt vi mô có xung lượng ⃗ và năng lượng E chuyển động tự do
thì hàm sóng có dạng:
Trang 23= exp − ⃗ ⃗
ℏ (2.11)
Ta xét toán tử ̂ :
Hàm sóng viết ở công thức (2.11) là hàm số biểu diễn trạng thái trong
đó có giá trị xác định, vì thế hàm ấy phải là hàm riêng của toán tử ̂ , nghĩa là:
̂ = (2.12) Muốn thế thì phải chọn:
̂ = − ℏ (2.13) Thực vậy:
̂ = − ℏ , (2.15.1) ̂ = − ℏ (2.15.2) Tóm lại:
⃗ = ̂ ⃗ + ̂ ⃗ + ̂ ⃗ = − ℏ∇
= − ℏ ⃗ + ⃗ + ⃗ (2.16) 2.3 Các toán tử moment xung lượng
Trong cơ học cổ điển moment xung lượng ⃗ được định nghĩa như sau: một hạt chuyển động trên quỹ đạo cong tại điểm có vectơ bán kính ⃗, xung lượng ⃗, sẽ có moment xung lượng (đối với trục tức thời đi qua tâm chính khúc lúc đó) là: ⃗ = ⃗ × ⃗
Hình chiếu của vectơ ⃗ lên các trục tọa độ có biểu thức như sau:
Trang 24Như vậy toán tử moment xung lượng của hạt là = ̂ × ̂ = − ℏ( ⃗ × ∇)
và các toán tử hình chiếu moment xung lượng của hạt sẽ có dạng :
Ba đại lượng trên là ba thành phần của toán tử vectơ ⃗
Còn toán tử bình phương moment xung lượng:
= = + + (2.19) 2.4 Toán tử năng lượng
Trong cơ học cổ điển, năng lượng toàn phần được biểu diễn qua tọa độ x
và xung lượng p theo biểu thức sau đây:
= + ( , , ) (2.20)
Trong đó m là khối lượng của hạt, ( , , ) là biểu thức của thế năng,
= + + (2.21) Theo nguyên lý tương ứng thì toán tử năng lượng toàn phần (hay toán tử Hamintonian) cũng tuân theo một biểu thức tương tự như biểu thức (2.20), trong đó các đại lượng động lực được thay thế bằng các toán tử tương ứng: = + ( , , ̂) (2.22) Trong đó:
̂ = ̂ + ̂ + ̂
= − ℏ + − ℏ + − ℏ
= −ℏ + + = −ℏ ∇ , (2.23)
Trang 25và : = , = , ̂ =
Vậy :
= − ℏ ∇ + ( , , ) (2.24)
2.5 Toán tử spin của electron
Kí hiệu các toán tử hình chiếu spin lên các trục tọa độ là , , Để
có thể xác định được dạng của các toán tử này, chúng ta đòi hỏi rằng chúng
phải thỏa mãn các quy tắc giao hoán, giống như các toán tử hình chiếu
moment quỹ đạo , , Nghĩa là:
Hơn nữa, vết chiếu spin lên một phương bất kì chỉ có thể nhận hai giá trị
là ± ℏ 2⁄ , do đó những toán tử này phải được biểu diễn bằng những ma trận
cấp 2, bởi vì chỉ có các ma trận cấp 2 mới có 2 giá trị riêng
Đặt:
=ℏ , =ℏ , =ℏ (2.26)
Trong đó các , , là các ma trận cấp 2, có các trị riêng là ±1 Thay
dạng của , , bởi (2.26) vào (2.25) ta có các hệ thức giao hoán cho
Vì các giá trị riêng của ( = , , ) bằng ±1, cho nên giá trị riêng của
các toán tử phải bằng 1 Như vậy, dù dạng của các như thế nào chăng
nữa thì các toán tử cũng phải có dạng: