MAGNETIC SCATTERING OF POLARIZED NEUTRONS AND POLARIZATION VECTOR OF SCATTERING NEUTRONS IN FERROMAGNETIC CRYSTALS NGUYEN THANH NGA, NGUYEN DINH DUNG Department of physics, college of Sc
Trang 1MAGNETIC SCATTERING OF POLARIZED NEUTRONS AND POLARIZATION VECTOR OF SCATTERING NEUTRONS IN
FERROMAGNETIC CRYSTALS
NGUYEN THANH NGA, NGUYEN DINH DUNG
Department of physics, college of Science, VNU
Abstract In this note, the magnetic scattering of polarized neutrons on ferromagnetic crystals
is studied In order to study this problem the method of nuclear optics of polarized matter has been used We obtained the analytical expression for the differential magnetic scattering cross-section
of polarized neutrons and polarization vector of magnetic scattering neutrons in ferromagnetic crystals.
I INTRODUCTION
In order to study of crystal structure, the method of nuclear optics of polarized matter have been used This method have been used in works [1,2,3,4,5] In this note,
we study the differential cross-section of magnetic scattering of polarized neutrons and polarization vector of magnetic scattering neutrons in ferromagnetic crystal We showed that, they have important information about correlative function of electron lattice nodes spins
II THE DIFFERENTIAL MAGNETIC SCATTERING CROSS-SECTION
OF POLARIZED NEUTRONS IN FERROMAGNETIC CRYSTALS
Suppose there is a stream of polarized neutrons falling on the ferromagnetic crystals that have polarized electrons The differential cross-section of magnetic scattering per unit solid angle, per unit energy, is given by:
d2σ dΩdE p ′ = m
2
(2π)3~5
p ′
p
∫
−∞
dte i~(E p′ −E p )r Sp
{
ρ σ ρ e
⟨
V p+′ p V p ′ p (t)
⟩}
(1)
where: ρ σ - density matrix of spin of neutrons; ρ e - density matrix of spin of electrons
E p ′, E p - energy of coming neutrons and scattering neutrons
ρ σ = 1
2(⃗ I + ⃗ p0⃗ σ)
⃗0: polarization vector of neutron
We consider to magnetic scattering of neutron, therefore we only consider potential of magnetic interaction:
V p ′ p=− 4π~2
m r0γ
1 2
∑
j
F j (⃗ q)e i⃗ q ⃗ R j × (⃗S j , ⃗ σ − (⃗e⃗σ)⃗e) (2)
Trang 2where: ⃗ R j - location vector of nucleus j
⃗
q = ⃗ p − ⃗p’- scattering vector
⃗ e = ⃗ q/q - unit scattering vector
−
→
S j - spin of lattice point j
F j (⃗ q) =∫
ψ ∗
j
Z j
∑
υ
e i⃗ q⃗ rµ(⃗ sµ ⃗ Sj )
S j (S j+1) ψ j dτ j
ψ j - wave function of electron in atom j
⃗ µ - spin of electron µ in atom j
We denote:
L j = ( ⃗ S j , ⃗ σ − (⃗e⃗σ)⃗e) (3)
⃗
Then we have
d2σ dΩdE p ′ = m
2
(2π)3~5
p ′
p
∫
−∞
dte~i (E p′ −E p )t Sp {ρ σ ρ e ⟨A⟩}X jj ′ (⃗ q, t) (5)
where:
A =
(
4π~2
m r0γ
1 2
)2∑
jj ′
F j (⃗ q)F j ′ (⃗ q)L j (0)L j ′ (t)
X jj ′ (⃗ q, t) = ⟨e −i⃗q⃗ R j(0)e i⃗ q ⃗ R j′ (t) ⟩
In addition, we have:
1
2Sp {L1L2} =(M ⃗1M ⃗2)
(6) 1
2sp {(⃗p⃗σ) L1L2} = i[M ⃗1× ⃗ M2
]
Using (3),(4),(6) and (7), we can calculate trace in (5) and obtain:
Sp {ρ σ ρ e ⟨A⟩} = 4π2~4
m2 r0 γ2∑
jj ′
F j (⃗ q) F j ′ (⃗ {⟨−−−→
M j(0)−−→
M j ′ (t)
⟩
+ i ⟨[−→
M j(0)× −−→ M j ′ (t)
]⟩− →
p0
}
(8)
We now calculate expression (8) for ferromagnetic crystal:
In this case, one has:
−
→
S j = S j z m + ⃗ 1
2S
+
j m ⃗ −+1
2S
−
where: ⃗ m ± = ⃗ m
x ± i⃗m y ; ⃗ m x ; ⃗ m y are unit vector along axis x and axis y
⃗
m = [ ⃗ m x × ⃗m y]
Corresponding to (9), ⃗ M j can be written in the form:
−→
M j = S j z ⃗ µ + 1
2S
+
j ⃗ µ −+1
2S
−
j ⃗ µ+ (10)
Trang 3⃗
µ = ⃗ m − (⃗e⃗m)⃗e; ⃗µ ± = ⃗ m ± −(⃗ e ⃗ m ±)
For the Heisenberg model, we have:
⟨−→
M j(0)
⟩
=
⟨
⃗
M j (t)
⟩
For ferromagnetic crystals, cross correlation functions are equal to 0:
⟨
S j z (0)S ±
j ′ (t)
⟩
=
⟨
S ±
j (0)S j z ′ (t)
⟩
=
⟨
S ±
j (0) S ±
j ′ (t)
⟩
and:
−
→ µ2
= 1− (− → e − → m)2
;
[− →
µ+× − → µ −]
=−2i (− → e − → m) − → e ;(− → µ+− → µ −)
= 1 + (− → e − → m)2
(14)
Using (10),(13),(14), we obtain:
⟨ ⃗ M j (0) ⃗ M j ′ (t) ⟩ =⟨S j z (0)S j z ′ (t)
⟩ [
1− (⃗e⃗m)2]
+ 14
⟨
S+j (0)S −
j ′ (t)
⟩ [
1 + (⃗ e ⃗ m)2
] +
+1 4
⟨
S −
j (0)S j+′ (t)
⟩ [
1 + (⃗ e ⃗ m)2
]
(15)
and:
i ⟨[M ⃗ j(0)× ⃗ M j ′ (t)
]
⟩⃗p0 = 1 2
{⟨
S −
j (0)S j+′ (t)
⟩
(⃗ e ⃗ m) (⃗ e− → p
0)−⟨S j+(0)S −
j ′ (t)
⟩
(⃗ e ⃗ m) (⃗ e− → p
0) } (16) Inserting (15) and (16) into (8), we obtain:
Sp {ρ σ ρ e ⟨A⟩} = 4π2 ~ 4
m2 r0 γ2∑
jj ′ F j (⃗ q) F j ′ (⃗ q)
{⟨
S z
j (0)S z
j ′ (t)
⟩ [
1− (⃗e⃗m)2]
+
1
4
⟨
S j+(0)S −
j ′ (t)
⟩ [
1 + (⃗ e ⃗ m)2
] +14
⟨
S −
j (0)S j+′ (t)
⟩ [
1 + (⃗ e ⃗ m)2
] +
1
2
⟨
S −
j (0)S j+′ (t)
⟩
(⃗ e ⃗ m) (⃗ e− → p0)−1
2
⟨
S j+(0)S −
j ′ (t)
⟩
(⃗ e ⃗ m) (⃗ e− → p0)}
Finally,we obtain the differential magnetic scattering cross-section of polarized neutron in ferromagnetic crystal
d2σ
dΩdE p′ = 2π1~r02γ 2 p p ′
+∫∞
−∞ dte
i
~(E p′ −E p )t ∑
jj ′ F j (⃗ q) F j ′ (⃗
{⟨
S j z (0)S j z ′ (t)
⟩ (
1− (⃗e⃗m)2) +14
⟨
S j+(0)S −
j ′ (t)
⟩ [(
1 + (⃗ e ⃗ m)2
)
− 2 (⃗e⃗m) (⃗e− → p0)
] +
1
4
⟨
S −
j (0)S j+′ (t)
⟩ (
1 + (⃗ e ⃗ m)2
)
+ 2 (⃗ e ⃗ m) (⃗ e− → p
0) }
X j ′ j (q, t)
Trang 4III POLARIZATION VECTOR OF MAGNETIC SCATTERING
NEUTRON IN FERROMAGNETIC CRYSTAL
Polarization vector of magnetic scattering neutron in crystal is described by formula:
⃗
P =
+∫∞
−∞ dtSp
{
ρ σ ρ e
⟨
V p+′ p − → σ V
p ′ p (t)
⟩}
e~i (E p′ −E p )t
+∫∞
−∞ dtSp
{
ρ σ ρ e
⟨
V p+′ p V p ′ p (t)
⟩}
e~i (E p′ −E p )t
(17)
Denominator is calculated in section I We now need to find the numerator of (17) We can show:
1
2Sp { L1⃗ σL2 } = −i [ ⃗ M1× ⃗ M2 ] (18) 1
2Sp {(− → p − → σ ) L
1− → σ L2} = −→ M1(−→
M2− → p)+(−→
M1− → p ) −→
M2− − → p (−→
M1−→
M2
)
(19) Using (18) and (19), we obtain:
Sp
{
ρ σ ρ e V p+′ p ⃗ σV p ′ p (t)
}
= 4π2~ 4
m2 r0 γ2∑
jj ′ F j (⃗ q) F j ′ (⃗
[
−i ⟨[−→
M j(0)−−−→ ×M
j ′ (t)
]⟩
+⟨−−−→
M j(0)⟩ (⟨−−→
M j ′ (t)
⟩− →
p0
) +(⟨−−−→
M j(0)
⟩− →
p0) ⟨−−→
M j ′ (t)
⟩
− − → p0⟨−→
M j(0)−−→
M j ′ (t)
⟩]
X j ′ j (q, t)
Using (12),(15) and (16) for ferromagnetic crystal, we obtain:
Sp
{
ρ σ ρ e V p+′ p V p ′ p (t)
}
=
4π2 ~ 4
m2 r0 γ2∑
jj ′ F j (⃗ q) F j ′ (⃗
{
2S2(T )− → µ (− → µ − → p
0) −⟨S j z (0)S j z ′ (t)
⟩ (
1− (− → e − → m)2)− →
p0
]
−
−1
4
⟨
S j+(0)S −
j ′ (t)
⟩ [(
1 + (− → e − → m)2)
−
→ p0− 2 (− → e − → m) − → e]−
−1
4
⟨
S −
j (0)S j+′ (t)
⟩ [(
1 + (− → e − → m)2)
−
→ p0+ 2 (− → e − → m) − → e]}X
j ′ j (q, t)
So, polarization vector of magnetic scattering neutron in ferromagnetic crystals can be described by the following formula:
−
→ p = − → p1 + − → p2
+∫∞
−∞ dtSp
{
ρ σ
⟨
V p+′ p V p ′ p (t)
⟩}
e~i (E p′ −E p )t
(20)
Where:
⃗1 = 12
∞
∫
−∞ dt.e
i
~(E p′ −E p)∑
jj ′ F j (⃗ q) F j ′ (⃗ q) ×
×[⟨S j+(0)S −
j ′ (t)
⟩
(− → e − → m) − → e −⟨S −
j (0)S j+′ (t)
⟩
(− → e − → m) − → e]X
j ′ j (q, t)
⃗2 = ∫∞
−∞ dt.e
i
~(E p′ −E p )t∑
jj ′ F j (⃗ q) F j ′ (⃗
{
2S2(T )− → µ (− → µ − → p
0)−⟨S j z (0)S j z ′ (t)
⟩ (
1− (− → e − → m)2)− →
p0
−1
4
⟨
S j+(0)S −
j ′ (t)
⟩ (
1 + (− → e − → m)2)− →
p0 −1 4
⟨
S −
j (0)S j+′ (t)
⟩ (
1 + (− → e − → m)2)− →
p0
}
X j ′ j (q, t)
Trang 5IV CONCLUSION
In this note, we obtain the analytical expressions for:
i) The differential magnetic scattering cross-section of polarized neutron in ferromagnetic
crystals
ii) For the above formulas one can set the information about the lattice spin correlation
functions
In the limit of unpolarized neutron we recover the result of Idumop-Oderop[3]
REFERENCES
[1] V G Baryshevsky, Nuclear Optics of Polarized Matter (1976) Minsk.
[2] P Mazur, D L Mills, Phys Rev B 26 (1981) 51-57.
[3] I A Idumov, R Oderop, Magnetic neutrons optics, Moskow, Science, (1996)
[4] Nguyen Dinh Dung, Vestnic BGU 1 (1987) 61-62.
[5] Luong Minh Tuan, Nguyen Thi Thu Trang, Nguyen Dinh Dung, VNU JOURNAL OF SCIENCE:
Mathematics-Physics T.XXII, N0 2AP (2006) 178-181.
Received 30-09-2011.