Let M be an ndimensional complete orientable noncompact hypersurface in a complete Riemannian manifold of nonnegative sectional curvature. For 2 ≤ n ≤ 6, we prove that if M satisfies the δstability inequality (0 < δ ≤ 1), then there is no nontrivial L2β harmonic 1form on M for some constant β. We also provide sufficient conditions for complete hypersurfaces to satisfy the δstability inequality. Moreover, we prove a vanishing theorem for L2 harmonic 1forms on M when M is an ndimensional complete noncompact submanifold in a complete simplyconnected Riemannian manifold N with sectional curvature KN satisfying that −k2 ≤ KN ≤ 0 for some constant k.
Trang 1Contents lists available at ScienceDirect
Journal of Mathematical Analysis and Applications
www.elsevier.com/locate/jmaa
Nguyen Thac Dunga, Keomkyo Seob, ∗
a Department of Mathematics, Mechanics, and Informatics (MIM), Hanoi University of Sciences
(HUS–VNU), Vietnam National University, 334 Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam
bDepartment of Mathematics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku,
Seoul, 140-742, Republic of Korea
a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 June 2014
Available online xxxx
Submitted by H.R Parks
Keywords:
δ-Stabilityinequality
L2 harmonic 1-form
Traceless second fundamental form
First eigenvalue
Let M be an n-dimensional complete orientable noncompact hypersurface in a complete Riemannian manifold of nonnegative sectional curvature For 2≤ n ≤ 6,
we prove that ifM satisfiesthe δ-stabilityinequality (0 < δ ≤ 1), then there is
no nontrivial L 2β harmonic 1-form on M for some constant β. We also provide sufficient conditions for complete hypersurfaces to satisfy theδ-stabilityinequality Moreover, we prove a vanishing theorem forL2 harmonic 1-forms onM when M isan
n-dimensionalcomplete noncompact submanifold in a complete simply-connected Riemannian manifoldN withsectional curvatureK Nsatisfying that−k2≤ K N ≤ 0
for some constantk.
© 2014 Elsevier Inc All rights reserved.
LetM nbeann-dimensionalorientableminimalhypersurfaceinaRiemannianmanifoldN ofnonnegative
f ∈ C ∞
0 (M )
M
|∇f|2−|A|2+ Ric(ν, ν)
anddv isthevolumeform onM
* Corresponding author.
E-mail addresses:dungmath@yahoo.co.uk (N.T Dung), kseo@sookmyung.ac.kr (K Seo).
URL:http://sookmyung.ac.kr/~kseo (K Seo).
http://dx.doi.org/10.1016/j.jmaa.2014.10.076
0022-247X/© 2014 Elsevier Inc All rights reserved.
Trang 2Ontheotherhand,foranumber0< δ ≤ 1,itiscalledδ-stableifanyfunctionf ∈ C ∞
M
|∇f|2− δ|A|2+ Ric(ν, ν)
It isobviousthatδ1-stability impliesδ2-stability for0< δ2< δ1≤ 1.Inparticular,ifM is stable,then M
is δ-stablefor0< δ ≤ 1.
(See[3,8,10,19,27]andreferencesthereinformoredetails.)Itiswell-knownthattheonlycompleteorientable
M |A|2dv < ∞,then M is a hyperplane
M |A| n dv < ∞ is a hyperplane Recently, Tam and Zhou proved that a complete
n−2
For an n-dimensional complete orientable noncompact (not necessarily minimal) hypersurface M ina
that if M satisfies the stability inequality (1.1), then there is no nontrivial L2 harmonic 1-form on M ,
−k2≤ KN ≤ 0 forsomeconstantk,itturnsoutthatiftheL2normφnofthetraceless secondfundamental
parabolic.WenotethatM isnon-parabolicprovidedithasanon-constantpositivesuperharmonicfunction
B p (r) ⊂ M,
Trang 3
1
r
then M is parabolic.
∞
1
r
theδ-stability inequality holdsonM for0< δ ≤ 1 ifany f ∈ C ∞
M
|∇f|2− δ|A|2+ Ric(ν, ν)
f2dv ≥ 0.
nonnegative sectional curvature If the δ-stability inequality holds on M for 0< δ ≤ 1, then the volume of
M is infinite.
M
|∇ϕ|2≥ δ
M
Ric(ν, ν) + |A|2
ϕ2
Let q := δ( |A|2+ Ric(ν, ν)) and let D ⊂ M be any bounded domain with smooth boundary Denote
Let M n be an n-dimensional orientable submanifold in an (n + p)-dimensional Riemannian manifold
N n+p Fixapointx ∈ M andchooseanylocal orthonormalframe{e1, · · · , e n+p} suchthat{e1, · · · , e n} is
Aα X, Y = ¯ ∇X Y, e α,
Trang 4where X, Y are tangent vector fields and ∇ denotes¯ the Levi-Civita connection on N Then the
H = n+p
α=n+1 (trace A α )e α.
φα X, Y = Aα X, Y − X, Y H, eα
φ(X, Y ) =
n+p
α=n+1 φαX, Y eα.
|φ|2=|A|2− H2
n .
H2
|A|2 ≤ n.
φ = A − H
n g,
√ n−1
2n( √
n −1+1)2 Then we have
2(n − 1)|H|2− (n − 2) √ n − 1|H|n |A|2− |H|2≥ −bn2|A|2. (2.2)
n2
|H|
|A|
n − |A| H22 − 2(n − 1)
n2
H2
|A|2 ≤ b.
n ] by
n − t2− 2(n − 1)
n2 t2.
n ] fn (t). Then
(n − 2) √ n − 1tn − t2≤ 2(n − 1)t2+ Bn2, ∀t ∈ [0, √ n ]
Trang 5(n − 2)2(n − 1)x(n − x) ≤ 4(n − 1)2x2+ 4B(n − 1)n2x + B2n4, (2.3)
B ≥ (n − 2)2
√
n − 1
n − 1 + 1)2 = b,
curvature K N satisfying that K ≤ KN where K is a constant Then the Ricci curvatureRicM of M satisfies
RicM ≥ (n − 1)K + 1
n2
2(n − 1)|H|2− (n − 2) √ n − 1|H|n |A|2− |H|2 − n − 1
n |A|2.
cur-vature Then
√
n − 1
n − 1
n − 1
n − 1 + 1)2
|A|2
√
n − 1
N with nonnegative sectional curvature If the δ-stability inequality holds on M for some 2√ n−2
n−1 ≤ δ ≤ 1, then there is no nontrivial L 2β harmonic 1-form on M for any constant β satisfying
2δ
√
n − 1
n − 1
< β < √ 2δ
n − 1
1 +
n − 1
.
|ω| 2β dv < ∞.
Trang 6We shallusethesamenotation ω foraharmonic1-formand itsdual harmonicvectorfieldinanabuseof
Δ|ω|2= 2
|∇ω|2+ RicM (ω, ω)
.
Δ|ω|2= 2
|ω|Δ|ω| + ω |2
.
|ω|Δ|ω| − RicM (ω, ω) = |∇ω|2− ω |2
.
|∇ω|2− ω |2≥ 1
n − 1 ω |
2
|ω|Δ|ω| ≥ 1
n − 1 ω |
2
|ω|Δ|ω| ≥ 1
n − 1 ω |
2
−
√
n − 1
2 |A|2|ω|2.
|ω| αΔ|ω| α=|ω| α
α(α − 1)|ω| α−2 ω | 2
+ α |ω| α−1Δ|ω|
α ω | α 2+ α |ω| 2α −2 ω |Δ|ω
≥ α − 1
α ω | α 2+ α |ω| 2α −2
1
n − 1 ω |2
√
n − 1
2 |A|2|ω|2
≥
(n − 1)α α
2
− α
√
n − 1
(n − 1)α
M
|ω| 2qα φ2 ω | α 2
≤ M
|ω| (2q+1)α φ2Δ|ω| α + α
√
n − 1
2
M
|A|2φ2|ω| 2(q+1)α
= α
√
n − 1
2
M
|A|2φ2|ω| 2(q+1)α − (2q + 1)
M
|ω| 2qα ω | α2φ2
− 2
φ |ω| (2q+1)α
∇φ, ∇|ω| α
.
Trang 7
(n − 1)α
M
|ω| 2qα ω | α 2φ2
≤ α
√
n − 1
2
M
|ω| 2(q+1)α |A|2φ2− 2
M
φ |ω| (2q+1)α
∇φ, ∇|ω| α
M
|∇φ|2≥ δ
M
Ric(ν, ν) + |A|2
φ2≥ δ
M
|A|2φ2.
δ
M
|ω| 2(q+1)α |A|2φ2≤ (q + 1)2
M
|ω| 2qα ω | α 2φ2+
M
|ω| 2(q+1)α |∇φ|2
+ 2(1 + q)
M
|ω| (2q+1)α φ
∇φ, ∇|ω| α
(n − 1)α
M
|ω| 2qα ω | α 2φ2
≤ α δ
√
n − 1
2
(q + 1)2
M
|ω| 2qα ω | α 2φ2+
M
|ω| 2(q+1)α |∇φ|2
+
2α δ
√
n − 1
M
|ω| (2q+1)α φ
∇φ, ∇|ω| α
2α δ
√
n − 1
M
|ω| (2q+1)α φ
∇φ, ∇|ω| α
δ
√
n − 1
M
2|ω| (2q+1)α φ |∇φ| ω | α
≤ |D|
ε
M
|ω| 2qα ω | α2φ2+1
ε
M
|ω| 2(q+1)α |∇φ|2
where
D := 1 − α
δ
√
n − 1
Trang 8From theinequalities(2.9)and (2.10),itfollowsthat
(n − 1)α −
√
n − 1
2
α(q + 1)2
δ
M
|ω| 2qα ω | α 2φ2
≤
√
n − 1
2
α δ
M
|ω| 2(q+1)α |∇φ|2
M
|ω| 2qα ω | α2φ2+|D|
ε
M
|ω| 2(q+1)α |∇φ|2,
(n − 1)α −
√
n − 1
2
α(q + 1)2
δ − |D|ε
M
|ω| 2qα ω | α 2φ2
≤
√
n − 1
2
α
δ +
|D|
ε
M
Now letβ := (1 + q)α andchoosethenumbersα and q suchthat
(n − 1)α −
√
n − 1
2
α(q + 1)2
δ > 0.
M
|ω| 2qα ω | α2φ2≤ C
M
2(q + 1) − (n n − 1)α − 2 −
√
n − 1
2
α(q + 1)2
n − 1 −
√
n − 1
2
β2
δ > 0,
2δ
√
n − 1
n − 1
< β < √ 2δ
n − 1
1 +
n − 1
.
on[0, R] and φ= 0 in[2R, ∞) with |φ | ≤ 2
|ω| 2qα ω | α 2
≤ 4C
R2
|ω| 2β
Trang 9Letting R → ∞, we concludethat|ω| is constant sinceω is an L 2β harmonic 1-form However,since the
manifold N with nonnegative sectional curvature Let α1 and b be the same constants as in Theorem 2.6
If the stability inequality (1.1) holds on M , then there is no nontrivial L 2β harmonic 1-form on M for any constant β satisfying
2
√
n − 1
n − 1
< β < √ 2
n − 1
1 +
n − 1
.
√ n−1
2n < δ ≤ 1 inTheorem 2.6,wehavethefollowingvanishingtheoremforL2
manifold N with nonnegative sectional curvature If M satisfies δ-stability inequality for some (n −1)
√ n−1
2n <
δ ≤ 1, then there is no nontrivial L2 harmonic 1-form on M
√ n−1
2n < δ ≤ 1,wesee
2δ
√
n − 1
n − 1
< 1 < √ 2δ
n − 1
1 +
n − 1
.
M
|∇f|2− δ|A|2f2dv ≥ 0.
stability inequality holds on M for some (n −1) 2n √ n −1 < δ ≤ 1, then there is no nontrivial L2harmonic 1-form
on M
λ (Ω) > 0 denotethefirsteigenvalueoftheDirichletboundaryvalueproblem
Trang 10λ1(M ) = inf
Ω λ1(Ω),
δ-stabilityinequality.Moreprecisely,weprovethatiftheL n or L ∞ normofthesecond fundamentalform
curvature K N satisfying that K N ≤ K ≤ 0 where K ≤ 0 is a constant Assume that for0< δ ≤ 1
|A|2≤ λ1(M )
δ − nK.
Then the δ-stability inequality holds on M
C0∞ (M )
λ1(M ) ≤
M |∇f|2
M f2 ,
M
|∇f|2− δ|A|2+ Ric(ν, ν)
f2≥
M
λ1(M ) −δ |A|2+ nK
f2≥ 0.
simply-connected manifold with nonpositive sectional curvature Then for any φ ∈ W 1,2
M
|φ| 2n
n−2 dv
n
≤ CS M
|∇φ|2+
φ |H|2
where CS is the Sobolev constant which depends only on n ≥ 3.
Trang 11Theorem 3.3 Let M n (n ≥ 3) be an n-dimensional complete hypersurface in a complete simply connected Riemannian manifold N with nonpositive sectional curvature Assume that for0< δ ≤ 1
M
|A| n
2
n
,
where CS is a Sobolev constant in (3.1) Then the δ-stability inequality holds on M
M
|f| 2n
n−2
n
≤ CS
M
|∇f|2+
f |H|2
≤ CS M
|∇f|2+ C S
M
|H| n
2
n
M
|f| 2n
n−2
n
.
Thus
M
|f| 2n
n−2
n
1− CSH2
n
M
|∇f|2,
since
H2
n ≤ nA2
(n + δ)C S <
1
C S
M
|∇f|2− δ|A|2+ Ric(ν, ν)
f2≥1− CS H2n
C S
M
|f| 2n
n−2
n
− δ M
|A|2f2
≥
n
CS − δA2
n
M
|f| 2n
n−2
n −2 n
≥
1− nCS A2
n
CS − δA2
n
M
|f| 2n
n−2
n
≥
1
C S − (n + δ)A2
n
M
|f| 2n
n−2
n
≥ 0,
Δω = −(dδ + δd)ω = 0 and
|ω|2< ∞.
Trang 12Evenwithoutassumingstabilityofminimalhypersurfaces,ifM ⊂ R n+1isacompleteminimalhypersurface
onM (See[21,25,32]fordetails.)Theanalogueofthisresultisalsotrueforacompleteminimalhypersurface
satisfies
λ1(M ) > (n − 1)2
n
k2− inf |H|2
,
inf|H| intheirresult
simply-connected Riemannian manifold N with sectional curvature KN satisfying that −k2≤ KN ≤ 0 where k is
a constant Assume that the traceless second fundamental form φ satisfies
φn <
1
n(n − 1)CS .
In the case k = 0, assume further that the first eigenvalue λ1(M ) of M satisfies
2(n − 1)2k2
n3− (n − 2)(n − 1)n(n − 1)CS φn − 2n(n − 1)CSφ2
n ,
where CS is a Sobolev constant in (3.1) Then there is no nontrivial L2 harmonic 1-form on M
1-form ω
|ω|Δ|ω| ≥ 1
n − 1 ω |
2
+ RicM (ω, ω).
Ric≥ (n − 1)
|H|2
n2 − k2
− n − 2
n2
n(n − 1)|φ||H| − n − 1
n |φ|2.
Trang 13Combiningthese twoinequalities,wehave
|ω|Δ|ω| ≥ 1
n − 1 ω |
2
|H|2
n2 − k2
|ω|2
− n − 2
n2
n(n − 1)|φ||H||ω|2− n − 1
f ≡ 1 on B(R), f ≡ 0 on M \ B(2R), and |∇f| ≤ 1
B R
f2|ω|Δ|ω| ≥
B R
1
n − 1 ω |
2
f2+
B R
|H|2
n2 − k2
|ω|2f2
−
B R
n − 2
n2
n(n − 1)|φ||H||ω|2f2−
B R
n − 1
n |φ|2|ω|2f2.
B R
f |ω|∇f, ∇|ω|− n
n − 1
B R
ω |2f2+n − 1
n
B R
|φ|2|ω|2f2
n2
n(n − 1)
B R
|φ||H||ω|2f2+ (n − 1)
B R
k2− |H|2
n2
|ω|2f2.
2
B R
f |ω|∇f, ∇|ω|
B R
f2 ω |2
α
B R
and
2
B R
|φ||H||ω|2f2≤ β
B R
|H|2|ω|2f2+ 1
β
B R
|φ|2|ω|2f2.
α − n
n − 1
B R
f2 ω |2
α
B R
|∇f|2|ω|2
+
β(n − 2) 2n2
n(n − 1) − n − 1
n2
B R
|H|2|ω|2f2
+
n − 2
n(n − 1) + n − 1
n
B R
|φ|2|ω|2f2
Trang 14
B R
|φ|2|ω|2f2≤
B R
|φ| n
2
n
B R
|ω||f|n−2 2n
n −2 n
≤ CS
B R
|φ| n
2
n
B R
ω |f 2
+
B R
|H|2|ω|2f2
≤ CS
B R
|φ| n
2
n
(1 + α)
B R
f2 ω | 2
+
α
B R
|∇f|2|ω|2
B R
|φ| n
2
n
B R
Inthecasek = 0, weneedanadditionalestimate.Usingthemonotonicityofthefirsteigenvalueλ1(B R) of
λ1(M ) ≤ λ1(B R)≤
B R |∇f|2
λ1(M )
B R
|ω|2f2≤ (1 + α)
B R
f2 ω |2
+
α
B R
A
B R
f2 ω | 2+ B
B R
|H|2|ω|2f2≤ C
B R
A = n
n − 1 − α −
k2(n − 1)
λ1(M ) + C S
B R
|φ| n
2
n
n − 2
n(n − 1) + n − 1
n
(1 + α)
B = n − 1
n2 − n − 2
2n2
n(n − 1)β − CS
B R
|φ| n
2
n
n − 2
n(n − 1) + n − 1
n
C = 1
α+
k2(n − 1)
λ1(M ) + C S
B R
|φ| n
2
n
n − 2
n(n − 1) + n − 1
n
α
.
β + CS φ2
n
1
we see that B > 0 for any β > 0. Take β = √
Trang 15Now lettingR → ∞ in theinequality(4.7), weobtain|∇|ω|| ≡ 0 and |H||ω| ≡ 0. Since|∇|ω|| ≡ 0, we get|ω| ≡ constant.Supposethat|ω| isanonzeroconstant.Fromthefactthat|H||ω| ≡ 0,itfollowsthatM
spaceRN If the traceless second fundamental form φ satisfies
φn <
1
n(n − 1)CS , then there is no nontrivial L2 harmonic 1-form on M
simply-connected Riemannian manifold N with sectional curvature KN satisfying that −k2 ≤ KN ≤ 0 for some constant k = 0 If
φn <
1
n(n − 1)CS and
λ1(M ) > 2n
2(n − 1)2k2
n3− n2+ 3n − 4 , then there is no nontrivial L2 harmonic 1-form on M
ofM andthecurvature oftheambientspace,whichisdifferentfrom [2]
Acknowledgments
(NRF-2013R1A1A1A05006277)
Trang 16[1] G Carron,L2 -cohomologie et inegalites de Sobolev, Math Ann 314 (4) (1999) 613–639.
[2] M.P Cavalcante, H Mirandola, F Vitório,L2 harmonic 1-forms on submanifolds with finite total curvature, J Geom Anal 24 (1) (2014) 205–222.
[3] T.H Colding, W.P Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold II Multi-valued graphs in disks, Ann of Math 160 (2004) 69–92.
[4] M do Carmo, C.K Peng, Stable complete minimal surfaces in R 3 are planes, Bull Amer Math Soc (N.S.) 1 (1979) 903–906.
[5] M do Carmo, C.K Peng, Stable complete minimal hypersurfaces, in: Proc Beijing Symp Differential Equations and Differential Geometry, vol 3, 1980, pp 1349–1358.
[6] N.T Dung, K Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann Global Anal Geom 41 (4) (2012) 447–460.
[7] D Fischer-Colbrie, R Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm Pure Appl Math 33 (1980) 199–211.
[8] H.P Fu, The structure ofδ-stableminimal hypersurface in Rn+1, Hokkaido Math J 40 (2011) 103–110.
[9] H.P Fu, Z.Q Li,L2 harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math J 32 (3) (2009) 432–441 [10] H.P Fu, D.Y Yang, Vanishing theorems on complete manifolds with weighted Poincaré inequality and applications, Nagoya Math J 206 (2012) 25–37.
[11] A Grigor’yan, On the existence of a Green function on a manifold, Uspekhi Mat Nauk 38 (1) (1983) 161–162 (in Russian); Engl transl in Russian Math Surveys 38 (1) (1983) 190–191.
[12] A Grigor’yan, On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds, Mat.
Sb 128 (3) (1985) 354–363 (in Russian); Engl transl in Math USSR Sb 56 (1987) 349–358.
[13] D Hoffman, J Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm Pure Appl Math 27 (1974) 715–727.
[14] L Karp, Subharmonic functions, harmonic mappings and isometric immersions, in: S.T Yau (Ed.), Seminar on Differential Geometry, in: Ann of Math Stud., vol 102, Princeton University Press, Princeton, 1982.
[15] S Kawai, Operator Δ− aK onsurfaces, Hokkaido Math J 17 (2) (1988) 147–150.
[16] J.J Kim, G Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature andL2
harmonic forms, Arch Math (Basel) 100 (2013) 369–380.
[17] P.F Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc Amer Math Soc 114 (1992) 1051–1063.
[18] Y.W Li, X.W Xu, J.R Zhou, The complete hypersurfaces with zero scalar curvature in Rn+1, Ann Global Anal Geom.
44 (4) (2013) 401–416, http://dx.doi.org/10.1007/s10455-013-9373-1
[19] W.H Meeks III, J Perez, A Ros, Liouville-type properties for embedded minimal surfaces, Comm Anal Geom 14 (4) (2006) 703–723.
[20] R Miyaoka,L2 harmonic 1-forms on a complete stable minimal hypersurface, Geom Global Anal (1993) 289–293 [21] L Ni, Gap theorems for minimal submanifolds in Rn+1, Comm Anal Geom 9 (3) (2001) 641–656.
[22] B Palmer, Stability of minimal hypersurfaces, Comment Math Helv 66 (1991) 185–188.
[23] K Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai Math J 31 (1) (2008) 113–119 [24] K Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch Math (Basel) 94 (2) (2010) 173–181.
[25] K Seo,L2 harmonic 1-forms on minimal submanifolds in hyperbolic space, J Math Anal Appl 371 (2) (2010) 546–551 [26] Y Shen, X Zhu, On stable complete minimal hypersurfaces in Rn+1, Amer J Math 120 (1998) 103–116.
[27] L.F Tam, D Zhou, Stability properties for the higher dimensional catenoid in Rn+1, Proc Amer Math Soc 137 (10) (2009) 3451–3461.
[28] N.T Varopoulos, Potential theory and diffusion of Riemannian manifolds, in: Conference on Harmonic Analysis in Honor
of Antoni Zygmund, vols I, II, in: Wadsworth Math Ser., Wadsworth, Belmont, CA, 1983, pp 821–837.
[29] X Wang, On conformally compact Einstein manifolds, Math Res Lett 8 (5–6) (2001) 671–688.
[30] Q Wang, On minimal submanifolds in an Euclidean space, Math Nachr 261/262 (2003) 176–180.
[31] S.T Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ Math J 25 (1976) 659–670.
[32] G Yun, Total scalar curvature andL2 harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom Dedicata
89 (2002) 135–141.
... Miyaoka,L2 harmonic 1-forms on a complete stable minimal hypersurface, Geom Global Anal (1993) 289–293 [21] L Ni, Gap theorems for minimal submanifolds in Rn+1,... Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature andL2harmonic forms, Arch Math (Basel)...
[29] X Wang, On conformally compact Einstein manifolds, Math Res Lett (5–6) (2001) 671–688.
[30] Q Wang, On minimal submanifolds in an Euclidean space, Math Nachr