1. Trang chủ
  2. » Khoa Học Tự Nhiên

Vanishing theorems for L2 harmonic 1forms on complete submanifolds in a Riemannian manifold

16 175 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 838,37 KB
File đính kèm Preprint1429.rar (433 KB)

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Let M be an ndimensional complete orientable noncompact hypersurface in a complete Riemannian manifold of nonnegative sectional curvature. For 2 ≤ n ≤ 6, we prove that if M satisfies the δstability inequality (0 < δ ≤ 1), then there is no nontrivial L2β harmonic 1form on M for some constant β. We also provide sufficient conditions for complete hypersurfaces to satisfy the δstability inequality. Moreover, we prove a vanishing theorem for L2 harmonic 1forms on M when M is an ndimensional complete noncompact submanifold in a complete simplyconnected Riemannian manifold N with sectional curvature KN satisfying that −k2 ≤ KN ≤ 0 for some constant k.

Trang 1

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Nguyen Thac Dunga, Keomkyo Seob, ∗

a Department of Mathematics, Mechanics, and Informatics (MIM), Hanoi University of Sciences

(HUS–VNU), Vietnam National University, 334 Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam

bDepartment of Mathematics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku,

Seoul, 140-742, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:

Received 30 June 2014

Available online xxxx

Submitted by H.R Parks

Keywords:

δ-Stabilityinequality

L2 harmonic 1-form

Traceless second fundamental form

First eigenvalue

Let M be an n-dimensional complete orientable noncompact hypersurface in a complete Riemannian manifold of nonnegative sectional curvature For 2≤ n ≤ 6,

we prove that ifM satisfiesthe δ-stabilityinequality (0 < δ ≤ 1), then there is

no nontrivial L 2β harmonic 1-form on M for some constant β. We also provide sufficient conditions for complete hypersurfaces to satisfy theδ-stabilityinequality Moreover, we prove a vanishing theorem forL2 harmonic 1-forms onM when M isan

n-dimensionalcomplete noncompact submanifold in a complete simply-connected Riemannian manifoldN withsectional curvatureK Nsatisfying that−k2≤ K N ≤ 0

for some constantk.

© 2014 Elsevier Inc All rights reserved.

LetM nbeann-dimensionalorientableminimalhypersurfaceinaRiemannianmanifoldN ofnonnegative

f ∈ C ∞

0 (M )



M

|∇f|2|A|2+ Ric(ν, ν)

anddv isthevolumeform onM

* Corresponding author.

E-mail addresses:dungmath@yahoo.co.uk (N.T Dung), kseo@sookmyung.ac.kr (K Seo).

URL:http://sookmyung.ac.kr/~kseo (K Seo).

http://dx.doi.org/10.1016/j.jmaa.2014.10.076

0022-247X/© 2014 Elsevier Inc All rights reserved.

Trang 2

Ontheotherhand,foranumber0< δ ≤ 1,itiscalledδ-stableifanyfunctionf ∈ C ∞



M

|∇f|2− δ|A|2+ Ric(ν, ν)

It isobviousthatδ1-stability impliesδ2-stability for0< δ2< δ1≤ 1.Inparticular,ifM is stable,then M

is δ-stablefor0< δ ≤ 1.

(See[3,8,10,19,27]andreferencesthereinformoredetails.)Itiswell-knownthattheonlycompleteorientable

M |A|2dv < ∞,then M is a hyperplane

M |A| n dv < ∞ is a hyperplane Recently, Tam and Zhou proved that a complete

n−2

For an n-dimensional complete orientable noncompact (not necessarily minimal) hypersurface M ina

that if M satisfies the stability inequality (1.1), then there is no nontrivial L2 harmonic 1-form on M ,

−k2≤ KN ≤ 0 forsomeconstantk,itturnsoutthatiftheL2normφnofthetraceless secondfundamental

parabolic.WenotethatM isnon-parabolicprovidedithasanon-constantpositivesuperharmonicfunction

B p (r) ⊂ M,

Trang 3



1

r

then M is parabolic.



1

r

theδ-stability inequality holdsonM for0< δ ≤ 1 ifany f ∈ C ∞



M

|∇f|2− δ|A|2+ Ric(ν, ν)

f2dv ≥ 0.

nonnegative sectional curvature If the δ-stability inequality holds on M for 0< δ ≤ 1, then the volume of

M is infinite.



M

|∇ϕ|2≥ δ



M



Ric(ν, ν) + |A|2

ϕ2

Let q := δ( |A|2+ Ric(ν, ν)) and let D ⊂ M be any bounded domain with smooth boundary Denote

Let M n be an n-dimensional orientable submanifold in an (n + p)-dimensional Riemannian manifold

N n+p Fixapointx ∈ M andchooseanylocal orthonormalframe{e1, · · · , e n+p} suchthat{e1, · · · , e n} is

Aα X, Y = ¯ ∇X Y, e α ,

Trang 4

where X, Y are tangent vector fields and ∇ denotes¯ the Levi-Civita connection on N Then the

H = n+p

α=n+1 (trace A α )e α.

φα X, Y = Aα X, Y − X, Y H, eα

φ(X, Y ) =

n+p

α=n+1 φαX, Y eα.

|φ|2=|A|2− H2

n .

H2

|A|2 ≤ n.

φ = A − H

n g,

√ n−1

2n( √

n −1+1)2 Then we have

2(n − 1)|H|2− (n − 2) √ n − 1|H|n |A|2− |H|2≥ −bn2|A|2. (2.2)

n2

|H|

|A|



n − |A| H22 − 2(n − 1)

n2

H2

|A|2 ≤ b.

n ] by

n − t2− 2(n − 1)

n2 t2.

n ] fn (t). Then

(n − 2) √ n − 1tn − t2≤ 2(n − 1)t2+ Bn2, ∀t ∈ [0, √ n ]

Trang 5

(n − 2)2(n − 1)x(n − x) ≤ 4(n − 1)2x2+ 4B(n − 1)n2x + B2n4, (2.3)

B ≥ (n − 2)2

n − 1

n − 1 + 1)2 = b,

curvature K N satisfying that K ≤ KN where K is a constant Then the Ricci curvatureRicM of M satisfies

RicM ≥ (n − 1)K + 1

n2

2(n − 1)|H|2− (n − 2) √ n − 1|H|n |A|2− |H|2 − n − 1

n |A|2.

cur-vature Then

n − 1

n − 1

n − 1

n − 1 + 1)2

|A|2

n − 1

N with nonnegative sectional curvature If the δ-stability inequality holds on M for some 2√ n−2

n−1 ≤ δ ≤ 1, then there is no nontrivial L 2β harmonic 1-form on M for any constant β satisfying

n − 1



n − 1

< β < √ 2δ

n − 1

1 +



n − 1

.



|ω| 2β dv < ∞.

Trang 6

We shallusethesamenotation ω foraharmonic1-formand itsdual harmonicvectorfieldinanabuseof

Δ|ω|2= 2

|∇ω|2+ RicM (ω, ω)

.

Δ|ω|2= 2

|ω|Δ|ω| + ω |2

.

|ω|Δ|ω| − RicM (ω, ω) = |∇ω|2− ω |2

.

|∇ω|2− ω |2 1

n − 1 ω |

2

|ω|Δ|ω| ≥ 1

n − 1 ω |

2

|ω|Δ|ω| ≥ 1

n − 1 ω |

2

n − 1

2 |A|2|ω|2.

|ω| αΔ|ω| α=|ω| α

α(α − 1)|ω| α−2 ω | 2

+ α |ω| α−1Δ|ω|

α ω | α 2+ α |ω| 2α −2 ω |Δ|ω

≥ α − 1

α ω | α 2+ α |ω| 2α −2

1

n − 1 ω |2

n − 1

2 |A|2|ω|2

(n − 1)α α

2

− α

n − 1

(n − 1)α



M

|ω| 2qα φ2 ω | α 2

 M

|ω| (2q+1)α φ|ω| α + α

n − 1

2



M

|A|2φ2|ω| 2(q+1)α

= α

n − 1

2



M

|A|2φ2|ω| 2(q+1)α − (2q + 1)

M

|ω| 2qα ω | α2φ2

− 2



φ |ω| (2q+1)α

∇φ, ∇|ω| α

.

Trang 7

(n − 1)α



M

|ω| 2qα ω | α 2φ2

≤ α

n − 1

2



M

|ω| 2(q+1)α |A|2φ2− 2

M

φ |ω| (2q+1)α

∇φ, ∇|ω| α



M

|∇φ|2≥ δ



M



Ric(ν, ν) + |A|2

φ2≥ δ



M

|A|2φ2.

δ



M

|ω| 2(q+1)α |A|2φ2≤ (q + 1)2



M

|ω| 2qα ω | α 2φ2+



M

|ω| 2(q+1)α |∇φ|2

+ 2(1 + q)



M

|ω| (2q+1)α φ

∇φ, ∇|ω| α

(n − 1)α



M

|ω| 2qα ω | α 2φ2

≤ α δ

n − 1

2

(q + 1)2



M

|ω| 2qα ω | α 2φ2+



M

|ω| 2(q+1)α |∇φ|2

+



2α δ

n − 1

 

M

|ω| (2q+1)α φ

∇φ, ∇|ω| α



2α δ

n − 1

 

M

|ω| (2q+1)α φ

∇φ, ∇|ω| α

δ

n − 1



M

2|ω| (2q+1)α φ |∇φ| ω | α

≤ |D|

ε



M

|ω| 2qα ω | α2φ2+1

ε



M

|ω| 2(q+1)α |∇φ|2

where

D := 1 − α

δ

n − 1

Trang 8

From theinequalities(2.9)and (2.10),itfollowsthat



(n − 1)α −

n − 1

2

α(q + 1)2

δ

 

M

|ω| 2qα ω | α 2φ2

n − 1

2

α δ



M

|ω| 2(q+1)α |∇φ|2

M

|ω| 2qα ω | α2φ2+|D|

ε



M

|ω| 2(q+1)α |∇φ|2,



(n − 1)α −

n − 1

2

α(q + 1)2

δ − |D|ε

 

M

|ω| 2qα ω | α 2φ2

√

n − 1

2

α

δ +

|D|

ε

 

M

Now letβ := (1 + q)α andchoosethenumbersα and q suchthat

(n − 1)α −

n − 1

2

α(q + 1)2

δ > 0.



M

|ω| 2qα ω | α2φ2≤ C

M

2(q + 1) − (n n − 1)α − 2 −

n − 1

2

α(q + 1)2

n − 1 −

n − 1

2

β2

δ > 0,

n − 1



n − 1

< β < √ 2δ

n − 1

1 +



n − 1

.

on[0, R] and φ= 0 in[2R, ∞) with |φ  | ≤ 2



|ω| 2qα ω | α 2

≤ 4C

R2



|ω| 2β

Trang 9

Letting R → ∞, we concludethat|ω| is constant sinceω is an L 2β harmonic 1-form However,since the

manifold N with nonnegative sectional curvature Let α1 and b be the same constants as in Theorem 2.6

If the stability inequality (1.1) holds on M , then there is no nontrivial L 2β harmonic 1-form on M for any constant β satisfying

2

n − 1



n − 1

< β < √ 2

n − 1

1 +



n − 1

.

√ n−1

2n < δ ≤ 1 inTheorem 2.6,wehavethefollowingvanishingtheoremforL2

manifold N with nonnegative sectional curvature If M satisfies δ-stability inequality for some (n −1)

√ n−1

2n <

δ ≤ 1, then there is no nontrivial L2 harmonic 1-form on M

√ n−1

2n < δ ≤ 1,wesee

n − 1



n − 1

< 1 < √ 2δ

n − 1

1 +



n − 1

.



M

|∇f|2− δ|A|2f2dv ≥ 0.

stability inequality holds on M for some (n −1) 2n √ n −1 < δ ≤ 1, then there is no nontrivial L2harmonic 1-form

on M

λ (Ω) > 0 denotethefirsteigenvalueoftheDirichletboundaryvalueproblem

Trang 10

λ1(M ) = inf

Ω λ1(Ω),

δ-stabilityinequality.Moreprecisely,weprovethatiftheL n or L ∞ normofthesecond fundamentalform

curvature K N satisfying that K N ≤ K ≤ 0 where K ≤ 0 is a constant Assume that for0< δ ≤ 1

|A|2≤ λ1(M )

δ − nK.

Then the δ-stability inequality holds on M

C0∞ (M )

λ1(M ) ≤



M |∇f|2



M f2 ,



M

|∇f|2− δ|A|2+ Ric(ν, ν)

f2



M



λ1(M ) −δ |A|2+ nK

f2≥ 0.

simply-connected manifold with nonpositive sectional curvature Then for any φ ∈ W 1,2



M

|φ| 2n

n−2 dv

n

≤ CS M

|∇φ|2+

φ |H|2

where CS is the Sobolev constant which depends only on n ≥ 3.

Trang 11

Theorem 3.3 Let M n (n ≥ 3) be an n-dimensional complete hypersurface in a complete simply connected Riemannian manifold N with nonpositive sectional curvature Assume that for0< δ ≤ 1



M

|A| n

2

n

,

where CS is a Sobolev constant in (3.1) Then the δ-stability inequality holds on M



M

|f| 2n

n−2

n

≤ CS



M

|∇f|2+

f |H|2

≤ CS M

|∇f|2+ C S



M

|H| n

2

n 

M

|f| 2n

n−2

n

.

Thus



M

|f| 2n

n−2

n

1− CSH2

n



M

|∇f|2,

since

H2

n ≤ nA2

(n + δ)C S <

1

C S



M

|∇f|2− δ|A|2+ Ric(ν, ν)

f21− CS H2n

C S



M

|f| 2n

n−2

n

− δ M

|A|2f2

n

CS − δA2

n



M

|f| 2n

n−2

n −2 n

1− nCS A2

n

CS − δA2

n



M

|f| 2n

n−2

n

1

C S − (n + δ)A2

n



M

|f| 2n

n−2

n

≥ 0,

Δω = −(dδ + δd)ω = 0 and



|ω|2< ∞.

Trang 12

Evenwithoutassumingstabilityofminimalhypersurfaces,ifM ⊂ R n+1isacompleteminimalhypersurface

onM (See[21,25,32]fordetails.)Theanalogueofthisresultisalsotrueforacompleteminimalhypersurface

satisfies

λ1(M ) > (n − 1)2

n



k2− inf |H|2

,

inf|H| intheirresult

simply-connected Riemannian manifold N with sectional curvature KN satisfying that −k2≤ KN ≤ 0 where k is

a constant Assume that the traceless second fundamental form φ satisfies

φn <



1

n(n − 1)CS .

In the case k = 0, assume further that the first eigenvalue λ1(M ) of M satisfies

2(n − 1)2k2

n3− (n − 2)(n − 1)n(n − 1)CS φn − 2n(n − 1)CSφ2

n ,

where CS is a Sobolev constant in (3.1) Then there is no nontrivial L2 harmonic 1-form on M

1-form ω

|ω|Δ|ω| ≥ 1

n − 1 ω |

2

+ RicM (ω, ω).

Ric≥ (n − 1)

|H|2

n2 − k2

− n − 2

n2



n(n − 1)|φ||H| − n − 1

n |φ|2.

Trang 13

Combiningthese twoinequalities,wehave

|ω|Δ|ω| ≥ 1

n − 1 ω |

2

|H|2

n2 − k2

|ω|2

− n − 2

n2



n(n − 1)|φ||H||ω|2− n − 1

f ≡ 1 on B(R), f ≡ 0 on M \ B(2R), and |∇f| ≤ 1



B R

f2|ω|Δ|ω| ≥

B R

1

n − 1 ω |

2

f2+



B R

|H|2

n2 − k2

|ω|2f2



B R

n − 2

n2



n(n − 1)|φ||H||ω|2f2



B R

n − 1

n |φ|2|ω|2f2.



B R

f |ω|∇f, ∇|ω|− n

n − 1



B R

ω |2f2+n − 1

n



B R

|φ|2|ω|2f2

n2



n(n − 1)

B R

|φ||H||ω|2f2+ (n − 1)

B R

k2− |H|2

n2

|ω|2f2.

2



B R

f |ω|∇f, ∇|ω| 

B R

f2 ω |2

α



B R

and

2



B R

|φ||H||ω|2f2≤ β

B R

|H|2|ω|2f2+ 1

β



B R

|φ|2|ω|2f2.

α − n

n − 1



B R

f2 ω |2

α



B R

|∇f|2|ω|2

+

β(n − 2) 2n2



n(n − 1) − n − 1

n2



B R

|H|2|ω|2f2

+

n − 2



n(n − 1) + n − 1

n



B R

|φ|2|ω|2f2

Trang 14



B R

|φ|2|ω|2f2



B R

|φ| n

2

n 

B R



|ω||f|n−2 2n

n −2 n

≤ CS



B R

|φ| n

2

n 

B R

ω |f 2

+



B R

|H|2|ω|2f2

≤ CS



B R

|φ| n

2

n

(1 + α)



B R

f2 ω | 2

+

α



B R

|∇f|2|ω|2





B R

|φ| n

2

n 

B R

Inthecasek = 0, weneedanadditionalestimate.Usingthemonotonicityofthefirsteigenvalueλ1(B R) of

λ1(M ) ≤ λ1(B R)



B R |∇f|2



λ1(M )



B R

|ω|2f2≤ (1 + α)

B R

f2 ω |2

+

α



B R

A



B R

f2 ω | 2+ B



B R

|H|2|ω|2f2≤ C



B R

A = n

n − 1 − α −



k2(n − 1)

λ1(M ) + C S



B R

|φ| n

2

n

n − 2



n(n − 1) + n − 1

n



(1 + α)

B = n − 1

n2 − n − 2

2n2



n(n − 1)β − CS



B R

|φ| n

2

n

n − 2



n(n − 1) + n − 1

n

C = 1

α+



k2(n − 1)

λ1(M ) + C S



B R

|φ| n

2

n

n − 2



n(n − 1) + n − 1

n



α

.

β + CS φ2

n

1

we see that B > 0 for any β > 0. Take β = √

Trang 15

Now lettingR → ∞ in theinequality(4.7), weobtain|∇|ω|| ≡ 0 and |H||ω| ≡ 0. Since|∇|ω|| ≡ 0, we get|ω| ≡ constant.Supposethat|ω| isanonzeroconstant.Fromthefactthat|H||ω| ≡ 0,itfollowsthatM

spaceRN If the traceless second fundamental form φ satisfies

φn <

 1

n(n − 1)CS , then there is no nontrivial L2 harmonic 1-form on M

simply-connected Riemannian manifold N with sectional curvature KN satisfying that −k2 ≤ KN ≤ 0 for some constant k = 0 If

φn <

 1

n(n − 1)CS and

λ1(M ) > 2n

2(n − 1)2k2

n3− n2+ 3n − 4 , then there is no nontrivial L2 harmonic 1-form on M

ofM andthecurvature oftheambientspace,whichisdifferentfrom [2]

Acknowledgments

(NRF-2013R1A1A1A05006277)

Trang 16

[1] G Carron,L2 -cohomologie et inegalites de Sobolev, Math Ann 314 (4) (1999) 613–639.

[2] M.P Cavalcante, H Mirandola, F Vitório,L2 harmonic 1-forms on submanifolds with finite total curvature, J Geom Anal 24 (1) (2014) 205–222.

[3] T.H Colding, W.P Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold II Multi-valued graphs in disks, Ann of Math 160 (2004) 69–92.

[4] M do Carmo, C.K Peng, Stable complete minimal surfaces in R 3 are planes, Bull Amer Math Soc (N.S.) 1 (1979) 903–906.

[5] M do Carmo, C.K Peng, Stable complete minimal hypersurfaces, in: Proc Beijing Symp Differential Equations and Differential Geometry, vol 3, 1980, pp 1349–1358.

[6] N.T Dung, K Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann Global Anal Geom 41 (4) (2012) 447–460.

[7] D Fischer-Colbrie, R Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm Pure Appl Math 33 (1980) 199–211.

[8] H.P Fu, The structure ofδ-stableminimal hypersurface in Rn+1, Hokkaido Math J 40 (2011) 103–110.

[9] H.P Fu, Z.Q Li,L2 harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math J 32 (3) (2009) 432–441 [10] H.P Fu, D.Y Yang, Vanishing theorems on complete manifolds with weighted Poincaré inequality and applications, Nagoya Math J 206 (2012) 25–37.

[11] A Grigor’yan, On the existence of a Green function on a manifold, Uspekhi Mat Nauk 38 (1) (1983) 161–162 (in Russian); Engl transl in Russian Math Surveys 38 (1) (1983) 190–191.

[12] A Grigor’yan, On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds, Mat.

Sb 128 (3) (1985) 354–363 (in Russian); Engl transl in Math USSR Sb 56 (1987) 349–358.

[13] D Hoffman, J Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm Pure Appl Math 27 (1974) 715–727.

[14] L Karp, Subharmonic functions, harmonic mappings and isometric immersions, in: S.T Yau (Ed.), Seminar on Differential Geometry, in: Ann of Math Stud., vol 102, Princeton University Press, Princeton, 1982.

[15] S Kawai, Operator Δ− aK onsurfaces, Hokkaido Math J 17 (2) (1988) 147–150.

[16] J.J Kim, G Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature andL2

harmonic forms, Arch Math (Basel) 100 (2013) 369–380.

[17] P.F Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc Amer Math Soc 114 (1992) 1051–1063.

[18] Y.W Li, X.W Xu, J.R Zhou, The complete hypersurfaces with zero scalar curvature in Rn+1, Ann Global Anal Geom.

44 (4) (2013) 401–416, http://dx.doi.org/10.1007/s10455-013-9373-1

[19] W.H Meeks III, J Perez, A Ros, Liouville-type properties for embedded minimal surfaces, Comm Anal Geom 14 (4) (2006) 703–723.

[20] R Miyaoka,L2 harmonic 1-forms on a complete stable minimal hypersurface, Geom Global Anal (1993) 289–293 [21] L Ni, Gap theorems for minimal submanifolds in Rn+1, Comm Anal Geom 9 (3) (2001) 641–656.

[22] B Palmer, Stability of minimal hypersurfaces, Comment Math Helv 66 (1991) 185–188.

[23] K Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai Math J 31 (1) (2008) 113–119 [24] K Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch Math (Basel) 94 (2) (2010) 173–181.

[25] K Seo,L2 harmonic 1-forms on minimal submanifolds in hyperbolic space, J Math Anal Appl 371 (2) (2010) 546–551 [26] Y Shen, X Zhu, On stable complete minimal hypersurfaces in Rn+1, Amer J Math 120 (1998) 103–116.

[27] L.F Tam, D Zhou, Stability properties for the higher dimensional catenoid in Rn+1, Proc Amer Math Soc 137 (10) (2009) 3451–3461.

[28] N.T Varopoulos, Potential theory and diffusion of Riemannian manifolds, in: Conference on Harmonic Analysis in Honor

of Antoni Zygmund, vols I, II, in: Wadsworth Math Ser., Wadsworth, Belmont, CA, 1983, pp 821–837.

[29] X Wang, On conformally compact Einstein manifolds, Math Res Lett 8 (5–6) (2001) 671–688.

[30] Q Wang, On minimal submanifolds in an Euclidean space, Math Nachr 261/262 (2003) 176–180.

[31] S.T Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ Math J 25 (1976) 659–670.

[32] G Yun, Total scalar curvature andL2 harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom Dedicata

89 (2002) 135–141.

... Miyaoka,L2 harmonic 1-forms on a complete stable minimal hypersurface, Geom Global Anal (1993) 289–293 [21] L Ni, Gap theorems for minimal submanifolds in Rn+1,... Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature andL2

harmonic forms, Arch Math (Basel)...

[29] X Wang, On conformally compact Einstein manifolds, Math Res Lett (5–6) (2001) 671–688.

[30] Q Wang, On minimal submanifolds in an Euclidean space, Math Nachr

Ngày đăng: 14/10/2015, 08:43

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w