1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 3 trang 18 sách sgk giải tích 12

1 1,4K 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 4,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chứng minh rằng Bài 3. Chứng minh rằng hàm số  không có đạo hàm tại x = 0 nhưng vẫn đạt cực tiểu tại điểm đó. Hướng dẫn giải: Đặt . Giả sử x > 0, ta có : Do đó hàm số không có đạo hàm tại x = 0 . Tuy nhiên hàm số đạt cực tiểu tại x = 0 vì . >>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học.

Trang 1

Chứng minh rằng

Bài 3 Chứng minh rằng hàm số không có đạo hàm tại x = 0 nhưng vẫn đạt cực tiểu tại điểm đó

Hướng dẫn giải:

Đặt Giả sử x > 0, ta có :

Do đó hàm số không có đạo hàm tại x = 0 Tuy nhiên hàm số đạt cực tiểu tại x = 0 vì

>>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học

Ngày đăng: 09/10/2015, 03:07

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w