Growth of carbon nanotubes over nonmetallic based catalysts. Phát triển các ống nano carbon trên chất xúc tác phi kim loại. Growth of carbon nanotubes over nonmetallic based catalysts. Phát triển các ống nano carbon trên chất xúc tác phi kim loại.Growth of carbon nanotubes over nonmetallic based catalysts. Phát triển các ống nano carbon trên chất xúc tác phi kim loại.
Trang 1Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Catalysis Today xxx (2012) xxx– xxx
ContentslistsavailableatSciVerseScienceDirect
Catalysis Today
j o ur na l ho me p a g e :w w w e l s e v i e r c o m / l o c a t e / c a t t o d
Review
Lling-Lling Tana, Wee-Jun Onga, Siang-Piao Chaia,∗, Abdul Rahman Mohamedb
a Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia
b School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
a r t i c l e i n f o
Article history:
Received 16 July 2012
Received in revised form 1 October 2012
Accepted 17 October 2012
Available online xxx
Keywords:
Metal-free-catalyst
Carbon nanotubes
Nanoparticles
Chemical vapor deposition
Methane decomposition
Catalyst preparation
a b s t r a c t
Theconventionalmethodtosynthesizecarbonnanotubes(CNTs)requirestheuseofmetalliccatalysts However,themetallicparticleimpuritiesusuallycontaminatetheCNTs,andaredifficulttoremove with-outintroducingdefectsandcontaminations.AnalternativeandmoredesirableapproachistogrowCNTs directlyonasubstratewithoutfurthertreatmentbeingrequired.Thereviewpresentsanddiscussesthe currentdevelopmentofthecontrolledsynthesisofSWCNTsand/orMWCNTsusingnon-metallic cata-lysts,whichcomprisesofvariousceramicsandsemiconductorsascatalyticparticles.All-carbonsystems forCNTgrowthwithoutemployinganycatalystsarealsodiscussed.Despitetheenormousstridesinthe synthesisofCNTs,thepreciseatomisticmechanismexplainingtheirnucleationandgrowthstillremains unclear.Therefore,thedifferentgrowthsystemsproposedbyseveralauthorsarealsoexaminedinthis article.Thereviewconcludeswithasummaryandanoutlookonthechallengesandfuturedirectionsin themetal-free-catalystgrowthofCNTs
© 2012 Elsevier B.V All rights reserved
Contents
1 Introduction 00
2 Generalbackgroundonthemetal-freecatalystgrowthofCNTs 00
3 Non-metalliccatalysts 00
3.1 Semiconductor–catalystsystems 00
3.2 Nanoparticulateoxidecatalysts 00
3.3 Othercatalystsystems 00
4 Controllingthelength,diameterandchiralityofCNTsovernon-metalliccatalysts 00
5 Growthmechanismdiscussion 00
6 Summaryandoutlook 00
Acknowledgement 00
References 00
1 Introduction
Tubularformofcarbonproductsknownascarbonfilamentswas
firstobservedusingelectronmicroscopesaround1950[1].Since
theobservationanddetailedstructuralstudyofcarbonnanotubes
(CNTs)byIijimaoftheNECCorporationin1991[2],CNTshave
stimulatedextensiveresearchactivitiesinmostareasofscience
andengineeringdue totheirextraordinaryphysicaland
chemi-calproperties,includinghighmechanicalstrength,highelectron
∗ Corresponding author Tel.: +60 355146234.
E-mail address: chai.siang.piao@monash.edu (S.-P Chai).
conductivityandsuperiorsurfaceproperty.In1991,Iijimainitially observedonlymulti-walledcarbonnanotubes(MWCNTs)grown
in an arc discharge process, and it wasnot until 2 years later whensingle-walledcarbonnanotubes(SWCNTs)withdiameters between1.1and1.3nmweresynthesizedusinglaserablation[3,4]
In1996,Smalley’sgroupsuccessfullyproducedbundlesofSWCNTs forthefirsttime[5]
Currently, thevast majority of researchis beingcarried out
onSWCNTs,astheyareknowntopossessremarkableelectronic and mechanical properties Theyrepresent theultimatecarbon fiber,withthehighestthermalconductivityandthehighest ten-silestrengthofanymaterial[6,7].Hugeeffortshavebeenspent
bytheinternationalscientificcommunityinordertostudytheir
0920-5861/$ – see front matter © 2012 Elsevier B.V All rights reserved.
http://dx.doi.org/10.1016/j.cattod.2012.10.023
Trang 2Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
applicationinfieldsincludingmedicine[8–10],catalystsupport
for electrode of fuel cells [11,12], high-performance adsorbent
[13–15],fieldemitterforfield-emissiondisplay[16,17],electrode
materialforenergystoragedevice[18,19]andsoon
ThethreemajortechniquesforthefabricationofCNTsarearc
discharge[3],laserablation[20]andchemical vapordeposition
(CVD)[21,22].Amongthesetechniques,CVDshowsobvious
advan-tagesforthegrowthofCNTsintermsoflowgrowthtemperature,
goodcontrollabilityandeasinessofscalingup,atarelativelylow
cost.ItispossibletocontrolthegrowthandthestructureofCNTsby
adjustingreactionparameterssuchasgrowthtemperature,carbon
source,andcatalystconcentration[23].Thegrowthprocess
typ-icallyrequirestheassistanceofmetalliccatalysts,predominantly
3dvalencetransitionmetalnanoparticles(Fe, Coand Ni)inthe
decompositionprocessofhydrocarbonsduetohighsolubilityand
diffusionrateofcarbonathightemperatures.Generally,for
sup-portedmetalcatalysts,therearetwo proposedmechanismsfor
thegrowthofCNTs,namelytip-growthandbase-growthmodel,
bothofwhicharebasedonthevapor–liquid–solid(VLS)theory
describedbyBakerandco-workers[24,25].Initially,itwasbelieved
thattheapplicationofthesecarbide-formingmetalsis
indispens-ableforthegrowthofCNTs.However,recentexperimental[26,27]
andtheoretical[28]studiesdemonstratedthatthechiralitiesof
theSWCNTsproducedcouldbecontrolledtosomeextentbythe
selectionofcatalysts.Sincethen,manyothermetallicspeciessuch
asAu,Ag,Cu,Pd, andRh have beenreportedtoyieldSWCNTs
[29,30].Despitetheseadvancements,themetalspeciesremaining
in theCNTsamples would resultin major drawbacksfor their
intrinsic property characterization.Due to thechemical, redox,
andmagneticpropertiesofthemetalnanoparticles,interference
withthecorrespondingtubepropertiescannotbeavoided[31,32]
TheperformanceofCNT-basedmaterialsascatalystsupportand
itsapplicationinmolecularelectronics,biology,andmedicineare
alsoobscuredbythepresenceofmetalcatalystparticles[33,34].In
semiconductorelectronicsfabrication(CMOS)processes,the
adap-tationofCNTsontoelectronicsubstrateswillresultindetrimental
incompatibilityissuesduetothepresenceofmetalparticle
impu-rities.Thetoxicityand effectsofmetalnanoparticlesonhuman
healthhavehinderedtheuseofCNTsinbiologyanddrug
deliv-eryapplications.Furthermore,inmanycases,thecatalystparticles
arecoveredbyacarbonshell,whichpresentsadditionalproblems
forthenon-destructivepurificationoftheCNTse.g.bytreatment
withnon-oxidizingacids[35].Ithasbeenuntilnowanintractable
problemincompletelyeliminatingmetalcatalystsfromCNT
sam-pleswithoutintroducingdefectsandcontaminations.Overthepast
5years,many non-metallicspecies havebeenreportedtohave
theabilitytocatalyzeCNTgrowthunderspecificconditions.The
listencompassesvariousceramics(e.g.Al2O3 andZrO2)[36,37]
and semiconductors(e.g.Si, SiC and Ge)[38–40].The fact that
CNTscanbegrownovernon-metalliccatalystsisamajor
break-throughinnanotechnology.ThegrowthofCNTsovernon-metallic
catalystswillplayveryimportantrolesinfacilitatingthe
applica-tionsofCNTmaterialsinthefieldofnanoelectronics,photonics,
biomedicine,membranetechnologyand soforth In addition,it
enablessimplerpurificationtechniquesandmitigatestoxicity
con-cerns.Membrane-andCNT-nanofluidics-basedresearchcanalso
benefitfromthenon-metallicCNTsinbypassingoneormore
man-ufacturingsteps,thusleadingtolowercosts
Comprehensivereviewsontheproductionandgrowth
mech-anismofCNTshavebeenpublished[41–49].Thegrowthprocess
andmechanismformetalliccatalystshavebeenadequately
dis-cussed[42],whereasaclearmechanismisstillbeingsoughtforthe
properunderstandingofCNTgrowthovernon-metalliccatalysts
Asopposetometalliccatalysts,thesynthesisofCNTsoverthe
non-metalliccatalystsstillsuffersfromlowyield,makingitunattractive
formassproductionatthemoment.Nevertheless,sinceanumber
ofimportantfindingshavebeenreportedonthegrowthofCNTs overnon-metalliccatalysts,webelievethatareviewonthis sub-jectistimelytopromotelatestdevelopmentsinthisinteresting areaofresearchtoshedadifferentlightonpreviousexperiments Thereviewbeginswithanoverviewofthenon-metalliccatalyst growthofCNTs,followedbyanin-depthanalysisofCNTgrowth basedonsemiconductors,ceramics,all-carbonsystems,andother newuncommoncatalysts.Thedifferentgrowthmechanisms, par-ticularlyonthegraphitizationofsilica,arealsoexaminedinthis article.Finally,wewillpresentasummaryofchallengesandfuture directionsforinvestigation
2 General background on the metal-free catalyst growth of CNTs
Usingmetallic catalystshaslongbeenconsidered indispens-ableforthenucleationand growthofCNTs.Onlyveryrecently, severalgroupshave demonstratedthepossibilitytogrowCNTs fromceramic[36,37],semiconducting[38–40,50–53],and nano-sizeddiamondparticles[54],allofwhichwereconsideredinactive
inthegrowthofCNTsinthepast.Moreinterestingly,denseCNTs werealsodemonstratedtogrowonporouscarbonsubstrates with-outemployinganycatalysts[55,56].Thesefindingsclearlyshow thatthedecompositionofhydrocarbonsandCNTproductionare notboundtothefunctionsofmetallicparticles.Instead,Takagietal [38]proposedthattheessentialroleofcatalystsistoprovidea tem-plateforcapformation.ItshouldbenotedthatthegrowthofCNTs overthesenewlyfoundspeciesdoesnotalwayshappen.The tem-plateforCNTnucleationrequiresthepresenceofporousstructures
ornanoparticleswiththeappropriatediameterandtheright cur-vature.Itissaidthatthenano-scalecurvaturesprovideaplatform
onwhichcarbonatomscanformahemisphericalcap,whereCNTs aregrowninaself-assembledfunction[36,38,57]
TherearefourfactorsforthegrowthofCNTs:(1)thecatalystsize [29],(2)thecatalyst/substratepretreatment[38],(3)thegrowth temperature[58]and(4)theroleofwater[59].Thesolubilityof carbonincatalystparticlesandtheprecipitationratesofcarbon fromcatalystparticlesbothshowgreatdependenceonthe cata-lystsize.Whenthesizeofparticlesisbelow10nm,thequantum sizeeffectsgreatlyinfluencethepropertiesofthecatalyst parti-cles[60,61].ThesynthesisofSWCNTsgenerallyrequirescatalyst particleswithseveralnanometersindiameters,preferably3nm
orless.Withanincreaseinparticlesize,thenumberofwallsand diametersofthenanotubeswouldincrease.Interestingly,SWCNTs havebeenreportedtogrowonlargeAl2O3particles,rangingfrom severaltensofnanometertohundredsofnanometers[36] Scan-ningelectronmicroscopy(SEM)imagesrevealedthattheSWCNTs weregrownonnano-sizedprotrusions,onceagainindicatingthe importanceofnano-scalecurvaturesinthenucleationand subse-quentgrowthofCNTs.ThesecondfactorforthegrowthofCNTs
isthepretreatmentofthecatalyst/substrate.Itwasreportedthat preheatingtheparticlesinairat950–1000◦Cnotonlyincreases theyieldofSWCNTs,butalsoimprovestheactivityofthecatalyst particlesandremoveshydrocarboncontaminantsontheparticles [58,62].Ontheotherhand,itisnotedthattheannealingduration (from1to60min)inairhadnosignificanteffectonthegrowthof CNTs.ThisdirectlyimpliedthatpretreatmentofSiO2substratesin airwasmerelyaimedtocleanthesubstratesurface[58]
Thegrowthtemperature isalsoconsideredtobeone ofthe essential factors which affects the growth of CNTs Liu et al [58] investigatedthe effectof growthtemperature from800◦C
to 900◦C on the yield of SWCNTs grown on a SiO2 substrate Theyreportedthata hightemperatureof850◦C wasimportant
toinducethepyrolysisofethanol.However,whenthe tempera-tureincreasedabove900◦C,ahigherthermaldecompositionrate
Trang 3Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
ofcarbonsourcewouldtakeplace,leadingtothecoverageof
sub-stratesbyathickencapsulatedcarbonlayerinashortresidence
time,resultinginnoCNTgrowth.Asimilartrendofresultswas
reportedinthestudybyXuetal.[59].Theystudiedthetemperature
dependenceoftheCNTgrowthrangingfrom750◦Cto950◦Con
silicananoparticlessynthesizedfromthethermaldecomposition
ofPSS-(2-(trans-3,4-Cyclohexanediol)ethyl)-Heptaisobutyl
substi-tuted(POSS) Apparently,noCNTscouldbeproducedwhenthe
growthtemperaturewastoolow(at750◦C)ortoohigh(at950◦C)
Theyclaimedthatwhenthetemperaturewasincreasedfrom850◦C
to900◦C,theCNTcontentdecreaseddrasticallyfrom47%to20.3%
duetomuchmoreaggregationofSiO2particles.Veryrecently,Xu
etal.[59]demonstratedtheeffectofintroducingwaterinthe
syn-thesisofCNTsonsilicananoparticles.Theyfoundthatwaterplays
acleansingrolebyremovingamorphouscarbonandalsoplaysan
indirectroleinpromotingCNTgrowth.Thisobservationissimilar
tothatreportedinthepreviousstudiesonthegrowthofCNTsover
metalcatalystparticles[63,64].Theystudiedtheinfluenceofwater
contentfrom0to10vol%.Theresultsshowedthatintheabsenceof
water,CNTswithsomeamorphouscarbonwereobservedwhereas
muchlessamorphouscarbonwith2%water.However,by
increas-ingthewatercontentfrom2%to5%and10%,respectively,much
lessCNTswereobtained
Mostrecently,Liuetal.[65]reportedthatthechemical
composi-tionofthecatalystparticlesisanothercrucialfactorforthegrowth
ofSWCNTs,inadditiontothewell-knowncatalystsizeeffect.In
thepaper,theauthorsstudiedtheCVDgrowthofSWCNTsfrom
SiOxandSinanoparticles.Atomicforcemicroscopy(AFM)andSEM
imagesshowedthegrowthofdenseSWCNTsonSiOxnanoparticles
whilenoCNTswereobservedonSinanoparticles.Density
func-tionaltheory(DFT) calculationshavealsoindicatedthat oxygen
atomscanimprovethecaptureofcarbon-bearingmolecules.This
indicatesthatoxygenmayplayanimportantroleinpromotingthe
formationofgraphiticcarbonstructuresandfacilitatingthegrowth
ofSWCNTsonoxygen-containingSiOxnanoparticles[65]
3 Non-metallic catalysts
3.1 Semiconductor–catalystsystems
Thenon-metallicsynthesisofCNTswasdemonstratedforthe
firsttimein1997,inwhichafilmofwell-orientedCNTswere
pro-ducedbythesublimationdecompositionofSiCnanoparticlesat
hightemperatures(>1700◦C)[66].However,thesuccessof
tran-sitionmetal-basedcatalystsandthelargenumberofresearchers
workingonCVDatthattimeleftthisworklargelyignored.With
therecentdevelopmentsinnovelcatalysts,interestintheuseof
non-metalliccatalystsforCNTgrowthisgraduallyrising.Oneofthe
mostwidelyusedcatalystsinthesynthesisofCNTsisSiC.Growth
ofCNTsusingthiscatalystcanbeachievedbyannealingSiC
parti-cles[38,53,66],amorphousSiCfilms[52],orhexagonalSiC(6H-SiC)
[67]invacuum.Kusunokietal.[68]demonstratedthatunderlow
vacuumconditions,SiCoxidizesaccordingtothefollowingprocess:
TheoxidationofSiCresultsintheformationofinitialnucleation
caps,whichthenenablethesubsequentconstructionofCNTs
How-ever,themechanismbehindtheirformationstillremainsunclear
Severalgroupsclaimed that theformationof thenanocaps
fol-lowedthetransformation processof graphenelayers[69,70]or
amorphouscarbonclusters[71],whileothersarguedthattheir
for-mationisaresultofconvexstructuresontheSiCsurface[72–75]
Mostrecently,Wanget al.[51] suggested theformationof SiO
nanoclustersattheC/SiCinterface.Theauthorsclaimedthatthe
possible roles of these nanoclusters may be twofold.First, the
curvatureofthemoltenSiOnanoclustersprovidesaplatformfor graphene lifting, thus leading to the formation of hemispheri-cal carbon nanocaps and subsequent CNT growth Second, the coordination-unsaturatedSi speciesin thenanoclusterspresent highactivityfortheincorporationofcarbonatoms,andfacilitate theattachmentofcarbonatomstothetubeedges
InadditiontoSiC,theuseofGecatalystsinthesynthesisofCNTs hasalsobeenextensivelyresearched[40,76].Thepioneeringwork
byUchinoetal.[76]employedcarbon-dopedSiGeislandsonSi substratestosynthesizeCNTsinCH4-CVD.Theauthorssuggested thatthegrowthofCNTsoccurredfromGeclusters,which were producedfollowingthechemicaloxidation andannealing treat-mentoftheSiGelayers.SinceSihasthegreaterthermodynamic tendencytobeoxidizedascomparedtoGe,theoxidation treat-mentresultsintheformationofSiO2and thesegregationofGe clusters.Theseclustersthenserveascatalystsforthegrowthof CNTs.OthergrowthtechniquesassociatedwiththeuseofGe cata-lystsincludethosewhicharebasedonGeStranksi–Krastanowdots,
Genanoparticlesformedbyionimplantation[77]andcolloidalGe nanoparticles[78,79]
Takagietal.[38]alsodemonstratedtheproductionofCNTsover semiconductornanoparticlesSi,GeandSiCinethanol-CVD Single-walledordouble-walledCNTs,withdiameterslessthan5nmwere produced.TheCNTyieldfromGenanoparticleswasfoundtobe higherthanthoseofSiandSiC.SincethemeltingpointofGeis knowntobelowercomparedtoSiandSiC,itisplausiblethattheGe nanoparticlesareinmoltenstateduringthegrowthprocess,thus contributingtothehigherCNTyield.Despitetheadvancements madeinthedevelopmentofthesenon-metalliccatalysts,theyield wasstillmuchlowercomparedtothe3dvalencetransitionmetals
ofFe,NiandCo SinceSi,Ge andSiCshouldhave littleactivity
inthisprocess,ahighergrowthtemperaturewouldbenecessary
toinducethepyrolysisofthecarbonsource.Anotherfactorthat mightcontributetothedeviationinCNTyieldisthephaseofthe nanoparticles(solidorliquid)becauseitrelatestotheprecipitation mechanismofcarbonatomsonitssurface.Othersemiconductor catalyststhathavebeenreportedinliteratureincludeZnO[80], TiO2[81]andTe[82].Thesefindingsprovidemoreinsightsinto theactualroleofcatalystsandarehelpfulforunderstandingthe mechanismbehindthegrowthofCNTs
3.2 Nanoparticulateoxidecatalysts
In catalyst-supported CVD,pureoxides such asSiO2,Al2O3, TiO2,ZrO2 andMgOarebasicallyemployedasphysicalsupports forthecatalysts.However,recentexperimentalstudiesrevealed thatoxideshavetheabilitytogrowgraphiticsheetsundertypical CVDconditionsforCNTgrowth[83,84].Rümmelietal.[83] demon-stratedthatdifficult-to-reducenanoparticleoxidesareextremely effectiveinpromotingorderedcarbon(graphene)growth.In con-trast,nocarbonformationwasreportedonbulk/filmsamples.The authorsattributedthisdifferencetothepresenceofsurfacedefect sitesonthenanoparticleoxides,andproposedthattheinterface betweenthecatalystparticleandthesubstratebehavesasa cir-culardefectsite wherenanotubegrowthcantakeplace.Huang
etal.[81]reportedthatmanyoxidenanoparticlesincludingSiO2,
Al2O3,Er2O3andalllanthanideoxidesexceptpromethiumoxide areactiveforthegrowthofSWCNTs
Amongthenanoparticleoxidesreportedinliterature,theuseof SiO2asacatalystforCNTandgrapheneproductionisofparticular interestduetotheirpotentialapplicationsinsilicon-based technol-ogy[85].Todate,differentapproachestoSiO2catalystpreparation havebeenreported.In2009,Liuetal.[86]reportedthata 30-nm-thickSiO2filmdepositedontoaSi/SiO2wafercoulddirectlyserve
asasubstrateforSWCNTgrowthinaCH4-CVDprocessat900◦C
A dense and large-area of uniform SWCNTswere reproducibly
Trang 4Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Fig 1.SEM images of the SWCNTs grown on Si/SiO 2 wafer: (a) overview of the cross pattern, (b and c) enlarged images of the blue square area in image (a) Reprinted with permission from [86] (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
Copyright (2009) American Chemical Society.
obtainedonthesubstratesurface,indicatingtheeffectivenessof
thesynthesisapproach.Thesamegroupofresearchersalso
devel-oped a facile “scratching” methodfor the patterned growth of
SWCNTs,inwhichaSi/SiO2waferwasscratchedusinganotherone
withasharptiptoobtainadesiredpattern,beforebeingsubjected
toCH4-CVD.FromSEMobservations(Fig.1 CNTscanbefound
onscratchedareasbutnotonnanoscopicallysmoothsurfaces.It
issaidthatthe“scratching”betweenthetwowaferswillcrackthe
thermallygrownSiO2layerandconsequentlygeneratesomeactive
sitesforthegrowthofSWCNTs.Alongthesamelines,Huangetal
[81]scratchedacleanSi/SiO2waferwithadiamondbladewithout
puttinganycatalystonthesurface.SWCNTswithanarrow
diam-eterdistributionrangingfrom0.8to1.4nmwereobserved.This
indicatesthatonlySiO2 withanappropriatecatalystsizeofless
than2nmisactiveforSWCNTgrowth.Thepresenceofoxidized
SiwasconfirmedbytheXPSanalysisattherichregionof
SWC-NTs.The“scratching”approachisbothsimpleandcheap,without
requiringtheneedforcomplexpatterningprocesstogrowSWCNTs
atapredefinedpositionfordevicefabrication.However,sincethe
structureofthesenanoparticlesfluctuate,itisdifficulttoprecisely
controlthestructureoftheas-grownCNTs
Inadditiontothe“scratching”approach,awetchemical
etch-ingprocesshasalsobeenreportedtogenerateSiO2nanoparticles
[81,87].Huangetal.[81]etchedaSi/SiO2waferwithanaqueous
solutionofHF,followedbythermallyannealingitinairat1000◦C
for1h.AcirculartracewasformedontheSiwaferafterdryingas
showninFig.2a.ItwasproposedthatHFdissolvestheSiO2layer
whichishydrophilicandtheaqueoussolutionshrinksontothe
bot-tomSilayerwhichishydrophobic.PartsoftheSiO2aresaidtobe
dissolved,leavingsmallSiO2particlesinthewaterdropontheSi
wafer.Theseparticlesthenserveasnucleationsitesforthegrowth
ofCNTsinthesubsequentCVDprocess.BasedonSEMobservations,
highlydenserandomSWCNTscanbeobservedaroundthecircular
trace(Fig.2 andc)whilecarbonfilamentorMWCNTsareobserved
insidethecircle(Fig.2d)
Thereare otherreportsontheuseofSiO2 catalystsforCNT
growth.Mostrecently,Xuetal.[59]demonstratedthefirst
exam-pleoftheuseofSiO2nanoparticlesforthecontinuoussynthesis
ofMWCNTsbyalcohol-CVD.Inanotherpaper,Liuetal.[58]
suc-cessfullysynthesizeddenseSWCNTsbysimplyannealingtheSiO2
substratesinH2athightemperatures(950–1000◦C)beforeCVD
Theauthorsproposedthattheannealingtreatmentathigh
tem-peraturelocallyevaporatesSiO2substratesurfacesresultinginthe
formationofdefectsonthesurfaces.Thesedefectsprovide
nuclea-tionsitesfortheproductionofcarbonnanoparticles,andassistthe
formationofcarbonnanocaps,thusresultinginthegrowthof
SWC-NTs.ThegrowthmechanismofCNTsoverSiO2nanoparticleshas
yettobeclarified.SomearguethatSiO2undergoescarbothermal
reductiontoSiC,whileothersclaimthatitremainsstable
through-outthegrowthprocess.Anindepthanalysisofthegraphitization
mechanismofSiO2catalystsispresentedinSection5
Inthepast,Al2O3 ceramicnanoparticleswereregardedasan inactive catalyst inthe growthof CNTs andwere only usedas
abufferlayertodispersemetalliccatalystparticlesandenhance theircatalyticpropertiesinCNTgrowth[88].However,inarecent studybyLiuetal.[36],denseSWCNTlayerscatalyzedbyAl2O3 nanoparticlesweresuccessfullygrownusinganalcohol-CVD.The morphologiesofAl2O3 particleswerefoundtobedifferent com-paredtometalliccatalystparticlessuchasFe,CoandNi,whichare typicallysphericalorsemi-sphericalwithasmoothsurface.The authorsindicatethattheAl2O3particlesarelikelytobeinsolid stateduringtheCNTgrowthprocess.Thissignifiesthatagrowth modelotherthanthetraditionalVLSmechanismmustbeinvolved forthesesolidcatalysts.Theresearchalsoindicatesthe possibil-ity of growinglarge area“catalyst-free” SWCNTs onflat Al2O3 substratesby simply manipulating the nanostructureson their surfaces
Steineretal.[37]successfullysynthesizedbothSWCNTsand MWCNTsonZrO2nanoparticlesbythermalCVD.ZrO2offers sev-eraladvantagesasacatalystforCNTgrowthduetoitsnonmagnetic nature,makingit aninterestingpossiblecatalyst forelectronics application.TheauthorsdemonstratedthatsolidZrO2 nanoparti-clesareactivecatalysts,andneitherreducetoZrnorcarbonizeinto ZrCduringthegrowthprocess.Thisobservationissubstantiatedby theunderstandingofZrO2chemistryathightemperaturesin liter-ature.ZrO2isknowntonotbereducedbyH2,evenattemperatures
of1500◦Candhigher[89].Sincethistemperatureismuchhigher thanthegrowthtemperatureusedinthestudy,reductionofZrO2
toZrorZrCishighlyunlikely
BothAl2O3andZrO2possesshighmeltingpoints(>2000◦C)in theirbulkform.Hence,itisunlikelythattheywouldbeinmolten stateduringtheentiregrowthprocess,evenafterfactoringin par-ticlesizeeffects.Moreover,giventhelowcarbondiffusivityinbulk ZrO2andAl2O3,thesuccessfulgrowthofCNTsissuggestivetooccur viaasurface-bornemechanismwhichwillbediscussedindetailin Section5
3.3 Othercatalystsystems
In2009,Takagietal.[54]demonstratedthatnanosizeddiamond particles(4–5nm)actedasCNTgrowthnucleieffectivelyinCVD Interestingly,thediamondnanoparticlesdidnot fusewitheach other,evenwhenagglomeratedparticles wereusedin theCVD process.Particledensitywasenhancedduetothenon-fusion char-acteristicofnanodiamondparticles.Thefindingssuggestthatthe growthofCNTsoccurredfromsolidcarbonnanoparticles Further-more,sincebulkdiffusionofcarbonintonanodiamondparticlesis unlikely,thesurfaceofthediamondmustplayanimportantrole
inthesynthesisofCNTs,inwhichitprovidesatemplateforthe formationofCNTcaps
Inrecentyears,abroadarrayofgrowthroutesusingpure car-bonsystemswithoutanyadditionofcatalystparticleshasbeen
Trang 5Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Fig 2. SEM images of CNTs grown on HF-treated Si/SiO 2 wafer: (a) overview of the circular trace, (b) indicated area B in image (a), (c) high magnification of image (b) and (d) inner area of the circle.
Reprinted with permission from [81] Copyright (2009) American Chemical Society.
developed.ThegrowthofCNTsongraphiticsurfaceshasbeen
suc-cessfullydemonstratedinvariousworksbyLinetal.[55,56].The
authorsemployedcarbonblack,flakegraphitepowderandhighly
orientedpyrolyticgraphiteas substratestogrowCNTsby CVD
Previousstudiesindicatethatdanglingstructuresofcarbonshave
thecatalyticability todecomposehydrocarbons[90,91].Hence,
the defective sites present on the substrateswill result in the
decompositionofthecarbonfeedstockandleadtothesubsequent
formationofamorphousnanobumps,asshowninFig.3.Oncethese
nanobumpshaveformed,whetherfromalift-offprocessor
self-assemblymechanism,thegrowthofCNTscanoccur.However,two
majordisadvantagesstillneedtobeovercomebeforecatalyst-free
CNTgrowthcanbeemployedinmacroscopicapplications:the
sig-nificantlylow synthesisyieldand thehighgrowthtemperature
required.Twoof thesefactorsareunattractiveforscalingupto
massproduction
Recentdevelopmentsinnanomaterialsynthesisand
character-izationhavebroughtupmanynewcatalystsfortheproduction
ofCNTs.Apartfromthenon-metalliccatalystsmentionedabove,
mostrecently,calciumsilicate,CaSiO3wasshowntohavethe
abil-itytocatalyzeCNTgrowthonapyrolyticgraphitepapertape[92]
Theauthorsproposedthattheroleofsilicateissimilartothatofa
transitionmetalandisbasedonthesolubilityofthecarboninthe
silicate.Theelectronenergylossspectra(EELS)alsorevealedthat
thecarbonsurroundingthecatalystismoreamorphousthanthat
inthetube,whichsupportsthesolidstatetransformationof
car-bon[92].RecentreportsonthegrowthofCNTsovernon-metallic
catalystsaresummarizedinTable1
4 Controlling the length, diameter and chirality of CNTs
over non-metallic catalysts
AlmostallcurrentlyavailabletechnologiesforCNTfabrication
canonlyproducemixturesofCNTswitharangeof(n,m)indices
[48].ThisposesahugelimitationfortheapplicationofCNTs.Hence,
thegrowthofCNTswithwell-controlledstructuresishighly
desir-ableforbothfundamentalresearchandpracticalapplications[44]
Liuetal.[95]reportedthedirectlength-sortedgrowthof SWC-NTsusingSiO2nanoparticles.TheauthorsfoundthatSiO2catalyzed grownSWCNTshaveanextremelylowgrowthvelocityof8.3nm/s, whichisabout300timesslowerthanthatofthecommonlyusedCo catalystforSWCNTgrowthatthesamereactioncondition.Theslow growth velocity allowsdirect length-sortedgrowth of SWCNTs withaveragelengthsof149,342and483nmbysimplyadjusting thegrowthdurationscorrespondingly[95].Owingtotheirfinite lengtheffect,theshortSWCNTsarebelieved todisplay intrigu-ing physicsand are attractivefor various practical applications includingscanningprobes[96–98],catalystsupports[99], biologi-calimaging[100,101],molecularsensing[100],electronicdevices [100,102]andsoon.Furthermore,comparativestudiesrevealed thatSiO2catalystexhibitsconsiderablylongercatalyticactivetime comparedtothecommonlyusedCocatalyst,whichlosesits cat-alyticactivityafterashortperiodoftime
Recently, the growth of SWCNTs with controlled diameters usingSiO2nanoparticlesweredemonstratedbyChenandZhang [103].VarioussizesofSiO2nanoparticlesweregeneratedbythe thermal oxidation of3-aminopropyltriethoxysilane(APTES) lay-erswithdifferentthicknesses.ItwasshownthatthesizeofSiO2 nanoparticles increased with the number of assembled APTES layers Thesenanoparticlesservedas nucleationcenters,where SWCNTswithdiametersrangingfrom0.90to1.82nmweregrown
in ethanol-CVD The findings clearly indicated a direct correla-tionbetweenSWCNTdiameterandSiO2nanoparticlesize.Fig.4 presentstheschematicofthepreparationproceduresfromAPTES layerstoSiO2nanoparticleswithcontrolledsizes,followedbythe growthofSWCNTsinCVD
Chirality-selective synthesis ofSWCNTs isessential for their application in nanoelectronic devices [104] because electronic structuresaredefinedbythechiralindex(n,m).Itiswellknown thatthestructuresofSWCNTsaredeterminedbytheinitialcarbon structure asthegrowthcommences.Thestructureof this“cap”
is determinedduringthenucleationstage.Hence,it is possible
tocontrolthechiralityofSWCNTsbycontrollingtheprocessof capformation.Yuetal.[105]demonstratedarationalapproachto
Fig 3.SEM image of (a) carbon nanobumps initially formed on the surface of the acid-treated flake graphite, TEM images of (b) a typical nanobumps and (c) an as-grown MWCNT with the close-cap feature.
Reprinted with permission from [56] Copyright (2011) American Chemical Society.
Trang 6Table 1
Recent reports on the growth of CNTs over non-metallic catalysts.
Si or Ge nanoparticles on
SiC(0 0 0 1) substrate
SiC substrate cleaned using H 2 SO 4 /H 2 O 2 (4:1) oxidation and HF-etching Annealing and Si deposition on SiC substrate at 1000 ◦ C in UHV Deposition of Ge or Si at room temperature
Carbon source: EtOH Carrier gas: Ar/H 2
Temperature: 850 ◦ C Reaction time: 10–30 min
SWCNTs and DWCNTs, diameters
<5 nm
SiC nanoparticles on
Si(1 1 1) substrate
Si substrate cleaned using H 2 SO 4 /H 2 O 2 (4:1) oxidation and HF-etching, followed by soaking in EtOH solution SiC nanoparticles formed by heating substrate at 1000 ◦ C in UHV
Carbon source: EtOH Carrier gas: Ar/H 2
Temperature: 850 ◦ C Reaction time: 10–30 min
SWCNTs and DWCNTs, diameters
<5 nm
Si(1 0 0) wafer scratched by
another Si wafer or
diamond scriber
Si wafer cleaned in HF solution for 2 min Si wafer or diamond scriber used to produce growth patterns on wafer
by mechanical scribing
Carbon source: CH 4
Carrier gas: N 2
Temperature: 850◦C Reaction time: 3–5 min
nanotubes/m 2
[50]
Carbon-doped SiGe islands
on Si(0 0 1) substrate
SiGe (30% Ge) deposited by CVD on Si wafers, followed by carbon doping using ion implantation Substrate cleaned in
HF solution and chemical oxidation using 30% H 2 O 2 at room temperature
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 850◦C Reaction time: 10 min
SWCNTs, diameters ranging from 1.2 to 1.6 nm
Ge Stranksi–Krastanow
dots on Si substrate
Ge dots formed by CVD deposition of Ge atop a thin Si buffer layer Substrate cleaned in HF solution and chemical oxidation using 30% H 2 O 2 at room temperature.
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 850 ◦ C Reaction time: 10 min
SWCNTs, diameters ranging from 1.6 to 2.1 nm
Ge nanocrystals on Si/SiO 2
wafer
Ge nanocrystals formed by implanting Ge into SiO 2 layer and annealing in N 2 , followed by HF-etching
Carbon source: CH 4
Carrier gas: H 2
Temperature: 850–1000 ◦ C Reaction time: 20 min
SWCNTs, diameters ranging from 1.7 to 2.0 nm
4.1 ± 1.2 in length/m 2
[40]
Ge nanoparticles on
Si(0 0 1) patterned by
nanoindentation
Si sample patterned by nanoindentation subjected to a cleaning stage by cyclical ultrasonic baths in ethylic alcohol and deionized water, followed by annealing in UHV at 600 ◦ C for 30 min
Carbon source: C 2 H 2
Carrier gas: H 2
Temperature: 750 ◦ C Reaction time: 20 min
MWCNTs, originating from Ge nanoparticles < 50 nm in diameter
Te nanoparticles on Si/SiO 2
wafer
Either single crystal TDEC or TeCl 4 was employed as catalyst precursor in CVD
Carbon source: EtOH Carrier gas: Ar/H 2
Temperature: 900 ◦ C Reaction time: 10 min
SWCNTs, high percentage (92.2%)
of superlong semiconducting SWCNTs
8–10 SWCNTs/100 m
[82]
ZnO nanoparticles on
Si/SiO 2 wafer
EtOH solution of ZnCl 2 and PVP was dropped onto the wafer, followed by calcination in air at 700 ◦ C for 5 min
Carbon source: EtOH Carrier gas: H 2
Temperature: 900 ◦ C Reaction time: 10 min
SWCNTs, average diameter of 1.2 nm
1–2 SWCNTs/10 m
[80]
TiO 2 nanoparticles on
Si/SiO 2 wafer
TiO 2 sol synthesized by the reaction of Ti(OC 4 H 9 ) 4 with ethanol in inorganic acid under stirring Sol was dispersed
on substrate followed by sintering at 900 ◦ C for 1 h
Carbon source: CH 4 or EtOH Carrier gas: Ar/H 2
Temperature: 900 ◦ C Reaction time: 10 min
SiO 2 film on Si/SiO 2 wafer Substrate first cleaned by sonication and then sputtering
deposited with a 30-nm-thick SiO 2 layer
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 900◦C Reaction time: 20 min
Trang 7Table 1 (Continued)
Si/SiO 2 wafer scratched by
diamond blade
Substrate first cleaned by piranha solution, followed by washing with deionized water and acetone under sonication
Carbon source: CH 4 or EtOH Carrier gas: Ar/H 2
Temperature: 900 ◦ C Reaction time: 10 min
SWCNTs, diameters in the range of 0.8–1.4 nm
Si/SiO 2 wafer etched with
HF
Substrate first cleaned by piranha solution, followed by washing with deionized water and acetone under sonication, then thermally annealed in air at 1000 ◦ C for
1 h.
Carbon source: CH 4 or EtOH Carrier gas: Ar/H 2
Temperature: 900 ◦ C Reaction time: 10 min
SiO 2 nanoparticles on Si
substrate
Catalyst precursor POSS was dissolved in ethanol and then nebulized using a 1.7 MHz ultrasonic beam
Carbon source: EtOH Carrier gas: Ar/H 2
Temperature: 850 ◦ C Reaction time: 30 min
MWCNTs, diameters in the range
of 13–16 nm
SiO 2 nanoparticles on
Si/SiO 2 substrate
Substrate was water-plasma etched at 30 W, 250 kHz and 0.62 Torr for 20 min
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 900◦C Reaction time: 20 min
SWCNTs, diameters in the range of 1.29–1.65 nm
Al 2 O 3 nanoparticles on
Si/SiO 2 wafer
Aluminum acetate powder was dispersed in ethanol solution, and then loaded onto the wafer by dip-coating.
Substrate then calcined in air at 950◦C for 30 min
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 900◦C Reaction time: 20 min
SWCNTs, diameters ranging from 0.8 to 1.8 nm
Nanodiamond particles on
graphite plates
Nanodiamond particles were produced by the detonation method, dispersed in ethanol and enclosed in amorphous carbon or graphite, followed by annealing in air at 600–700 ◦ C for 1–15 min
Carbon source: EtOH Carrier gas: Ar/H 2
Temperature: 850 ◦ C Reaction time: 30 min
SWCNTs, diameters ranging from 1
to 2 nm
Porous carbon black
CB-BP2000
CB treated in HCl, washed in pure water and then dried in oven at 120◦C
Carbon source: C 2 H 4
Carrier gas: Ar Temperature: 800 ◦ C Reaction time: 30 min
MWCNTs, diameters ranging from
20 to 80 nm
Flake graphite
powder/highly oriented
pyrolytic graphite
Graphite samples subjected to O 2 oxidation, acid treatment in HNO 3 , and laser ablation to generate defects and oxygenated functional groups
Carbon source: C 2 H 4
Carrier gas: He Temperature: 850 ◦ C Reaction time: 30 min
MWCNTs, diameters ranging from
20 to 90 nm
8.38 × 10−2g CNT/g graphite · h
[56]
Amorphous carbon (a-C)
layer on glass substrates
Glass substrates cleaned in trichloroethylene, acetone, methanol and distilled water a-C layers deposited on glass
by a RF magnetron sputtering method
Carbon source: CH 4
Carrier gas: Ar/H 2
Temperature: 600 ◦ C Reaction time: 5–30 min
CaSiO 3 on pyrolytic
graphite paper
CaSiO 3 sol produced by mixing CaCl 2 , Si(OC 2 H 5 ) 4 , ethanol and NaOH Graphite dipped in sol and dried in air at room temperature
Carbon source: EtOH Carrier gas: Ar Temperature: 1200–1400 ◦ C Reaction time: 60 min
MWCNTs, filled with amorphous CaSiO 3
Trang 8Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Fig 4. Schematic of diameter controlled growth of SWCNTs from SiO 2 nanoparticles: (a) APTES with different layers were assembled on the Si substrate, (b) discrete SiO 2
and (c) growth of SWCNTs.
Reprinted with permission from [103] Copyright (2011) Elsevier.
engineerfullerenecapsforgrowingSWCNTswithcontrolled
struc-turesviaCVD.Inthepaper,fullerenecapswereobtainedfroma
precursorcalledfullerendionederived frompristineC60.Several
pretreatmentprocedures were employed to acquire the
hemi-sphericalfullerene,asshowninFig.5a.Resultsshowedthatthe
temperatureusedforthermaloxidationstronglyaffectedthesize
andstructureofthecapandhence,thediameterdistributionofthe
as-grownSWCNTs.Strongeroxidationtreatments(450◦C
oxida-tioninair)promotedtheproductionofsmalldiameterSWCNTs,
whileweakeroxidation treatments(350◦Coxidation inair)led
tolargediameterSWCNTs.Interestingly,theas-grownSWCNTs
fromthermally openedC60showedstep-likediameter
distribu-tionscomparedtoSWCNTscatalyzedbyFenanoparticles[105]
Inanotherpaper,Yaoetal.[106]appliedtheconceptof“cloning”
andpresentedanapproachtogrowSWCNTswithcontrolled
chi-ralityusinganopen-endgrowthmechanism.Theschematicforthis
approachisdepictedinFig.5b.SWCNTswithapredetermined
chi-ralityandopenendswereemployedas“seeds/catalysts”.Duplicate
SWCNTscouldbecontinuouslygrownfromtheparentSWCNTs
segmentsbythedirectadditionofCX(mainlyC2and/orC3)
radi-calstotheopen-endseeds.Itwasreportedthatmorethan600short
seedsegmentsweremeasuredandtheyieldofcloningwas
rela-tivelylow(around9%).Theyieldcanbegreatlyimprovedupto40%
bygrowingSWCNTsonquartzsubstrate.BasedonAFMandRaman
spectroscopycharacterizations,theduplicatenanotubewasshown
toexhibitsimilarstructuretoitsparentnanotube[106]
5 Growth mechanism discussion
DespiteenormousstridesinthesynthesisofCNTs,the mecha-nismsregardingtheirnucleationandgrowthstillremainahighly debatedissue Themostwidely acceptedCNTgrowthmodel is theVLStheory[107,108].Fig.6showsthethreesuccessivesteps involvedintheVLSmechanism.Themodelassumesthata car-boncontaininggasprecursoradsorbsontothecatalystparticleto formelementarycarbonatoms.Next,thecatalyticallydecomposed carbonatomsdissolveinthebulkofthenanoparticletoforma liquidmetastablecarbideanddiffusewithintheparticle.Finally, uponreachingsupersaturatedstate,solidcarbonprecipitatesout
inatubular,crystallineform[42].However,resultspresentedin thisworksuggestthattherearesomeobservational inconsisten-cieswhichdo not supportthis mechanism forCVDproduction DuetothesheernumberofinformationonCNTsynthesisroutes, theprimarygoalhereistofocusonmajorelementsinthecurrent understandingofCNTgrowth,highlightpointsofcontroversyand presentnewfindings
It is often argued that the termination or prevention of CNTgrowthis attributed tocatalyst poisoning [109].How this
Fig 5.(a) CNT growth from opened C 60 Reprinted with permission from [105] Copyright (2010) American Chemical Society (b) An opened CNT Reprinted with permission from [106] Copyright (2009) American Chemical Society.
Trang 9Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Fig 6. The three steps involved in the VLS mechanism: (a) decomposition of the carbon-containing precursor on the catalyst surface, (b) diffusion of carbon atoms through the particle and (c) precipitation of carbon at the catalyst–support interface and formation of a nanotube.
Reprinted with permission from [42] Copyright (2011) Wiley-VCH Verlag GmbH & Co.
poisoningactuallyoccurshasnotbeendemonstratedandhasbeen
questionedbyReillyandWhitten[110].Theypointedoutthe
con-tradictionintheargumentthatanamorphouscarboncoatingon
thecatalystparticlehaltsgrowth,yetwhentheparticleiscoated
withgraphiticcarbon(CNTgrowth),itisnotconsideredpoisoned,
viz.theyareapparentlystillabletodecomposehydrocarbons
Fur-thermore,thefactthatCNTscanbegrownfromsemiconducting
catalystse.g.Si,SiCandGe[38,76]furtherweakenstheaccepted
notionthatmetalliccatalystparticlesareessentialforthe
decom-positionof thehydrocarbon.Reillyand Whitten[110]proposed
thatamorelikelyscenarioisthatafreeradicalcondensate(FRC)
formsduringhydrocarbonpyrolysis.Theprocessbeginswiththe
breakingofacarbon–hydrogenorcarbon–carbonbondwitheach
fragmentkeepingoneelectrontoformtworadicals.Thepresence
oftheradicalthusenablesrapidarrangementofcarbonbonds.In
theFRCmodel,thecatalystroleistosimplyprovideaninterface
fortheformationofhemisphericalcapsatnucleationbecausethis
reducesthehightotalsurfaceenergyoftheparticlecausedbyits
highcurvature
ItiswellestablishedthatmetalcatalystssuchasAu,AgandCu
havelowsolubilityofcarbon[111–113].Unlikeirongroupmetals
Fe,Niand Co,thesemetal catalystsdonot possessd-vacancies
[114,115].Noactivesites arepresenttodissolvecarbon;hence
neithersaturationnorprecipitationispossible.Nevertheless,these
elementshavebeenreportedtoyieldSWCNTs[29].Furthermore,
inthecaseofstableoxidessuchasAl2O3andZrO2,theVLStheory
isclearlyunrealisticascarbondissolutionisunlikelybutprobably
occursthroughasurface-bornemechanism.Similarargumentscan
beusedtoexplainthenucleationofCNTsfromnanosizeddiamond
particles.Takagietal.[54]proposedanewmodel,the“vapor–solid
surface–solid”(VSSS)toexplainthegrowthofSWCNTsondiamond
surfaces.Theauthorssuggestedtheformationofagrapheneisland
withafive-memberedringonthesp2-relaxeddiamondsurface
Thecurvedgraphiteislandthenliftsofftheparticlesurfaceexcept
foritsedges,thusformingaCNTcap.Theedgeoftheas-formed
capissaidtobechemicallyactiveandservesasincorporationsites
forcarbonatoms,whereCNTgrowthisinduced.Theschematicfor
thegrowthofSWCNTsonansp2-solid-carbonsurfaceisdepictedin
Fig.7,wherethecorecanbediamond,Si,SiC,orAl2O3[62].Inother
caseswhereoxidescanbereducedtoformcarbides,bulkcarbon
dissolutionandprecipitationinamannersimilartotheVLStheory
maybevalid
Ontheotherhand,thefactthatCNTscanbegrownonpure
carbonsystems withoutanyadditionofcatalystsindicatesthat
catalystparticles,eithermetallicornon-metallic,arenot a
pre-requisitefor thegrowth of CNTs.This doesnot imply thatthe
catalyst’sstructuringroleislost.Instead,anoxidesupportorsimply
unsaturatedbondsattheedgesofgraphiticlayerscanfulfillthe
roleofprovidinganinterfacefororderedcarbonformation.This
meansthat thesubstrateis thecatalyst forgraphiticformation
Experimentalevidencefromdifferentstudiesshowedtheaddition
Fig 7.Schematic of SWCNT growth on an sp 2 -solid-carbon surface Reprinted with permission from [62] Copyright (2009) Tsinghua University Press and Springer-Verlag.
ofcarbontotheedgesoffreestandinggraphiticedges[116–118].In thisscenario,carbonspeciesdiffusealongthesurfaceofgraphitic speciesandsubsequentlyadsorbedtotheedges.Thismechanism can beused to explain thegrowth of SWCNTs nucleated from openedfullerenes[105]andtheformationofMWCNTsongraphitic surfaces[55,56]
TherecentsuccessbyLiuetal.[86]andHuangetal.[81]in syn-thesizingSWCNTsfromSiO2 nanoparticlessupportedonSi/SiO2 substratesclearlyhighlightsthecatalyticgraphitizationpotential
of SiO2 nanoparticles.Asthere appear tobe severalconflicting results in explaining the growth of CNTs over SiO2 nanoparti-cles,wewillfocusourdiscussionheretowardthegraphitization mechanismofthisparticularcatalyst.Akeyquestionregardingthe useofSiO2asagraphitizationcatalystiswhethercarbidephases formin thereaction, orwhetherit remains stable.Bachmatiuk
etal.[85,119]investigatedSiO2 nanoparticlesaftera CVD reac-tion.Fig.8showsa schematicoverviewillustratingthestepsin theformationofCNTs,asproposedbytheauthors.Inthemodel, SiO2nanoparticlesfirstreducetoSiCviaacarbothermalreaction TheSiCparticlesthencoalesce,leadingtotheformationofCNTs consistingofstackedgraphitic“yarmulke-like”caps.Transmission electronmicroscopy(TEM),infrared(IR)andRamanspectroscopy confirmedtheparticlesattherootoftheCNTstobeSiC.Theirdata pointstowardthecarbothermalreductionofSiO2accordingtothe overallreactionbelow
ItiswellknownthatSiCisproducedthroughtheformationof intermediateSiO.Therefore,theoverallreaction(2)canbedivided intotwoelementaryprocesses:
TheformationofthestackedcupCNTsandtheparticleshape suggestthatthelikelymechanismisthedissolutionofcarbonfrom thevaporphaseintotheparticlesfollowedbyprecipitationfrom
aliquid orliquid-likeparticle, viz.theVLSmechanismasfound withmetalcatalystsisprobablyoccurringinthiscaseaswell[85]
Trang 10Pleasecitethisarticleinpressas:L.-L.Tan,etal.,Growthofcarbonnanotubesovernon-metallicbasedcatalysts:Areviewontherecent developments,Catal.Today(2012),http://dx.doi.org/10.1016/j.cattod.2012.10.023
ARTICLE IN PRESS
G Model
CATTOD-8288; No of Pages 12
Fig 8. Schematic of the carbothermal reduction of SiO 2 to SiC and carbon nanostructure formation: (a) SiO 2 is reduced to SiC by carbothermal reduction, (b) SiC nanoparticles coalesce and (c) carbon caps form on the surface of SiC particles through precipitation and/or SiC decomposition.
Reprinted with permission from [85] Copyright (2009) American Chemical Society.
Fig 9.General pathway for the growth of SWCNT on SiO 2 nanoparticles.
Reprinted with permission from [121] Copyright (2011) American Chemical Society.
ThisfindingisincontrastwiththeXPSconductedbyHuangetal
[81]whichdidnotshowanycarbideformationandhencethey
arguedthatthegrowthofCNTsoccurredfromSiO2nanoparticles
Huangetal.[81]proposedthatnanosizedSiO2(<2nm)isinmolten
stateatgrowthtemperatureandthehighfluctuationofthe
liquid-likestructureallowsSiandOatomstomovearoundquickly,thus
creatingaspaceholeordislocation,whichhavethecapabilityto
decomposehydrocarbonmoleculesandgrowCNTs.However,it
shouldbenotedthatBachmatiuketal.[85]alsofoundnotraceof
carbideformationwhenusingXPSdespiteothertechniquesclearly
demonstratingthepresenceofcarbides.Therefore,Rummelietal
[120]pointedoutthatXPS,whichisasurfacesensitivetechnique,
maynotbewellsuitedtodetermineifoxidesusedascatalystsfor
CNTgrowthreducetocarbidesornotduringthesynthesisprocess
Mostrecently,analternativetheorybehindthenucleationof
CNTsonSiO2nanoparticleshasbeenproposedbyPageetal.[121]
Theauthorsindicatedthatavapor–solid–solid(VSS)mechanism,
rather than a VLS mechanism is responsiblefor thegrowth of
CNTsonSiO2nanoparticles.Quantum-chemicalmolecular
dynam-ics(QM/MD)simulations wereusedtostudythe CH4-CVD and
CNTnucleationprocess.Uponsupplyofthecarbonfeedstockto
thesurfaceofamodelSiO2nanoparticle,COwasproducedasthe
mainchemicalproductoftheCVDprocess.TheproductionofCO
occurredsimultaneouslywiththecarbothermalreductionofthe
SiO2nanoparticles.However,twoprimarydifferencesfrom
exper-imentalobservationsbyBachmatiuketal.[85]areevident.First,
theauthorsfoundthatthecarbidestructureformedfromthe
carbo-thermalreductionofSiO2isclearlyanamorphousone,i.e.nobulk
SiCstructurewasformedasaresultofthereductionprocess
Sec-ond,thecarbothermalreductionofSiO2byCH4waslimitedtothe
surface/subsurfacelayersoftheSiO2nanoparticle,withthecore
oftheSiO2 nanoparticleremainingoxygen-rich.Basedon
simu-lations,thefirststageoftheCNTnucleationprocessfeaturedthe
coalescenceofcarbonatomsontheSiO2surface,resultinginthe
formationofextendedpolyynechains.Athigherconcentrations
ofcarbon,theisomerizationofthesepolyynechainsresultedin
theformationofisolatedsp2-carbonnetworksontheSiO2surface, andtheformationofCNTcapstructure.Fig.9showsthegeneral pathwayforthegrowthofSWCNTonSiO2 nanoparticles.These simulationsindicatethatcarbonsaturationoftheSiO2surfaceisa prerequisiteforCNTnucleation.Hence,Pageetal.[121]concluded thatelementsofSiO2-catalyzedCNTnucleationareirreconcilable withthoseofaVLS-typemechanismbutproceedsaccordingtoa VSSmechanism.FundamentaldifferencesbetweenCNTnucleation
onnon-traditionalandtraditionalcatalystsarethereforeobserved
6 Summary and outlook
Inthisreview,therecentdevelopmentsinthemetal-free cata-lystgrowthofCNTshavebeenstudied.ThefabricationofSWCNTs wasshowntobepossiblefromsemiconductingandceramic cat-alystsystems.Thisrevealsthatthecatalyticdecompositionofthe carbonfeedstockandthegraphitizationabilityarenotessentialina catalyst.Therecentdevelopmentofthefieldisevenmoreexciting ThegrowthofCNTsispossibleonpurecarbonsystemswithoutany additionofcatalystparticles.Thisfindinghighlightsthatparticles, eithermetallicornon-metallic,arenotnecessaryforthegrowthof CNTs.Thisleadstoarecentdiscoveryoftheroleofthecatalystfor thegrowthofCNTswhereonlyananoscalecurvatureisrequired However,amoredetailedinsightintothisnewareaisnecessaryto providefundamentalunderstandingonthecatalyticgrowth mech-anismandprocessofCNTs.Despitethetremendousadvancesthat havebeenmade,thereremainsa fairamountofcontroversyin explainingthegrowthmechanismofCNTs.Thereasonforthisis duetothesheernumberofpossiblesynthesisroutesandthefact thatthereisnosingleuniversalgrowthmode
TheintegrationofCNTsintosuccessfulapplicationsand large-scaleproductionprocesses requiretheunderstandingof several fundamentalissues,whichareyettobeaddressed.Forexample,
anintriguingquestionconcerningnanotubegrowthfromthenewly developedcatalystsiswhetherallsubstanceswithasuitable par-ticlesize (≤5nm)arecapableofgrowingSWCNTsregardlessof