1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cr-free Fe based catalysts for high-temperature water-gas shift reactions

8 439 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 751,57 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cr-free Fe based catalysts for high-temperature water-gas shift reactions Xúc tác Cr-Fe nhiệt độ cao cho phản ứng water-gas shift Các phản ứng thay đổi nước và khí (WGSR) mô tả phản ứng của carbon monoxide và hơi nước để tạo thành carbon dioxide và hydrogen (hỗn hợp của carbon monoxide và hydrogen được gọi là khí nước)Các phản ứng thay đổi khí nước được phát hiện bởi nhà vật lý người Ý Felice Fontana trong năm 1780. Mãi đến sau này nhiều mà giá trị công nghiệp của phản ứng này đã được thực hiện. Trước những năm đầu thế kỷ 20, hydro thu được từ phản ứng của hơi nước dưới áp lực cao với sắt để sản xuất sắt, oxit sắt và hydrogen. Với sự phát triển của quá trình công nghiệp mà yêu cầu hydro, ví dụ như các HaberBosch tổng hợp amoniac, nhu cầu về một phương pháp ít tốn kém và hiệu quả hơn trong sản xuất hydro là cần thiết. 1 Như một giải pháp cho vấn đề này, các WGSR được kết hợp với các quá trình khí hóa than để sản xuất một sản phẩm hydro tinh khiết. Vì lý tưởng của nền kinh tế hydrogen tăng phổ biến, tập trung vào hydro như một nguồn nhiên liệu thay thế cho các hydrocacbon ngày càng tăng.

Trang 1

jo u rn a l h o m e pa ge :w w w e l s e v i e r c o m / l o c a t e / c a t t o d

a Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea

b Green School, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea

c Clean Energy Research Center, Korea Institute of Science and Technology (KIST) 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea

a r t i c l e i n f o

Article history:

Received 31 August 2012

Received in revised form

20 December 2012

Accepted 21 December 2012

Available online 20 February 2013

Keywords:

Water-gas shift reaction

High-temperature shift

Fe/Cr catalysts: Cr-free catalysts

a b s t r a c t SinceitwaspatentedbyBoschandWildat1914,theFe/Cr-basedmixedoxidecatalysthasbeenusedfor water-gasshiftreactions(WGSRs).Untilthepresent,thiscatalysthasbeenusedastheprimarycatalyst forindustrialhigh-temperatureshift(HTS)reactions.However,becauseenvironmentalconcernsabout chromiumelementswereraisedintheearly1980s,thereplacementofchromiuminHTScatalystshas beenintenselystudiedbymanygroups.ThesestudieshavecontributednotableinsightsintoHTScatalysis usingFe-basedoxides,especiallyaboutthereactionmechanismandfunctionsofpromoterelements.In somecases,thepotentialofusingasubstituentmetalpreviouslyneglectedbecauseofpropertiesinferior

tothoseofchromiumwasrediscoveredafternoteworthyimprovementswereproducedbycombining

itwithothermetalsinpromotingtheFe-oxidecatalyst.ThispaperreviewstherecentstudiesofCr-free Fe-basedHTScatalysts,especiallyfocusingontherolesandfunctionsofthenon-chromiumpromoters

inthecatalysts

© 2013 Elsevier B.V All rights reserved

Water-gasshiftreaction(WGSR)isaredox-typereactionto

con-vertcarbonmonoxideand watervaporintocarbondioxideand

hydrogen(Eq.(1)),whichwasfirstdiscoveredbyanItalianphysicist

FeliceFontanain1780[1]

CO(g)+H2O(v)↔CO2(g)+H2(g) [H0=−41.1kJ/mol] (1)

WGSRisnowmostlyassociatedwiththesteamreformingof

hydrocarbons(naturalgas,petroleumgas,naphtha,gasoline,coals

andvarioustypesofbiomass)toproducehydrogenforuseinthe

synthesisofammoniaandmethanolandfortheFischer–Tropsch

process[2–4].WGSRgeneratesadditionalhydrogenusinggases

remaining after steam reforming, which is generally used to

optimize the H2/CO molar ratio optimal for the production of

(liquid)hydrocarbonsintheFischer–Tropschprocess.In

polymer-electrolyte membrane fuel cells (PEMFC) systems,it is usedto

removecarbonmonoxide,whichpoisonstheelectrodecatalysts

[5,6].ThroughWGSR,thecarbonmonoxidecontentisreducedfrom

10–15%to0.5–1%,whichis thenfurtherreducedtotracelevels

∗ Corresponding author at: Department of Chemical & Biological Engineering,

Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.

Tel.: +82 2 3290 3299; fax: +82 2 926 6102.

E-mail address: kylee@korea.ac.kr (K.-Y Lee).

(<10–100ppm)bypreferentialoxidation(PROX)ormethanation catalysis[7]

WGSR is reversible and moderately exothermic, yielding 41.1kJ/mol of carbon monoxide The equilibrium constant for WGSR depends on the temperature, as expressed by Eq (2), whichimpliesthattheWGSRproducts(orH2/COratio)decrease withincreasingtemperature[1,8].AnequilibriumCOconversion (XCO,eq.)isdeterminedfromtheequilibriumconstantandgas com-positionusingEq.(3)[1]

Kp= yCO2 ,eq·yH2 ,eq yCO,eq·yH2 O ,eq =exp

4577.8

T −4.33



(2)

Kp=(yCO2 ,in+yCO,in·XCO,eq)(yH2 ,in+yCO,in·XCO,eq) [yCO,in(1−XCO,eq)](yH2O ,in−yCO,in·XCO,eq) (3)

yA,eqistheequilibriummolefractionofcomponentAatT;yA,inis themolefractionofcomponentAinthereactantmixture;XCO,eqis theequilibriumCOconversionatT;Tisthereactiontemperature (wheretheequilibriumstateisdefined)

Becauseofthisexothermicreversibility,WGSRistypically per-formed in two stages: a high-temperatureshift (HTS, typically 370–400◦C,10–60atm)andalow-temperatureshift(LTS,∼200◦C, 10–40atm)[1–4].Theunitsareconnectedviaaninter-stagecooler HTSischaracterizedbyfastkinetics,butthefinalCOconversion

islimitedbyequilibrium.Incontrast,LTSundergoesslow kinet-ics,but thethermodynamiclimitationismuch lessseverethan

0920-5861/$ – see front matter © 2013 Elsevier B.V All rights reserved.

Trang 2

thatof HTS.Bycombining HTSandLTSin seriesand matching

both properly, adjustmentof the final gas composition (H2/CO

ratio)becomesfeasibleandfreefromthermodynamiclimitations

Becauseof the differentcorresponding reaction conditions and

environments,different catalysts areused in HTS compared to

anLTSprocess[1–3,9].InmostindustrialWGSRprocesses,

Fe/Cr-basedmixedoxides(Fe/Cr/Cu)andCu/Zn/Almixedoxidesareused

astheHTSandLTScatalysts,respectively.Inresearch,Co-based

cat-alysts(Co/Mn,Co/Cu,Co/Mo)haveattractedinterestduetotheir

sulfurtoleranceandhighHTSactivity[9–11].Au-supported

cat-alystshave beenextensively studiedfor theirhighLTSactivity

andpotentialstability inoxidativeatmospheres[1,12–14].PGM

(platinum-groupmetal) catalystshaverecentlygainedattention

duetotheirbroadapplicability,coveringbothHTSandLTS[1,15]

However,mostcommercialapplicationsstilladoptFe/Cr/Cuand

Cu/Zn/Alasworkingcatalystsbecauseoftheirhighactivity,

dura-bilityandreasonablemanufacturingcost

Steamtocarbonmonoxide(S/C)ratioisoneoftheimportant

controlledfactorstodeterminetheperformanceoftheWGSR.First,

theequilibriumCOconversionincreasesastheS/Cratioincreases,

increasingthefinalH2/COratiowithoutincreasingthecatalystload

ortemperature.Steamisamildoxidantthatslowsthereduction

ofthecomponent(metal)oxidesinaWGSRcatalyst,whichlargely

preventstheexcessivereductionandactivitylossofthecatalyst

duringthereaction.Steamalsoslowsmethanation(reaction

for-mula(4)and(5)),whichisanundesirablesidereactionofWGSR

becauseitdecreasesthehydrogenconcentrationandcausesaloss

ofsurfaceareabecauseofitsexothermicity

CO(g)+3H2(g)↔CH4(g)+H2O(v) [H0=−206.3kJ/mol]

(4)

CO(g)+H2(g)↔ 12CH4(g)+12CO2(g) [H0=−247.3kJ/mol]

(5)

Forthereasonspresentedabove,anappropriateamountofextra

steamisusuallyaddedtothegasstreamfortheWGS(water-gas

shift)reactor

InadditiontotheS/Cratio,thereductionfactor(orRfactor),

definedasthecontentsofreductivegases(COandH2)relativeto

thecontentsofnon-reductivegases(CO2andH2O)(Eq.(6)),isused

byseveralresearchersasthemeasureofthe‘reductive’natureof

reactantgasesinWGSR[16–22]

R= PCO+PH2

PCO2+PH2 O

(6)

Inpractice,theRfactorisusedtopredictwhetherthereactant

gascausesover-reductionofFe3O4(toFeOorFe)inaFe-basedHTS

catalyst.Itisgenerallyknownthatthegasdoesnotcause

over-reductionwhenRisbelow1.2,butover-reductionoccurswhenR

isabove1.6[18,19,22]

TheWGSreactantgascompositionvarieswidelybasedonthe

choiceoffeedstockandreformingconditions(S/Cratio,

temper-ature,pressure,w/f).Forexample,thetheoreticalcompositionof

biomass-reformedgas(40%H2,44%COand16%CO2)[23]isquite

differentfromthatoftypicalsteammethanereformate(56.7%H2,

10%CO,6.7%CO2and26.7%H2O)[24].ThevariationintheR

fac-torofHTSreactantgasescanbeobservedinTable1[18,23,25–33],

2and3.Ingeneral,theRfactorincreasesfrom0.3–1.0to1.0–1.6

asthesyngasH2contentincreaseswhenusingnaturalgasasthe

feedstockforsteamreforming(CH4hasthehighestH/Cratioamong

hydrocarbons),andtheadditionofextrasteamisrequiredto

pre-ventover-reductionofFe3O4bydecreasingRfactorofthereformed

Table 1

R factors adopted in various studies.

Cu/Mo/Fe 0.81 (2.00) [23]

Cu/Th/Fe 0.86 (6.00) [26]

Cu/Al/Fe 1.00 (1.00) [28]

Cu/Al/Fe 1.17 (1.00) [29]

Cu/Al/Fe 1.17 (1.00) [30]

Cu/Al/Fe 0.70 (2.00) 1.17 (1.00) [31]

Ni/Al/Fe 1.58 (2.50) [32]

V/Fe 1.00 (6.00) 2.33 (2.00) [19]

Cu/Al/Fe 1.00 (6.00) 1.40 (4.00) 2.33 (2.00) [33]

a Steam/CO ratio.

gas.However,lowerextra-steamadditionisdesirabletoreduce operationalcosts[20].Theamountofextra-steamshouldbe care-fullydetermined,becausetheperformanceofaWGScatalystwould changeifappliedunderdifferentRfactors

2 Fe/Cr-based HTS catalysts

2.1 GeneralbackgroundforFe/Cr-basedHTScatalysts Iron–chromium(ferrochrome,Fe/Cr)oxidewasfirstpatentedas

aWGScatalystbyBoschandWildin1914[34].Althoughnearly

acenturyhaspassed,Fe/Crisstillutilizedasaprimarycatalyst forHTSbecauseofitsreasonableactivityanddurabilityinmost applications

The pre-activatedcatalyst is generally composedof 87–95%

Fe2O3 (ferric oxide, mineral name: hematite), 5–10% Cr2O3 (chromium(III)oxide)andmiscellaneousothercomponents,such

asCuO,Co2O3 and/orMgO[3,9,35,36].TheFe/Crcatalystis usu-allysynthesized through the base-catalyzed co-precipitation of

Fe2(SO4)3and Cr2(SO4)3 usingNa2CO3[35].Theresidualsulfate ionsshouldbecarefullywashedtoavoidproducinghydrogen sul-fideduringactivation(pre-reduction)andreaction,whichpoisons theLTScatalystdownstream oftheHTScatalystbed[35].After calcination,themajorcatalystphaseisaFe2O3–Cr2O3mixture,in whichCr2O3isoccasionallyincorporatedintothe␣-Fe2O3lattice [9,35].Thecalcinedcatalystshouldbepre-reducedbeforeitsuse

inthereaction,throughwhichFe2O3 isturnedintoits catalyti-callyactiveFe3O4 (ferricferrousoxide,mineralname:magnetite) phase.Thepre-reductionisusuallyperformedat315–460◦Cusing reactantgas(syngas)[3];however,topreventover-reductioninto FeOormetallicFe,theRfactorofthereactantgasisadjustedto approximately1.0byaddingextrasteam[18,20]

In plant operation, thecommercial Fe/Crcatalysts generally decreasethecarbonmonoxideoutputfrom10%to15%infeedflow

to2–3%[2,35].TheactivityoftheFe/Crcatalystisimprovedbythe additionofapromoterelement,suchasCu,decreasingthe acti-vationenergy [37]and increasingselectivity(i.e.,inhibitingthe methanation[35])ofthecatalysis.SelectedtestresultsforFe/Cr catalystsarelistedinTable2[38–42]

TheWGSRmechanismofFe/Crcatalystsistypicallyunderstood

asaredox-typemechanism,whichhasbeeninterpreted intwo ways(Fig.1):(i)theregenerative(Rideal–Eleytype)and(ii)the associative(Langmuir–Hinshelwoodtype)mechanisms[3,9].The formerisoftenperceivedasmoresuitableforFe/Crcatalysts[3] Theregenerativemechanismisusuallyfacilitatedbytheexchange

ofelectronsbetweenFe2+andFe3+intheoctahedralsiteof mag-netiteduringWGScatalysis[29,43]

TheFe/Crcatalystisusedina processforanaverageof 3–5 yearswithoutexchangingwithfreshcatalyst[3,44].Theactivity decreaseismostlyduetothethermalsinteringofthemagnetite

Trang 3

Table 2

HTS performances of Fe/Cr and Fe/Cr/Cu catalysts.

Fe/Cr S/C = 3.5 0.3d 60,000 1 400 ◦ C: 65% [97%] [39]

Fe/Cr S/C = 4.8 0.3 d 3000 20 360 ◦ C: 89% [89%] [40]

(93/7) S/G = 0.7

Fe/Cr/Cu S/C = 3.5 0.3 d 60,000 1 400◦C: 79% [97%] [38]

Fe/Cr/Cu S/C = 2.0 0.9d 10,000 10 380 ◦ C: 79% [87%] [41]

(90/8/2) S/G = 1.0 d

Fe/Cr/Cu S/C = 3.5 0.3d 60,000 1 400 ◦ C: 79% [97%] [42]

a Steam/CO ratio.

b Steam/gas ratio.

c “Wet gas” base.

d Estimated from the data given in the paper.

phase,butinplantoperation,increasingthereactiontemperature

compensatesforthisdecrease[45].Additionally,theFe/Crcatalyst

isseldomdeactivatedbysulfurpoisoning,unlikeLTScatalysts(e.g.,

Cu/Zn/Al)[45]

2.2 CatalyststructureofFe/Crcatalyst:roleofCr

Formanyyears,thechromiumintheFe/CrHTScatalystshas

beenpredominantlyrecognizedasastabilizertopreventthe

ther-malsintering of Fe3O4 and loss of surface areaof thecatalyst

Inafreshstate,Fe3O4/Cr2O3 hasamuchhigherspecificsurface

area(40m2/g for Fe3O4/8wt.% Cr2O3)than un-promotedFe3O4

(8m2/g)[46].Fe3O4/Cr2O3 alsoexhibitsmuch slowermagnetite

sintering than un-promoted Fe3O4 [9] Chinchen et al insisted

thatas thereactionprogresses,discrete Cr2O3 grainsgrowand

becomedispersedoverFe3O4domains,therebyblockingthe

ther-malagglomerationofFe3O4particles[47,48]

AdifferentopinionisthatCr3+ionsenterintotheinverse-spinel

latticeofFe3O4andformasolidsolution.Robbinsetal.foundthat

Cr3+ionsdissolveintotheFe3O4 latticeandoccupythe

octahe-dralsiteandthedisplacedFe2+andFe3+ions(fromtheoctahedral

sites)aretransferredtothetetrahedralsites[49].Edwardsetal

claimedthatthedissolvedCr3+isenrichedatthesurfaceregionof thecatalystandthattheCr-enrichedsurfaceshell,beingmore ther-modynamicallystablethantheFe-richcore,reducesiondiffusion andsinteringeffects [50].Natesakhawatetal.reportedthatthe

Cr3+inFe/CrwasoxidizedtoCr6+duringWGScatalysis[28].The

Cr3+↔Cr6+ oxidation–reductioncycle wasexpectedtoenhance theredoxrateofmagnetiteandpromotetheWGSactivityofthe catalyst

Today,itisgenerallyunderstoodthatchromiumactsasbotha textural(preventingthermalsintering)andfunctional(enhancing redoxefficiency)promoterinFe/CrHTScatalysts

2.3 Thenecessityofsubstitutingchromiumwithotherelements Hexavalentchromium(foundinchemicalcompounds contain-ingCr+6)isastrongcarcinogen,threateninghumanhealthandthe environment[51].Exposurethroughinhalationanddrinkingwater causescancerandseriousdamagetohumanorgansandskin.In contrast,trivalentchromium(Cr3+)hasverylowtoxicityandisa nutrientforthehumanbody[51]

Concernsabouttheenvironmentalhazardandtoxicityof hexa-valentchromiumhave beenraisedsince theearly1920s.Since

Trang 4

Table 3

HTS performances of Cr-free Fe-based catalysts.

(mol ratio) S/G ratio b [WHSV] [Equil CO Conv.]

Fe/Al/Cu/Ce S/C = 10.0 1.0d 7000 h−1 20 350◦ C: 92% d [95%] [61]

(89/8/2/1) d S/G = 1.0

(96.3/3.4/0.3) S/G = 1.0 (3000 h −1 , dry gas base) 53% (after aging) [95%]

Fe/Al S/C = 1.0 1.0 d [0.060 m 3 /g cat /h] 1 400 ◦ C: 25% [77%] [28]

(91/9) S/G = 0.1

Fe/Al/Cu e S/C = 1.0 1.0 d [0.060 m 3 /g cat /h] 1 400 ◦ C: 46% [77%] [28]

(87/9/4) S/G = 0.1

Fe/Al/Cu f S/C = 1.0 1.2d [0.060 m 3 /g cat /h] 1 400 ◦ C: 57% [63%] [30]

(77/8/15) S/G = 0.1

Fe/Ni S/C = 3.7 1.2 [0.060m3 /g cat /h] 1 400◦C: 70% [78%] [20]

(80/20) S/G = 0.6

Fe/Ni S/C = 2.6 2.0 [0.025m3 /g cat /h] 1 400 ◦ C: 50% [65%] [21]

Fe/Ni S/C = 2.6 2.0 [0.025 m 3 /g cat /h] 1 400 ◦ C: 64% [65%] [21]

Fe/Ni/Cs S/C = 2.6 2.0 [0.075 m 3 /g cat /h] 1 400◦C: 61% [65%] [66]

Fe/Ni/Zn S/C = 2.6 2.0 [0.030 m 3 /g cat /h] 1 400 ◦ C: 65% [65%] [67]

Fe/Ni/Al g S/C = 3.0 1.4d 14,500 h −1 d 1 400◦C: 54% [57%] [32]

(37/22/41) S/G = 0.4 (10,000 h −1 , dry gas base)

Fe–Ni/Ce–Zr S/C = 3.7 1.1d 15,600 h −1 d 1 400 ◦ C: 75% [70%] [68]

(11–10/53–26) d S/G = 0.6 (10,000 h −1 , dry gas base) Slight methanation

a Steam/CO ratio.

b Steam/gas ratio.

c “Wet gas” base.

d Estimated from the data given in the paper.

e Prepared with co-precipitation.

f Prepared with sol–gel method.

g Prepared by solution-spray plasma method.

theU.S.NationalResearchCouncilpublishedthegeneral

guide-linesforchromiumcompoundriskassessmentsin1983,theEPA

haspublishedmanypracticalguidelinesfortheidentificationand

assessmentofhexavalentchromium[52].TheOccupationalHealth

andSafetyAdministration(OSHA)undertheU.S.Departmentof

Laborenforced strict regulationsregarding worker exposureto

hexavalentchromium in severalindustries [53] In Europe,the

recentlypublishedEuropeanRestrictionofHazardousSubstances

(RoHS)bannedtheuseofsixhazardousmaterials,including

hexa-valentchromium,inallelectronic–electricalequipment[54].Itis

onlyamatteroftimebeforetheseregulationsareexpandedtocover

entireindustries

ReturningtotheFe/CrHTScatalyst,thechromiumspeciesin

afreshFe/CrcatalystisusuallyCr+3(Cr2O3),whichismuchless

toxicthanCr+6.TheCr+6contentislow,but workersmusttake

precautionswhen handlingthecatalystthroughout thespanof

theoperation.Moreover,Cr+6iswater-solubleandisleachedfrom

thecatalystbycondensedsteamorcoldwater,whichcouldbea

threattotheenvironment,evenwithminimaldisposal[51].There

areseveralpossibilitiesforproducinghexavalentchromium

dur-ingthemanufacturingofthecatalyst.For instance,someofthe

Cr+3ionsthatwerenotprecipitatedcanbeoxidizedintoCr+6when

thecatalystiscalcinedathightemperaturewiththemineralbase

(Na+)presentintheprecipitates[51].Themotivationforreplacing

chromiumwithotherelementsmostlyliesintheseenvironmental

andhealthconcerns[55].InadditiontoWGSR,theissueof

replac-ingchromiumisbeingsimilarlydiscussedinthedevelopmentof

catalystsforfattyalcoholproduction(thehydrogenationoffatty

esters)[56,57]

Note:TheHTSactivitiesofCr-freeandCr-containingcatalysts arelistedinTables2and3.Itwasnotstraightforwardtocompare

acatalystwithanotherinactivity,becauseeachcatalysthadbeen testedinadifferentreactioncondition(S/Cratio,Rfactor,w/f, tem-perature,etc.).Sotheactivitieswerelistedinatableformatwith fullreactionconditionsprovided

3.1 Earlystudies:1980–1990 Chinchenfirst tried usinga Cr-free Fe-basedHTS catalystto replacechromiumwithanelementcapableofforminga spinel structureinironoxidewithoutundulydilutingthecatalytic activ-ity[58].Thechromereplacementswerechosenaccordingtoionic sizeandoxidationnumber[28,58].Amongthecandidates,Ca,Ce andZrwerecapableofformingspinelstructureswithFe.Fe/Ceand Fe/ZrshowedhighersurfaceareasthanthecommercialFe/Cr cata-lysts,buttheirspecificactivities(activitypertotalcatalystweight) werelowerthanthoseofcommercialcatalysts.Asimilarattempt

byRethwischandDumesicwasalsounsuccessful.Theytriedusing Zn(II)andMgtoreplaceCr,buttheactivitiesofFe/ZnandFe/Mg were30timeslower thanthatofmagnetite [59].It wasargued thattheelement(ZnorMg)displacedallof theFe2+ionsfrom theoctahedralsiteofinversespinellattice,preventingFe2+/Fe3+ redoxtransfers, whichare thedrivingforceoftheregenerative mechanismformagnetitecatalysis

Rethwisch et al dispersed un-promoted magnetite over a graphitesupport(Fe3O4/C)toenhancethecatalyticturnoverrate

Trang 5

catalystinitiallyshowedhighactivity,whichthendecreasedafter

afewhours.Themagnetiteagglomeratedduringthereaction,but

theauthorsarguedthatthedeclineinactivitywasduetothe

con-strictionofporeswithinmagnetiteclusters,whichwasdrivenby

thesurfacehydroxylation ofmagnetite underwetatmospheres

Theactivityrecoveredtosomedegreeafterthecatalystwas

de-hydroxylatedunderadrycarbonmonoxideatmosphere

3.2 Fe/Al-basedcatalysts:Al/CeorAl/CuasreplacementsforCr:

1995–2010

The first promising results for developing Cr-free Fe-based

catalysts were arguably those of Ladebeck and Kochloefl [61],

whoreplacedCrinaFe/Cu/CrcatalystwithAl/Ce.Theresulting

Fe/Cu/Al/Cecatalystshowedactivitysuperiortothatofa

commer-cialcatalyst.Sincethen,Alhasbeenstudiedmoreintensivelythan

anyotherelementasareplacementforchromiuminFe-basedHTS

catalysts.Fromnow,itwillbereviewedinitsproperchronological

order

Araújo and Rangel proved that the activity promotedby Al

becomesmoreprominentwhenCuisincludedinthemagnetite

texture[33].Underlowsteam-to-gasratios(S/G=0.4;estimated

R factor=0.9),the Fe/Al/Cu catalyst wassimilarin HTSactivity

butbetterinselectivity(i.e.,methanationsuppression)compared

toa commercialCr-containingcatalyst.Theauthorsarguedthat

Al/Cupromotestheformationofthemagnetitephaseduring

pre-reductionandstabilizesthephaseagainstfurtherreduction.They

deemedthatCuactedasatexturalpromoterratherthana

func-tionalpromoter(creating orpromotingactivitybyaffectingthe

electronicpropertiesofthemajoractivespecies[23]).However,

thethermalstabilityoftheFe/Al/Cucatalystwasnotwithinthe

scopeofthestudy

Liuetal.studiedanAl/Ce-promotedFecatalyst(Fe/Al/Ce),which

wasgivenaproprietaryname,NBC-1[62,63].Thebasicideawas

toadopt ␥-Fe2O3 (maghemite) asthe backbone of thecatalyst,

whichwasthoughttobemoreeffectivethan␣-Fe2O3 in

incor-poratingpromoter elements, byutilizing the vacantsitesof an

imperfectspinelstructure [64] Fromthe context,it is inferred

thattheauthorsregarded Aland Cebothastexturalpromoters

forthemagnetitephase.Theauthorsclaimedthatthecatalystwas

activeandthermo-resistant,byshowingthatitwascomparableto

acommercialFe/CrcatalystinbothHTSactivityandspecific

sur-faceareameasuredafterhigh-temperatureaging(530◦C,15h).The

achievementwouldhavebeenmorepromisingifthecatalysthad

beentestedundermorereducibleconditions.(TheRfactorofthe

reactiongasisestimatedtobe0.6,whichismuchlowerthanthe

conventionalvalue,1.0.)

Regarding the Fe/Al/Cu HTS catalyst, the Ozkan group have

publishedseveralnoteworthystudiesinthelastdecade[28–31],

providingasystematicunderstandingofthecatalyst

Usinginsitu XRDandTPRstudies,thegroupproved thatAl

playedarolesimilartothatofCr,inhibitingthethermalgrowthof

themagnetitephaseandstabilizingthephaseagainstfurther

reduc-tiontoFeOandFe[28].However,theXPSstudiesindicatedthatAl

didnotpromotetheredoxrateoftheironoxidebecausetherewas

nochangeinitsoxidationstate(Al+3)duringWGScatalysis.Unlike

Al,Crchangeditsoxidationstate(+3↔+6)duringcatalysis,which

wasthoughttoallowittoactasafunctionalpromoterinpromoting

theWGSactivityoftheFecatalyst.SimilarlytotheresultsofAraújo

and Rangel’sstudy[33],theHTSactivitywasgreatly enhanced

whenAlandCuwereincludedinthecatalysttogetherasFe

promo-ters(Table3).CuwasconsideredafunctionalpromoterfortheFe/Al

catalystbecauseTPRanalysisindicatedthatCugreatlyenhanced

thereducibilityoftheironoxide[28].Theauthorsclaimedthat

therearetwowaysforCutoparticipateinthecatalysis:(1)theCu

Fig 2. BET surface areas of Fe/Ni catalysts FNxxyy denotes a Fe/Ni catalyst with Fe and Ni in xx and yy wt.%, respectively; “Aged” implies that the catalyst was aged with reaction for 3 h under 400 ◦ C, H 2 (56.7%), CO (10%), CO 2 (6.7%), H 2 O (26.7%) and WGSV = 0.025 m 3 /g cat /h.

speciesservesasanelectronic(functional)promoterandpromotes theredoxrateofthecatalysisand(2)theexcludedCuspeciesis presentonthecatalystsurface,whichisreducedtometallicCu dur-ingthereactionandprovidesadditionalactivesites,similartoCu

intheCu/Zn/AlcatalystinLTSreactions.However,becausemetallic

Cuisverypronetothermalsintering,itisdesirabletoincorporate allCuspeciesintoanironoxidestructureandformaperfectsolid solution[29].Thesol–gelpreparationofthecatalystfulfilledthis objective.Intheauthor’sfollowingpapers[29,30],itwasproven thatCuwasuniformlydistributedovertheironoxidematrixwhen thecatalystwaspreparedusingthesol–gelmethodatpH9with ironacetylacetonateastheFeprecursor(othersinnitrates),and

C2H5OH/NaOHwasusedasthesolvent/precipitant[29].Such uni-formitywasnotobtainedusingtheconventionalco-precipitation method.Thesol–gelmethodismoreadvantageousinthatitallows theformationof␥-Fe2O3tobeinducedbyadjustingtheFe2+/Fe3+ ratiointheprecursorsolutionandtheagingtime.TheTPRandXPS measurementsconfirmedthat␥-Fe2O3helpsincorporatethe pro-moterelements(AlandCu)intotheironoxidestructuretoform

auniformsolidsolution[29].Theauthorsfurtherimprovedthe preparationmethodusingpropyleneoxideasthegelationagent, whichimprovestheHTSactivityandstabilityfortheFe/Al/Cu cat-alyst[31]

3.3 Fe/Ni-basedcatalysts:HTScatalysisofFe/Ni/ZnandFe/Ni/Cs underhigh-R-factorconditions:2009–2011

Nihasbeenperceivedasunsuitableforuseasacomponentof WGScatalystsbecauseitiseasilyreducedunderWGSconditions andmanifestshighmethanationactivity[65]

However,ourresearchgrouphasfoundthat Niis capableof formingasolidsolutionwithironoxide,producingaFe/Nicatalyst thatexhibitsreasonableHTSactivityevenunderhighlyreducible conditions(Rfactor=2)ifpromotedbyanotherappropriate ele-ment[20,21,66,67].Ni/Fecatalystswerepreparedbyconventional co-precipitation,whichproducedinversespinelNiFeO4after cal-cinationinairat500◦C.TheinclusionofNiincreasedthesurface areaofthefreshcatalyst,buttheeffectwasdrasticallydiminished whenthecatalystisagedinHTSreaction(Fig.2 soitis techni-callyimpropertorefertoNiasatexturalpromoter.Nicaninstead

bereferredtoasafunctionalpromoter:underahighRfactorof2, theNi/Fe(67/33inmol%(Table3)or66/34inwt.%[21])catalyst showedhighinitialCOconversion(64%),closetotheequilibrium value (65%), whereas thecommercialFe/Cu/Cr catalyst showed only 50% conversion [21] TPR measurements confirmed the

Trang 6

Fig 3.HTS activities of Cs-promoted Fe/Ni catalysts; FN: Fe/Ni (66/34 in wt.%),

xCsFN: x wt.%-Cs impregnated Fe/Ni (66/34 in wt.%); H 2 (56.7%), CO (10%), CO 2 (6.7%)

and H 2 O (26.6%), R factor = 2; 400◦C; WHSV = 0.075 m 3 /g cat /h [66]

Ni-enhancedredoxrateofironoxides[67].EvenwithahighR

fac-tor(R=2)andathightemperature(400◦C),thecatalystmanaged

tomaintainitsinitialactivityforover11h.However,partofthe

cat-alystwasreducedtoFeNi3(awaruite)duringthereaction,which

isattributedatleastinparttothemethanationsidereaction[21]

MethanewasproducedfrombothCOandCO2[21],fromwhichthe

selectivityoftheHTSreactionovertheFe/Nicatalystisestimated

as85–90%(Table3)

Theproblemoflowselectivity,thatis,theoccurrenceof

metha-nation,wasovercomebypromotingtheFe/Nicatalystwithcesium

[66]orzinc[67]

ByimpregnatingCsontheFe/Nicatalyst,theHTSactivitywas

greatlyenhancedandthemethanationwaseffectivelyrestrained

(Fig.3)[66].Thecatalystsweretestedunderaweighthourspace

velocity (WHSV=0.075m3/gcat/h) three times higher than that

usedinthepreviousstudy(Table3).Becauseoftheincrease in

WHSV,theCOconversionofun-promotedFe/Ni(NF,inFig.3)was

almosthalvedto32%.Undersuchadverseconditions,theFe/Ni/Cs

catalysts(3.9CsNFand6.0CsNF,inFig.3)showednear-equilibrium

COconversion(63%and61%)withalmost100%selectivity.Based

onCO2-TPDanalysis,theimprovementofthecatalyticperformance

wasattributedtotheincreaseinthenumberofweaklybasicsites

byCspromotion,onwhichtheformate-intermediatedassociative

mechanismwasthoughttoprogress

ZnpromotionalsoenhancedtheHTSactivityoftheFe/Ni

cat-alyst[67].Znwasco-precipitatedwithFeandNitoformasolid

solutionof(Zn,Ni)Fe2O4inversespinelspecies.TheZn-promoted

Fe/Ni (Fe/Ni/Zn) showed near-equilibrium CO conversion with

excellent methanation restraint (selectivity over 98%, Table 3

whichwassimilartothepreviousCs-promotedNi/Fecatalyst.The

catalystshowedverystableperformance,maintainingitsactivity

over15h.However,ZnpromotionisthoughttobeinferiortoCs

promotionintermsofactivityenhancementbecausesuchalevel

ofactivitywasobtainedunderaWHSVof0.035m3/gcat/h,whereas

Fe/Ni/Csachievedasimilarlevelofactivityunderanearlydoubled

WHSVof0.075m3/gcat/h(Table3).Znperformstheroleof

func-tionalpromoterfortheFe/Nicatalystverywell:first,Znprevents

thereductionordisintegrationoftheinversespinelphaseduring

reaction.Throughtime-dependentXRDanalysis,itwasfoundthat

FeNi3 wasformedfromthedisintegrationofanunstable,

incom-pletelayerofzinc–nickelferritenearthecatalystsurface.When

theunstablelayerwasusedup,thecorecrystalof(Zn,Ni)Fe2O4was

intact,andthereducedphase(FeNi3)didnotgrowfurther

through-outtherestofreaction[67].Second,Znenhancedthereducibility

ofthecatalyst,promotingCOoxidationwithlatticeoxygen,which

leadstoanincreaseintheWGSrateandselectivity.Theimproved reducibilityofFe/Ni/ZnwasconfirmedbyH2-TPRandCO-TGA mea-surements[67]

Watanabeetal.showedthatcombiningFe/NiwithAlresulted

in excellent HTS activity without significant methanation [32] (Table 3).The authors prepared the Fe/Ni/Al catalyst withthe solution-sprayplasmatechnique toproduceFe/Nispecies well-dispersedonthehollowAl2O3 sphere.Duringthereaction,the Fe/NispecieswerepartiallyreducedtoNi–Fealloy(FeNi3),which theauthorsnotedwasacrucialspeciesinsuppressinghydrogen adsorptionandCOmethanation.Thecatalystshowedthebest per-formanceintermsofHTSactivityandmethanationsuppression whentheFe/(Fe+Ni)atomicratiowasbetween0.5and0.8 TheauthorsdevelopedthisideaintodispersingFe/Nispecies

onthemesoporous CeO2–ZrO2 supportprepared bythe “hard-template method”usingKIT-6 asa template material [68].The purpose of this study wasalso to minimize methanation over theFe/Nispecies Thebasicideaswere,first,toimproveNi(or Fe–Ni)dispersionusingasupportwithalargespecificsurfacearea, andsecond,tousea reducibleoxidesupportthatimprovesthe transferrateoflatticeoxygen(inordertosuppressmethanation and increase the selectivity) Bothrequirements were simulta-neouslysatisfiedbyimpregnatingFe/Nispeciesonthemesoporous CeO2–ZrO2 preparedbythehardtemplate method.Thecatalyst showedimprovedthermalstability,HTSactivityandmethanation suppressioncomparedtothecatalystpreparedusingconventional, co-precipitatedCeO2–ZrO2 support.In particular,theformation

ofFeNi3 inahighlydispersedstateoverFe–Ni/CeO2–ZrO2(hard template)ledtoamoreeffectivesuppressionofmethanation 3.4 Othernoteworthystudies:1998–2011

Costaetal studiedtheuseofTh asa replacementforCrin Fe/Cr/Cucatalysts[26].BecausetheionicradiusofTh4+(0.94 ˚A)

isconsiderablylargerthanthatofFe3+(0.69 ˚A),Th4+wasnot incor-poratedintotheironoxidematrix;instead,itwenttothesurface, formingasegregatedphase.However,thepresenceofThresulted

intheformationofsmallerironoxideparticlesandhinderedthe thermal sinteringof theparticles.In addition,although Th was present atthesurface,it stabilized themagnetitephase against deeperreduction.Hence,Thcanbecategorizedasatextural pro-moterforFe-basedHTScatalysts.Exceptforitspresenceonthe surface,ThisalmostidenticaltoAlinitscharacteristicsandroleas

apromoter.LikeAl,itsactivityisalsolargelyenhancedbytheuse

ofCuasaco-promoter.TheauthorclaimedthattheFe/Th/Cu cat-alystismoreactivethanacommercialFe/Cr/Cucatalystat370◦C, S/G=0.6(S/C=6)andRfactor=0.8

Júnioretal.triedusingV(IV)(vanadium)asachrome replace-ment[19].Inthisstudy,vanadium-dopedmagnetitewasprepared

byheatingsol–gel-prepared,iron(III)–vanadium(IV) hydroxoac-etateunder nitrogen Because magnetite wasproduced directly withthismethod,pre-reductionwasnotneededwhenusingthis catalystintheHTSreaction.Vanadiumwaslocatedmainlyonthe surfaceasV2+andV5+species.Thereissomedoubtabouttheclaim thatvanadiumactedasatexturalpromoterforthemagnetitephase becausethespecificsurfaceareaofV-dopedmagnetitewasalready small(25–28m2/g)inthefreshstateandthedifferencefromthatof un-dopedmagnetitewasmarginal.However,thevanadium stabi-lizedFe3+andincreasedtheactivityandselectivityofthemagnetite phase,implyingthatitactsasafunctionalpromoter

Martosetal.studiedFe/Mo(VI)/CuasaCr-freeHTScatalyst,using theoxidation-reductionmethodtopreparethecatalyst[23].Mo6+ wasincorporatedperfectlyintothemagnetitestructureduetoits smallerionicradius(0.62 ˚A)comparedtoFe3+(0.69 ˚A).Although thecatalystwaspreparedwithoutthermalcalcination,the spe-cificsurfaceareaofFe/Mowasquitesmall(32m2/g).However,a

Trang 7

linearrelationshipwasfoundbetweentheMocontentand BET

area,whichimpliesthatMoisatexturalpromoterforthe

mag-netitephase.However,theactivityenhancementandstabilization

ofthemagnetitephasewereobtainedwhenMowaspairedwith

Cu,whichwasverysimilartothecasesofFe/Al/CuandFe/Th/Cu

describedpreviously

Boudjemaa et al [69] examined the influence of acid-base

properties on Cr-free Fe-based catalysts in HTS reaction using

insituDRIFTmeasurementsasamajoranalyticaltool

Hematite-(later in reaction, magnetite-) supported SiO2, TiO2 and MgO

wereusedasthecatalysts,andtheorderofactivitywasrelated

to the basicity of the materials (measured by the activity in

isopropanol dehydrogenation): Fe2O3/MgOFe2O3/TiO2>Fe2O3

(notsupported)Fe2O3/SiO2.ThehighactivityofFe2O3/MgOwas

explainedintermsofa formate-intermediatedassociate

mecha-nism,inwhichthecarbonylspeciesadsorbedonFereactswith

hydroxylgroupsontheFe–MgOinterfacetoproduceformate

inter-mediates.Itwasproposedthatthedecompositionrateofformate

speciesgovernstheoverallreactionrate,whichisfacilitatedbythe

weakermetal-oxygenbondinthebasicoxides

Mahadevaiahetal.incorporatedFeintotheCeO2 crystalline

network,andtheresultantcatalystexhibitedimpressive

perform-ancesunderLTSandHTSconditions[70].Itisgenerallyaccepted

thatCeO2 isa goodredoxmaterialfortheregenerative

mecha-nisminWGScatalysis.InCeO2,thelatticeoxygeneasilyinteracts

withadsorbedCO(turningintoCO2),andthedepletedoxygensite

isrestoredwiththereleaseofH2fromH2O.TheWGSactivityis

furtheraugmentedifCOadsorptionispromotedbyanother

ele-ment.Thenoblemetals(Pt,Pd, Rh)areusuallychosenfor such

purpose[71],buttheauthorsusedFeinstead,partially

substitut-ingthe CeO2 withFe toform a solid solutionof Ce1−xFexO2−ı

Asaresult,FenotonlypromotedCOadsorptioninWGS

cataly-sisbutalsoenhancedtheoxygenstoragecapacitybysynergetic

redox interaction between Ce4+/Ce3+ and Fe3+/Fe2+ [70]

Near-equilibriumCOconversionwasachievedusingCe0.67Fe0.33O1.835

attemperaturesabove450◦C,andtheactivitywasexpandedto

theLTSregion(∼285◦C)whenPtwasco-dopedinsidethecatalyst

(Ce0.67Fe0.33Pt0.02O1.785)

AnotherexampleoffixingFeontoanon-magnetitestructurewas

suggestedbytheworkbySunetal.,inwhichtheperovskite

struc-turewasutilizedasacatalystmatrixforFe[72].Thebasicidea

wasasfollows:intheLaFeO3perovskitestructure,La3+lowersthe

bindingenergyofoxygeninFeO6octahedra,promotingthe

trans-ferrateoflatticeoxygen(␣-oxygen)totheadsorbedCO(possibly

onFe)toenhancetheWGSrateinaregenerative(redox)

mecha-nism.Inaddition,theauthorsadoptedageneralmethodtoincrease

theredoxpropertyoftheperovskitecatalyst,substitutinganother

cation(Ce4+)forthecationsinLaFeO3.Becauseoftherestriction

inionicradius,Ce4+isincorporatedexclusivelyintotheA-site(i.e.,

La3+),makingtheperovskitestructurenon-stoichiometric,which

is higherin oxygenstoragecapacity and thermal stability than

stoichiometricLaFeO3.Hence,thenon-stoichiometricLa0.9−xCexFeO3

catalystismoreactiveinHTSreactionsthantheLaFeO3catalyst

Inaddition,itsactivityattemperaturesabove550◦Cwashigher

thanthoseofcommercialFe/Cr/Cucatalystsoperatingat450◦C

TheaccommodationofCe4+inthiscatalystwaslimitedtolow

val-ues(x=0.2;above0.2,theperovskitebecameunstable);however,

asmallamountofCeO2wasalwaysfoundinthecatalysts.Itwas

claimedthatthesegregatedCeO2 phasealsoenhancestheWGS

activityviaitsintrinsicredoxproperty

WehavesummarizedtheresultsofpreviousstudiesofCr-free

Fe-basedHTScatalysts,especiallythoseaddressingthepromoters

usedtoreplaceCrinFe-basedHTScatalysts

(1)First, apromoter elementshouldformasolid solutionwith iron oxides or at least be located in the surface layer in a well-dispersedstate.IntheFe-basedWGScatalysts,therole

of promoter is divided into textural and functional roles.A texturalpromoter,whetheritexistsasindividualcrystalliteor fusesintoironoxidelattices,enhancesthecatalyst microstruc-ture(surfacearea,porosity,grainsize)andbehavesasabarrier forthermalgrowthofironoxidecrystallites(i.e.,thermal sin-tering).Afunctionalpromoterenhancestheredoxrateofthe catalystwithitsownredoxactivityorbyfacilitatingtheredox cycleofironoxide.Regardlessofrole,itismoredesirablefor

a promotertoformahomogeneoussolid solutionwithiron oxides

(2)Chromium in a commercial Fe/Cr or Fe/Cr/Cu HTS catalyst actsasatexturalandfunctionalpromoter.Amongthechrome replacementpromoters,AlandThhavefunctionalitiesas textu-ralpromoters,preventingthermalagglomerationandexcessive reductionofthemagnetitephase.CeandCufunctionas func-tionalpromotersforthemagnetiteor‘promoted’magnetite(e.g., Fe/Cr,Fe/Al,Fe/Th)phases,improvingtheredoxpropertiesof activespecies,whichinturnincreasestheintrinsicWGSactivity

ofthecatalyst

(3)To date, there is noknown singleelemental promoter that playsa dualrole(texturalandfunctional)witha promoting functionalitycomparabletothatofchromium.Indeveloping chrome replacement promoters,the mosteffective strategy

istocombinemorethantwonon-chromiumelements (usu-allyonetexturalandonefunctional),inwhichthematching betweenelementsisverycrucial.Forinstance,Znisnotaproper promoterforironoxideforitself;itincreasesthespecific sur-faceareabutdoesnotincreasetheWGSactivity[23].However,

Znplaysaprominentroleasafunctionalpromoterifpaired withNiinpromotingironoxide,whichnotonlyimprovesthe WGSactivitybutalsohindersmethanation[67]

(4)Ingeneral,magnetite-basedWGScatalysisfollowsa regener-ativemechanism Hence,itis usedtoproduceagoodresult whendispersingmagnetite(orpromotedmagnetitespecies)over reducibleoxidesupportwithsuperior latticeoxygen mobil-ity.Ceriumoxidesandtheirderivativescanbeusedforsuch

apurpose

(5)Theuseofbasepromoters,suchasalkalineoralkaline-earth metals,promotestheformate-intermediatedassociative mech-anisminWGScatalysis.Thisapproachcouldexhibitsynergy whencombinedwithotherfunctional/texturalpromotersfor promotingironoxidecatalysts

(6)TheimmobilizationofFeintoacrystallinematrixissometimes effectiveinstabilizingtheactivespecies(FeOx)against ther-malsinteringorexcessivereduction.Theuseofcerium-based perovskiteisagoodexample

Presently,thedevelopmentofCr-freeHTScatalystsisan impor-tant,ongoingtopicinthecatalystindustry.Wehaveintroduced somestudiesaboutCr-free“Fe-based”HTScatalysts,butthemajor developmentaltrendinvolvesnoblemetalcatalysts,whichexhibit highactivityin acompactcatalystbedand maintainthis activ-ityeveninoxidativeatmospheres[55].Thesecatalystsarequite promisinginspecificfields,suchasautomobileapplications How-ever,Fe-basedcatalystsarestilladvantageousintermsofmaterial cost, whichis highly desirablefor reducing theoperationcosts

of hydrogen plants [73] Thus, the need for reasonably priced HTS catalysts is providing an impetus for continuous studies

of Cr-free Fe-basedcatalysts Based onthis review, these stud-ies should focus on developing well-matched (non-chromium) promoter groups and crystalline matrixes for the active iron species

Trang 8

ThisworkwassupportedbytheHumanResourcesDevelopment

oftheKoreaInstituteofEnergyTechnologyEvaluationand

Plan-ning(20114010203050)grant fundedbytheKoreagovernment

MinistryofKnowledgeEconomy

This work was supported from GTL-FPSO project (KIST,

2M29760)fundedbytheKoreangovernment,Ministryof

Knowl-edge Economy (Project number: MKE2011T100200023) and

Industries(DSME,KOGAS,JNKHeaters,Hy-lokKorea)

Dr.Dae-WonLeeissupportedbyaKoreaUniversitygrant

References

[1] D Mendes, A Mendes, L.M Madeira, A Iulianelli, J.M Sousa, A Basile,

Asia-Pacific Journal of Chemical Engineering 5 (2010) 111.

[2] L Lloyd, D.E Ridler, M.V Twigg, in: M.V Twigg (Ed.), Catalyst Handbook, 2nd

ed., Wolfe Publishing Ltd., London, 1989, pp 283–292.

[3] K Kochloefl, in: G Etrl, H Knozinger, J Weitkamp (Eds.), Handbook of

Hetero-geneous Catalysis, vol 4, Wiley-VCH, Weinheim, 1997, pp 1831–1843.

[4] C.N Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed.,

McGraw-Hill, New York, 1991, pp 442–446.

[5] J.J Baschuk, X.G Li, International Journal of Energy Research 25 (2001) 695.

[6] X Cheng, Z Shi, N Glass, L Zhang, J Zhang, D Song, Z-S Liu, H Wang, J Shen,

Journal of Power Source 165 (2) (2007) 739.

[7] E.D Park, D Lee, H.C Lee, Catalysis Today 139 (4) (2009) 280.

[8] J.M Moe, Chemical Engineering Progress 58 (2) (1962) 33.

[9] D.S Newsome, Catalysis Reviews: Science and Engineering 21 (2) (1980) 275.

[10] G.J Hutchings, R.G Copperthwaitet, F.M Gottschalk, R Hunter, J Mellor, S.W.

Orchard, T Sangiorgio, Journal of Catalysis 137 (2) (1992) 408.

[11] J.R Mellor, R.G Copperthwaite, N.J Coville, Applied Catalysis 164 (1–2) (1997)

69.

[12] D Andreev, V Idakiev, T Tabakova, A Andreev, R Giovanoli, Applied Catalysis

A: General 134 (2) (1996) 275.

[13] V Idakiev, Z.-Y Yuan, T Tabakova, B.-L Su, Applied Catalysis A: General 281

(1–2) (2005) 149.

[14] D Tibiletti, A Amieiro-Fonseca, R Burch, Y Chen, J.M Fisher, A Goguet, C.

Hardacre, P Hu, D Thompsett, Journal of Physical Chemistry B 109 (47) (2005)

22553.

[15] G Jacobs, L Williams, U Graham, G.A Thomas, D.E Sparksand, B.H Davis,

Applied Catalysis 252 (1) (2005) 66–74.

[16] J.W Lywood, M.V Twigg, Eur Patent Appl., 0361648, 1990.

[17] C Rhodes, G.J Hutchings, A.M Ward, Catalysis Today (1995) 43.

[18] C Rhodes, B.P Williams, F King, G.J Hutchings, Catalysis Communications 3

(2002) 381.

[19] I.L Júnior, J.M.M Millet, M Aouine, M.C Rangel, Applied Catalysis A: General

283 (2005) 91.

[20] J.Y Lee, D.-W Lee, K.-Y Lee, Y Wang, Catalysis Today 146 (2009) 260.

[21] J.Y Lee, D.-W Lee, Y.-K Hong, K.-Y Lee, International Journal of Hydrogen

Energy 36 (2011) 8173.

[22] G.K Reddy, P Boolch, P.G Smirniots, Journal of Catalysis 282 (2011) 258.

[23] C Martos, J Dufour, A Ruiz, International Journal of Hydrogen Energy 34 (10)

(2009) 4475.

[24] Y.S Oh, H.S Roh, K.W Jun, Y.S Baek, International Journal of Hydrogen Energy

28 (2003) 1387.

[25] S.H Kim, S.W Nam, T.H Lim, H.I Lee, Applied Catalysis B: Environmental 81

(2008) 97.

[26] J.L.R Costa, G.S Marchetti, M.C Rangel, Catalysis Today 77 (2002) 205.

[27] A.L.C Pereira, G.J.P Berrocal, S.G Marchetti, A Albornoz, A.O de Souza, M.C.

Rangel, Journal of Molecular Catalysis A: Chemical 281 (2008) 66.

[28] S Natesakhawat, X Wang, L Zhang, U.S Ozkan, Journal of Molecular Catalysis

A: Chemical 260 (2006) 82.

[29] L Zhang, X Wang, J.M.M Millet, P.H Matter, U.S Ozkan, Applied Catalysis A:

General 351 (2008) 1.

[30] L Zhang, J.M.M Millet, U.S Ozkan, Applied Catalysis A: General 357 (2009)

66.

[31] P Gawade, B Mirkelamoglu, B Tan, U.S Ozkan, Journal of Molecular Catalysis A: Chemical 321 (2010) 61.

[32] K Watanabe, T Miyao, K Higashiyama, H Yamashita, M Watanabe, Catalysis Communications 10 (2009) 1952.

[33] G.C Araújo, M.C Rangel, Catalysis Today 62 (2000) 201.

[34] C Bosch, W Wild, Canada Patent 153,379, 1914.

[35] W Ruettinger, O Ilinich, in: S Lee (Ed.), in: Encyclopedia of Chemical Processing, Taylor & Francis, 2006.

[36] L Lloyd, D.E Ridler, M.V Twigg, in: M.V Twigg (Ed.), Catalyst Handbook, 2nd ed., Wolfe Publishing Ltd., London, 1989, pp 293–295.

[37] C Rhodes, G Hutchings, Physical Chemistry Chemical Physics 5 (2003) 2719 [38] G.K Reddy, P.G Smirniotis, Catalysis Letters 141 (1) (2011) 27.

[39] A Khan, P Chen, P Boolchand, P.G Smirniotis, Journal of Catalysis 253 (2008) 91.

[40] V Idakiev, D Mihajlova, B Kunev, A Andreev, Reaction Kinetics and Catalysis Letters 33 (1) (1987) 119.

[41] C Martos, J Dufour, A Ruiz, International Journal of Hydrogen Energy 34 (2009) 4475.

[42] G.K Reddy, K Gunasekera, P Boolchand, J Dong, P.G Smirniotis, Journal of Physical Chemistry C 115 (2011) 7586.

[43] T Popa, G Xu, T.F Barton, M.D Argyle, Applied Catalysis A: General 379 (2010) 15.

[44] L Lloyd, D.E Ridler, M.V Twigg, in: M.V Twigg (Ed.), Catalyst Handbook, 2nd ed., Wolfe Publishing Ltd., London, 1989, pp 302–304.

[45] L Lloyd, D.E Ridler, M.V Twigg, in: M.V Twigg (Ed.), Catalyst Handbook, 2nd ed., Wolfe Publishing Ltd., London, 1989, pp 304–306.

[46] F Domka, A Basinska, R Fieldcrow, Surface Technology 18 (1983) 275 [47] G.C Chinchen, R.H Logan, M.S Spencer, Applied Catalysis 12 (1984) 89 [48] G.C Chinchen, R.H Logan, M.S Spencer, Applied Catalysis 12 (1984) 93 [49] M Robbins, G.K Wertheim, R.C Sherwood, D.N.E Buchanan, Journal of Physics and Chemistry of Solids 32 (1971) 717.

[50] M.A Edwards, D.M Whittle, C Rhodes, A.M Ward, D Rohan, M.D Shannon, G.J Hutchings, C.J Kiely, Physical Chemistry Chemical Physics 4 (2002) 3902 [51] C Pellerin, S.M Booker, Environmental Health Perspectives 108 (2000) a402 [52] P.C Grevatt, Toxicological Review of Hexavalent Chromium, U.S Environmen-tal Protection Agency, 1998.

[53] U.S Department of Labor, Hexavalent Chromium, OSHA 3373-10, 2009 [54] Official Journal of the European Union 46 (L37) (2003) 19–37.

[55] C Ratnasamy, J.P Wagner, Catalysis Reviews 51 (2009) 325.

[56] Y Hattori, K Yamamoto, J Kaita, M Matsuda, S Yamada, Journal of the Amer-ican Oil Chemists Society 77 (12) (2000) 1283.

[57] J Ladebeck, T Regula, Studies in Surface Science and Catalysis 121 (1999) 215 [58] G.C Chinchen, Eur Patent Appl 0062410, 1982.

[59] D.G Rethwisch, J.A Dumesic, Applied Catalysis 21 (1986) 97.

[60] D.G Rethwisch, J Phillips, Y Chen, T.F Hayden, J.A Dumesic, Journal of Catalysis

91 (1985) 167.

[61] J Ladebeck, K Kochloefl, Studies in Surface Science and Catalysis 91 (1995) 1079.

[62] Q Liu, W Ma, R He, Z Mu, Catalysis Today 106 (2005) 52.

[63] H Jin, Q Liu, Z Mu, L Diao, X Zhang, W Ma, Chin Patent ZL95 121834.4, 1999 [64] M.L Kundu, A.C Sengupta, G.C Maiti, B Sen, S.K Ghoshi, V.I Kuznetsov, G.N Kustova, E.N Yurchenko, Journal of Catalysis 112 (1988) 375.

[65] A Andreev, V Idakiev, D Mihajlova, D Shopov, Applied Catalysis 22 (1986) 385.

[66] J.Y Lee, D.-W Lee, M.S Lee, K.-W Lee, Catalysis Communications 14 (2011) 37 [67] M.S Lee, J.Y Lee, D.-W Lee, D.J Moon, K.-W Lee, International Journal of Hydro-gen Energy 37 (2011) 11218.

[68] K Watanabe, T Miyao, K Higashiyama, H Yamashita, M Watanabe, Catalysis Communications 12 (2011) 976.

[69] A Boudjemaa, C Daniel, C Mirodatos, M Trari, A Auroux, R Bouarab, Comptes Rendus Chimie 14 (2011) 532.

[70] N Mahadevaiah, P Singh, B.D Mukri, S.K Parida, M.S Hedge, Applied Catalysis B: Environmental 108–109 (2011) 117.

[71] T Blunesin, R.J Gorte, G.W Graham, Applied Catalysis B: Environmental 15 (1998) 107.

[72] Y Sun, S.S Hla, G.J Duffy, A.J Cousins, D French, L.D Morpeth, J.H Edwards, D.G Roberts, International Journal of Hydrogen Energy 36 (2011) 79 [73] FreedomCAR and Fuel Partnership, Hydrogen Production Roadmap: Technology Pathways to the Future (2009): www1.eere.energy.gov/ hydrogenandfuelcells/pdfs/h2 production roadmap.pdf

Ngày đăng: 08/10/2015, 23:01

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm