1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH

36 569 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 407 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TÓM TẮT LUẬN VĂN THẠC SỸ KỸ THUẬTTên luận văn: ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH Tính cấp thiết của đ ề tài: Điều khiển hệ thống là bài toán can

Trang 1

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

Trang 2

CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI

TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP THÁI NGUYÊN

Người hướng dẫn khoa học:

PGS.TS NGUYỄN DOÃN PHƯỚC

Phản biện 1:

GS.TSKH NGUYỄN PHÙNG QUANG

Phản biện 2:

PGS.TS NGUYỄN NHƯ HIỂN

Luận văn sẽ được bảo vệ trước Hội đồng chấm luận văn họp tại: Trường Đại học Kỹ thuật công nghiệp, ĐHTN.

Ngày…….tháng……năm 200

Có thể tìm luận văn tại:

Thư viện Trường Đại học Kỹ thuật công nghiệp, ĐHTN

Trung tâm học liệu - Đại học Thái Nguyên

Trang 3

TÓM TẮT LUẬN VĂN THẠC SỸ KỸ THUẬT

Tên luận văn: ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH

Tính cấp thiết của đ ề tài:

Điều khiển hệ thống là bài toán can thiệp vào đối tượngđiều khiển để hiệu chỉnh, để biến đổi sao cho nó có chất lượngmong muốn Kết quả của bài toán điều khiển có thể là một tínhiệu điều khiển thích hợp hoặc một bộ điều khiển tạo tín hiệuđiều khiển thích hợp cho đối tượng Các bộ điều khiển bao gồmcác cấu trúc: Điều khiển hở, điều khiển phản hồi trạng thái,điều khiển phản hồi tín hiệu ra

Có rất nhiều bộ điều khiển được ứng dụng thành công lại chỉdùng được cho hệ SISO (ví dụ: bộ điều khiển PID) Để sử dụngcác bộ điều khiển đó cho hệ MIMO, ta phải can thiệp sơ bộtrước vào hệ MIMO, biến một hệ thống MIMO thành nhiều hệSISO với mỗi đầu ra chỉ phụ thuộc vào một tín hiệu đầu vào

Bộ điều khiển phản hồi trạng thái có khả năng giữ được ổnđịnh chất lượng mong muốn cho đối tượng dù trong qúa trìnhđiều khiển luôn có những tác động nhiễu Để ứng dụng tốt bộđiều khiển trạng thái trong việc điều khiển hệ thống MIMO,cần sử dụng kết hợp với bộ Quan sát trạng thái để có thể lấychính xác và đầy đủ nhất các thông tin về chất lượng động họccủa đối tượng

Trang 4

Xuất phát từ những yêu cầu cấp thiết phải nghiên cứu trên, tácgiả muốn đóng góp một phần nhỏ vào việc nghiên cứu khảnăng kết hợp giữa bộ quan sát trạng thái với bộ điều khiển phảnhồi trạng thái tách kênh hệ MIMO tuyến tính để có được bộđiều khiển tách kênh phản hồi đầu ra.

Mục đ ích của luận v ă n:

Đề tài nghiên cứu thành công sẽ chứng minh khả năng kết hợpgiữa bộ quan sát trạng thái với bộ điều khiển phản hồi trạngthái tách kênh hệ MIMO tuyến tính Nói cách khác, nó sẽchứng minh được nguyên lý tách cũng đúng trong điều khiểntách kênh

Ý nghĩa thực tiễn và ý nghĩa khoa học

1 Ý nghĩa khoa học

Đề tài nghiên cứu thành công sẽ chứng minh khả năng kết hợpgiữa bộ quan sát trạng thái với bộ điều khiển phản hồi trạngthái tách kênh hệ MIMO tuyến tính Nói cách khác, nó sẽchứng minh được nguyên lý tách cũng đúng trong điều khiểntách kênh

2 Ý nghĩa thực tiễn

Thiết kế bộ điều khiển cho một số đối tượng tuyến tính trongthực tế và hướng ứng dụng kết quả nghiên cứu vào thiết kế bộđiều khiển cho các đối tượng tuyến tính trong các hệ thống tự

Trang 5

động điều khiển quá trình sản xuất, đặc biệt là với các quá trìnhchưng cất.

Nội dung của luận văn:

1 Nội dung bài toán điều khiển tách kênh và 2 phương phápthiết kế bộ điều khiển tách kênh cơ bản, đó là: Phương phápthiết kế theo Falb – Wolovich và Phương pháp thiết kế theoSmith – McMillan

2 Phương pháp thiết kế bộ điều khiển tách kênh trong miền tần

số, mô hình ma trận hàm truyền và nhược điểm của tách kênhtrong miền tần số, đánh giá sự tương tác giữa các kênh

3 Phương pháp thiết kế bộ điều khiển tách kênh bằng phản hồitrạng thái Những lý thuyết về điều khiển phản hồi trạng thái vàthuật toán tìm các bộ điều khiển của bài toán tách kênh

4 Phân tích tính quan sát được của hệ tuyến tính Phương phápthiết kế bộ quan sát Luenberger và một số bộ quan sát trạngthái tuyến tính khác (Kalman và LQG) Đưa ra kết luận về chấtlượng hệ kín, nguyên lý tách

5 Kết quả nghiên cứu mô phỏng trên Simulink:

+ Mô phỏng hệ MIMO tuyến tính 2 đầu vào 2 đầu ra

+ Mô phỏng bộ điều khiển tách kênh cho đối tượng MIMOtuyến tính 2 đầu vào 2 đầu ra

+ Mô phỏng bộ quan sát Luenberger cho đối tượng MIMOtuyến tính 2 đầu vào 2 đầu ra

+ Nghiên cứu mô phỏng khả năng ghép chung bộ điều khiểnphản hồi trạng thái tách kênh với bộ quan sát trạng thái cho đốitượng MIMO tuyến tính 2 đầu vào 2 đầu ra

Với nội dung trên, ngoài lời nói đầu, mục lục và tài liệu tham khảo, luận văn bao gồm 5 chương:

Trang 6

Chương 1: Tổng quan về bộ điều khiển tách kênh

Chương 2 : Điều khiển tách kênh trong miền tần số và nhược

điểm của nó

Chương 3: Điều khiển tách kênh bằng phản hồi trạng thái Chương 4: Quan sát trạng thái

Chương 5: Nghiên cứu khả năng ghép chung bộ điều khiển

phản hồi trạng thái tách kênh với bộ quan sát trạng thái

Trang 7

Chương 1 TỔNG QUAN VỀ BỘ ĐIỀU KHIỂN TÁCH KÊNH

1.1 Nội dung bài toán điều khiển tách kênh

Có rất nhiều bộ điều khiển được ứng dụng thành cônglại chỉ dùng được cho hệ SISO, bộ điều khiển PID là một ví dụđiển hình Vì mong muốn sử dụng các bộ điều khiển đó cho hệMIMO, người ta nghĩ đến việc can thiệp sơ bộ trước vào hệMIMO, biến một hệ thống MIMO thành nhiều hệ SISO vớimỗi đầu ra yi (t) chỉ phụ thuộc vào một tín hiệu đầu vào wi (t)

Ta nói rằng hệ thống đã được phân ly, tín hiệu ra của 1 kênhbất biến với tác động điều khiển của các kênh khác

u1

um

y1

ym

w1

wm

y1

ym

Trang 8

1.2 Hai phương pháp tách kênh cơ bản

Phương pháp 1: Phương pháp Falb – Wolovich

Xét đối tượng MIMO tuyến tính có m đầu vào u1, u2,…um vàcũng có m đầu ra y1, y2,…,ym mô tả bởi:

Phương pháp 2: Phương pháp Smith - McMillan

Phép biến đổi Smith – McMilan trình bày sau đây chophép thiết kế các bộ điều khiển nhằm biến đổi mọi ma trậntruyền đạt S (s) của đối tượng, không cần phải vuông, tức làkhông cần phải có giả thiết đối tượng có số tín hiệu vào bằng

số các tín hiệu ra, về được dạng:

u

w1wm

y1ym

Trang 9

Chương 2 Điều khiển tách kênh trong miền tần số

và nhược điểm của nó

d s trong đó d (s) là đa thức bội số

chung nhỏ nhất của tất cả các đa thức mẫu số có trong các phần

tử của S (s) và P (s) là ma trận có các phần tử là đa thức Ví dụ:

Trang 10

2 Sử dụng các phép biến đổi tương đương đã nói ở trên đểđưa P (s) về dạng “đường chéo” bằng cách đưa dần cácphần tử không nằm trên đường chéo về 0 thông quaviệc cộng trừ hàng và cột Điều này đã được Smith –McMillan chuyển thành những bước của thuật toán sau:

Trang 11

c Chọn dk(s) là ước số chung lớn nhất của tất cảcác phần tử là định thức ma trận vuông kxk lấy

.( ) ( )

k k

d s

d s ds

2.2 Đánh giá sự tương tác các kênh

Tương tác được hiểu là tác động qua lại hoặc ảnh hưởng lẫnnhau giữa các đối tượng tham gia tương tác Trong hệ MIMO,

sự tương tác được thể hiện qua sự thay đổi của một biến sẽ ảnhhưởng tới các biến còn lại với các mức độ khác nhau

Giữa hai biến xi và xj trong hệ thống có thể có các quan hệ:tương tác 2 chiều (sự thay đổi của bất kỳ biến nào cũng sẽ ảnhhưởng tới biến còn lại); tương tác 1 chiều, chẳng hạn từ xi sang

Trang 12

xj (chỉ sự thay đổi của xi mới ảnh hưởng tới xj còn thay đổi xjkhông ảnh hưởng tới xi ); hoặc giữa 2 biến không có tương tác.Mức độ tương tác giữa các biến được thể hiện qua hệ số tươngtác Hệ số tương tác tĩnh giữa biến vào ui và biến ra yj ký hiệu

là ji được định nghĩa là tỷ số giữa hệ số khuếch đại vòng hở(khi chưa có điều khiển) và hệ số khuếch đại vòng kín (khi đã

có điều khiển) Khi ji= 1: yj chỉ phụ thuộc vào riêng ui,

ji

 = 0 : giữa ui và yj không có quan hệ gì, ji< 1: thể hiện hệ

số khuếch đại từ ui sang yj sẽ giảm khi khép mạch và ngược lại.Giả sử hệ thống có n biến vào điều khiển n biến ra và ma trậntruyền đạt:

G(s) = [gij]nxn

Các hệ số tương tác jitương ứng với các phần tử của ma trận

có hệ số khuếch đại tương đối ký hiệu là G được xác địnhtheo công thức:

G = G(s) x (G(s)-1)T = [ji(s)]nxn

ý nghĩa của hệ số tương tác ji: Đánh giá mức độ tương tácgiữa các biến trong hệ thống và trợ giúp việc cặp đôi các biếnđiều khiển và biến được điều khiển trong trường hợp sử dụngcấu trúc điều khiển phi tập trung, khi ji  1 sẽ dùng uj để điềukhiển yi Tuyệt đối tránh trường hợp cặp đôi uj và yi mà ji<0

Trang 13

Một trong những nhiệm vụ quan trọng khi điều khiển hệMIMO là giảm thiểu hoặc khử tương tỏc giữa cỏc đầu ra

Chương 3 Điều khiển tỏch kờnh bằng phản hồi trạng thỏi 3.1 Điều khiển phản hồi trạng thỏi

Bộ điều khiển

+

Hình 3.1b: Vị trí bộ điều khiển đặt ở

mạch hồi tiếp

Trang 14

Hình vẽ trên biểu diễn nguyên tắc điều khiển phản hồi trạngthái Bộ điều khiển sử dụng tín hiệu trạng thái x(t) của đốitượng để tạo ra được tín hiệu đầu vào u (t) cho đối tượng Vị trícủa bộ điều khiển có thể là ở mạch truyền thẳng (hình 3.1a)hoặc ở mạch hồi tiếp (hình 3.1b).

3.2 Thuật toán tìm các bộ điều khiển của bài toán tách kênh

Xét đối tượng MIMO tuyến tính có m đầu vào u1, u2,…um vàcũng có m đầu ra y1, y2,…,ym mô tả bởi:

u

w1wm

y1ym

H×nh 3.2 M« t¶ thuËt to¸n

Trang 15

2 Chọn tuỳ ý các tham số bi và aik, i = 1,2, ,m, k=0,1, , ri-1 Ta cũng có thể chọn chúng theo chất lượng địnhtrước cho từng kênh, chẳng hạn:

b Chọn bi = ai0 để kênh thứ i không có sai lệch tĩnh

3 Lập các ma trận E, F, L rồi tính M, R theo các côngthức

4.1.1 Phân tích tính quan sát được

4.1.1.1 Khái niệm quan sát được và quan sát được hoàn toàn

Một hệ thống có tín hiệu vào u(t) và tín hiệu ra y(t) được gọi là:

a Quan sát được tại thời điểm t 0 , nếu tồn tại ít nhất một giá trị hữu hạn T >t 0 để điểm trạng thái

Trang 16

x(t 0 )=x 0 , xác định được một cách chính xác thông qua vectơ các tín hiệu vào ra u(t), y(t) trong khoảng thời gian [t 0 ,T].

b Quan sát được hoàn toàn tại thời điểm t 0 , nếu với mọi T >t 0 , điểm trạng thái x 0 =x(t 0 ) luôn xác định được một cách chính xác từ véctơ các tín hiệu vào

ra u(t), y(t) trong khoảng thời gian [t 0 ,T].

4.1.1.2 Một số kết luận chung về tính quan sát được của hệ tuyến tính

* Hệ không dừng ( ) ( )

( ) ( )

dx

A t x B t u dt

* Nếu hệ không dừng ( ) ( )

( ) ( )

dx

A t x B t u dt

Trang 17

4.1.1.3 Tính đối ngẫu và các tiêu chuẩn xét tính quan sát được của hệ tham số hằng

* Hệ tham số hằng

dx

Ax Bu dt

Trang 18

e tx t x t Khi t T

(4.6)Nhiệm vụ của thiết kế là xác định L trong (4.5) để có được yêucầu Trước tiên ta lập sai lệch từ hai mô hình (4.4) và (4.5) vàđược:

Hình 4.1: Bộ quan sát trạng thái của Luenberger

Trang 19

có thể chủ động tìm L với một tốc độ tiến về 0 của e(t) đã đượcchọn trước bằng cách xác định L sao cho A -LC có các giá trịriêng phù hợp với tốc độ đó.

Nếu để ý thêm rằng giá trị riêng của ma trận bất biến với phépchuyển vị, thì công việc xác định L sao cho A -LC có đượcnhững giá trị riêng chọn trước cũng đồng nghĩa với việc tìm LT

để

(A-LC)T = AT-CTLTnhận các giá trị cho trước s1, , sn làm giá trị riêng và đây là

bài toán thiết kế bộ điều khiển cho trước điểm cực:

Có hai khả năng thiết kế bộ điều khiển gán điểm cực bằng bộđiều khiển R tĩnh là:

- Thiết kế bằng phản hồi trạng thái:

Trang 21

Vì tín hiệu phản hồi về bộ điều khiển R là y nên hệ kín có mô

Vậy nhiệm vụ “gán điểm cực” là phải tìm R để ma trận A

-BRC có các giá trị riêng là n giá trị si, i = 1,2, , n đã được

chọn trước từ yêu cầu chất lượng cần có của hệ thống, hay

nhiệm vụ thiết kế chính là tìm ma trận R thoả mãn:

Trang 22

đối với phương trình (4.8) thì điều kiện hệ

d x

Ax Bu dt

ra mang tính động học, chứ không phải chỉ giới hạn trong các

bộ điều khiển tĩnh (ma trận hằng) R, tức là phải sử dụng bộđiều khiển có mô hình trạng thái (tuyến tính):

R:

d z

E z F y dt

4.1.2.2 Các phương pháp khác nhau phục vụ bài toán thiết

kế bộ điều khiển phản hồi trạng thái gán điểm cực:

- Tính các hệ số a , i = 0,1, , n-1 của phương trình iđặc tính cần phải có của hệ kín từ những giá trị điểm cực si , i =

Trang 23

b Phương pháp Roppenecker

Thuật toán Roppenecker dạng tổng quát:

1 Tính các véctơ ak ứng với các giá trị sk đã cho:

a Nếu sk không phải là giá trị riêng của A thì tính theocông thức:

ak = (skI-A)-1Btk k = 1,2, ,n

Trong đó tk là tham số tự do

c Nếu sk là giá trị riêng của A thì chọn tk = 0 và ak làvéctơ riêng bên phải tương ứng của A tính theo côngthức: (skI - A)ak = 0

2 Chọn các véctơ tham số còn tự do tk sao cho với nó n véctơ

ak , k = 1,2, , n xác định ở bước 1 lập thành hệ độc lập tuyếntính, rồi tính R theo công thức: R = -(t1, , tn)(a1, , an)-1

c Phương pháp Modal phản hồi trạng thái

thuật toán xác định bộ điều khiển R dịch chuyển điểm cực chođối tượng có hạng của B là r và A là ma trận giống đường chéo,như sau:

- Xác định r theo véctơ riêng bên trái b1, , br của Atheo công thức biT(giI-A) = 0T

- Tính Mr-1 và Tr theo công thức

1 1

T

r

T r

b M

T

r T r

b B T

T

n

T n

Trang 24

d Bài toán điều khiển phản hồi trạng thái tối ưu

Thiết kế bộ điều khiển LQR phản hồi dương

thuật toán tìm bộ điều khiển R, tối ưu theo nghĩa

1 Xác định ma trận K đối xứng, xác định âm là nghiệmcủa phương trình Riccati (KBF B K KA A K 1 T T E

) Ma trận K xác định âm khi và chỉ khi ma trận –K xácđịnh dương Công cụ để kiểm tra tính xác định dươngcủa một ma trận là định lý Sylvester (Trang 276: Lýthuyết điều khiển tuyến tính – Nguyễn Doãn Phước)Xác định R từ K theo công thức:R F B K  1 T

Ta đi đến thuật toán tìm L của bộ quan sát trạng tháiLuenberger cho đối tượng

quan sát được gồm 2 bước như sau:

1 Chọn trước n giá trị s1, sn có phần thực âm ứng vớithời gian T mong muốn để quan sát tín hiệu vào ra Cácgiá trị s1, sn được chọn nằm càng xa trục ảo về phíatrái(có phần thực càng nhỏ càng tốt) so với giá trị riêngcủa A thì thời gian T sẽ càng ngắn và do đó sai lệch e(t)càng nhanh tiến về 0

2 Sử dụng các phương pháp đã biết như Roppenecker,Modal để tìm bộ điều khiển LT phản hồi trạng thái gánđiểm cực s1, sn cho đối tượng:

dx/dt=ATx + CTu

Trang 25

Một điều cần chú ý là bộ quan sát trạng thái thường được sửdụng kèm với bộ điều khiển phản hồi trạng thái:

Nói cách khác, trạng thái xấp xỉ x(t) tìm được sẽ là tín hiệuđầu vào của bộ điều khiển Bởi vậy thời gian xác định trạngthái xấp xỉ x(t) của đối tượng không thể chậm hơn thời gianthay đổi trạng thái x t ( )của bản thân đối tượng Từ đây suy rađiều kiện tiên quyết để chọn những giá trị s1, ,sn là chúngkhông những phải nằm bê trái các điểm cực của đối tượng màcòn phải nằm bên trái các điểm cực của hệ kín (giá trị riêng A -BR)

4.2 Các bộ quan sát trạng thái tuyến tính khác

dx

Ax Bu dt

Trang 27

Như vậy để thiết kế bộ điều khiển LQG ta phải sử dụng hai lầnthuật toán thiết kế bộ điều khiển LQR:

- Lần thứ nhất là để xây dựng bộ điều khiển phản hồi trạng tháitối ưu R LQR cho đối tượng

dx

Ax Bu L y y Du dt

Trang 28

- Lần thứ hai là để xác định ma trận L của bộ quan sát Kalmantheo công thức LT = N CP y1

với P là nghiệm của phương trìnhRiccati PC N CP PA T y1 T AP N x

4.3 Kết luận về chất lượng hệ kín: NGUYÊN LÝ TÁCH

Bộ quan sát trạng thái của Luenberger và của Kalman không làm thay đổi vị trí các điểm cực cũ det (sI-A+BR) = 0 của hệ thống Nó chỉ đưa thêm vào hệ thống các điểm cực mới là nghiệm của det (sI-A+LC) = 0 Điều này cho thấy ở hệt tuyến tính, việc thiết kế bộ điều khiển phản hồi tín hiệu

ra là tách được thành hai bài toán riêng biệt gồm bài toán thiết kế bộ điều khiển phản hồi trạng thái và bài toán thiết kế

bé quan sát trạng thái (Nguyên lý tách)

Trang 29

Sử dụng Matlab Simulink để mô phỏng, từ đó đưa ra kết luận:

ở hệ MIMO tuyến tính các đầu vào có sự ảnh hưởng đến tất cảcác đáp ứng đầu ra Mỗi sự thay đổi của tín hiệu đầu vào đềulàm thay đổi tín hiệu đầu ra

Ngày đăng: 28/08/2015, 18:27

HÌNH ẢNH LIÊN QUAN

Hình 3.1a: Bộ điều khiển đặt ở vị trí - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 3.1a Bộ điều khiển đặt ở vị trí (Trang 13)
Hình vẽ trên biểu diễn nguyên tắc điều khiển phản hồi trạng thái. Bộ điều khiển sử dụng tín hiệu trạng thái  x(t) của đối tượng để tạo ra được tín hiệu đầu vào u (t) cho đối tượng - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình v ẽ trên biểu diễn nguyên tắc điều khiển phản hồi trạng thái. Bộ điều khiển sử dụng tín hiệu trạng thái x(t) của đối tượng để tạo ra được tín hiệu đầu vào u (t) cho đối tượng (Trang 14)
Hình 4.1: Bộ quan sát trạng thái của Luenberger - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 4.1 Bộ quan sát trạng thái của Luenberger (Trang 18)
Hình 4.2: Thiết kế bằng phản hồi trạng thái - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 4.2 Thiết kế bằng phản hồi trạng thái (Trang 20)
Hình 4.3: Thiết kế bằng phản hồi tín hiệu ra - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 4.3 Thiết kế bằng phản hồi tín hiệu ra (Trang 20)
Hình 4.10: Sử dụng kết hợp bộ quan sát trạng thái và bộ - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 4.10 Sử dụng kết hợp bộ quan sát trạng thái và bộ (Trang 25)
Hình 4.12: Hệ thống điều khiển LQG(linear quadratic Gaussian) - Tóm tắt luận văn thạc sĩ kỹ thuật ĐIỀU KHIỂN TÁCH KÊNH HỆ TUYẾN TÍNH BẰNG PHẢN HỒI ĐẦU RA THEO NGUYÊN LÝ TÁCH
Hình 4.12 Hệ thống điều khiển LQG(linear quadratic Gaussian) (Trang 27)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w