Tính hạng đối tượng trong mạng xã hội Twitter Nguyễn Thị Ngọc Lan Trường Đại học Công nghệ.. Phát biểu và nêu lên ý nghĩa bài toán tính hạng đối tượng trên mạng xã hội Twitter.. Trình
Trang 1Tính hạng đối tượng trong mạng xã hội
Nguyễn Thị Ngọc Lan
Trường Đại học Công nghệ Đại học Quốc gia Hà Nội Luận văn ThS Công nghệ thông tin: 60 18 05 Người hướng dẫn : PGS.TS Hà Quang Thụy
Năm bảo vệ: 2013
50 tr
Abstract Phát biểu và nêu lên ý nghĩa bài toán tính hạng đối tượng trên mạng xã hội
Twitter Phân tích các nghiên cứu liên quan và hướng tiếp cận giải quyết bài toán này Trình bày hai phương pháp giải quyết bài toán: tính hạng tweet bằng phương pháp xét
độ tin cậy và độ liên quan và phương pháp tính hạng tweet dựa trên mạng không đồng nhất Đề xuất mô hình thực nghiệm xếp hạng các Tweet dựa trên phương pháp sử dụng mạng không đồng nhất Kết quả cho thấy hệ thống hoạt động và chứng tỏ tính hiệu quả của phương pháp
Keywords Hệ thống thông tin; Mạng xã hội; Khai phá dữ liệu; Tính hạng đối tượng Content
Tính hạng đối tượng là một trong một số các bài toán quan trọng điển hình trong các hệ thống ứng dụng trên Internet, đặc biệt trong các hệ thống tìm kiếm, từ tính hạng trang Web trong tìm kiếm web đến tính hạng thực thể trong tìm kiếm thực thể, tính hạng ảnh trong tìm kiếm ảnh Một số thuật toán xếp hạng trang web đã trở nên rất nổi tiếng như PageRank [23], HITS [17] Tính hạng trang đã và đang là nội dung nghiên cứu và triển khai thời sự Chẳng hạn, theo Google Scholar, có khoảng 1100 bài báo có chứa cụm "PageRank" ở tiêu đề, trong đó có trên 230 bài báo công bố sau năm năm
2009
Trong một vài năm gần đây, khai phá dữ liệu mạng xã hội trực tuyến đã trở thành một chủ đề khoa học và công nghệ nổi bật [15, 14, 16] bởi mạng xã hội trực tuyến là nguồn tài nguyên dữ liệu do người sử dụng sinh ra (GUC), phản ánh ngày càng phong phú đời sống xã hội và tinh thần trong xã hội loài người Mạng xã hội trực tuyến Twitter cho thấy khả năng phục vụ điều tra xã hội [4] vì vậy thu hút sự quan tâm đặc
Trang 2biệt của nhiều tổ chức, nhiều nhóm nghiên cứu trên thế giới, chẳng hạn dãy hội nghị hàng năm TREC tại Viện chuẩn và khoa học Mỹ [microblog-track]
Luận văn “Tính hạng đối tượng trên mạng xã hội Twitter” tập trung nghiên
cứu đặc trưng của mạng xã hội – tập trung vào mạng Twitter, các thuật toán tính hạng Twitter đã được công bố và đề nghị một mô hình thực nghiệm tính hạng các Tweet sử dụng mạng không đồng nhất
Luận văn gồm 4 chương được mô tả như sau:
Chương 1 Giới thiệu chung về mạng xã hội và Twitter: những nội dung liên
quan để phân tích mạng xã hội, phát biểu bài toán tính hạng đối tượng trên mạng xã hội Twitter, một số nghiên cứu liên quan và các phương pháp giải quyết bài toán
Chương 2 Phương pháp tính hạng dựa vào độ tin cậy và độ liên quan, đưa ra mô
hình ba lớp của hệ thống tính hạng Twitter gồm lớp user, lớp tweet, lớp web và đánh giá ưu, nhược điểm của phương pháp này
Chương 3 Trình bày phương pháp tính hạng dựa vào mạng không đồng nhất
Giới thiệu mô hình Tri – HITS, cách xây dựng mạng không đồng nhất trong hệ thống Twitter và phương pháp lan truyền điểm xếp hạng trong mạng này
Chương 4 Mô hình thực nghiệm tiến hành quyết bài toán tính hạng đối tượng trong mạng xã hội Twitter, thực nghiệm và đánh giá kết quả thu được
TÀI LIỆU THAM KHẢO
[1] Agichtein E., Castillo C., Donato D (2008) Finding High-Quality Content in Social Media WSDM’08, February 11-12, 2008, Palo Alto, Califor-nia, USA pp 183-193
[2] Al-Ani B., Mark G., Chung J., Jones J (2012), The Egyptian Blogosphere: A
Counter-Narrative of the Revolution, Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work pp 17-26
[3] Balakrishnan R., Kambhampati S (2011), "Sourcerank: Relevance and trust
assessment for deep web sources based on inter-source agreement."Proceedings of the
20th international conference on World wide web ACM.
[4] Bennet S (2012), Twitter On Track For 500 Million Total Users By March, 250 Million Active Users By End Of 2012,
Trang 3[5] Casilli A A., Tubaro P (2012), Social media censorship in times of political
unrest: A social simulation experiment on the UK riots, Bulletin of Sociological Methodology, 115
[6] D'Andrea A., Ferri F., Grifoni P., (2009), "An Overview of Methods for Virtual Social Network Analysis" In Abraham, Ajith Computational Social Network Analysis: Trends, Tools and Research Advances Springer pp 8
[7] Duan Y., Jiang L., Qin T., Zhou M., Shum H-Y., (2010) "An empirical study on
learning to rank of tweets."Proceedings of the 23rd International Conference on
Computational Linguistics Association for Computational Linguistics
[8] Deng H., Han J., Zhao B., Yu Y., Lin C (2011) Probabilistic topic models with biased propagation on heterogeneous information networks In Proc ACM SIGKDD2011, pp 1271–1279
[9] Elizabeth I., (2011), Connecting the National and the Virtual: Can Facebook Activism Remain Relevant After Egypt’s January 25 Uprising?, International Journal
of Communication 5, pp.13-15
[10] Gupta A., Kumaraguru P., (2012), "Credibility ranking of tweets during high impact events." Proceedings of the 1st Workshop on Privacy and Security in Online Social Media ACM
[11] Gupta M., and Han J (2011), Heterogeneous network-based trust analysis: a survey ACM SIGKDD Explorations, pp.54
[12] Gruber D., Introduction in Social Network Analysis Theoretical Approaches and Empirical Analysis with computer-assisted programmes
[13] Homero Gil de Zúnĩga H., Jung N., Valenzuela S (2012) Social Media Use for News and Individuals’ Social Capital, Civic Engagement and Political Participation,
Journal of Computer-Mediated Communication 17
[14] Huang M., Yang Y., Zhu X (2011), "Quality-biased Ranking of Short Texts in Microblogging Services." IJCNLP
[15] Huang H., Zubiaga A., Ji H., Deng H., Wang D., Le H., Abdelzaher T., Han J., Leung A., Hancock J., Voss C (2012), "Tweet Ranking Based on Heterogeneous
Networks."COLING
[16] Jarvelin K., Kekalainen J (2000), IR evaluation methods for retrieving highly
relevant documents Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval, pp 41-48
Trang 4[17] Kleinberg J.M (1999), "Authoritative sources in a hyperlinked
environment." Journal of the ACM
[18] Mendoza M., Poblete B., Castillo C., (2010), Twitter Under Crisis: Can we trust what we RT? 1st Workshop on Social Media Analytics (SO-MA’10), July 25, 2010, Washington DC, USA
[19] Mihalcea R (2004), Graph-based ranking algorithms for sentence extraction, applied to text summarization In Proc ACL2004
[20] Moreau E., Yvon F., Cappé O., (2008), "Robust similarity measures for named
entities matching." Proceedings of the 22nd International Conference on
Computational Linguistics-Volume 1 Association for Computational Linguistics
[21] Nigel C., Son Doan (2011) Syndromic Classification of Twitter Messages,
eHealth 2011 pp 186-195
[22] O'Connor B., Balasubramanyan R., Routledge B.R., Smith N.A.,(2010), From
Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series, ICWSM
2010 pp 122-129
[23] Page L., Brin S., Motwani R., Winograd T (1998), The pagerank citation ranking: Bringing order to the web In Proc the 7th International World Wide Web Conference [24] Pinheiro C.A.R (2011), Social Network Analysis in Telecommunications John Wiley & Sons pp 4
[25] Ravikumar S., Balakrishnan R., Kambhampati S., (2012), "Ranking tweets
considering trust and relevance." Proceedings of the Ninth International Workshop on
Information Integration on the Web ACM
[26] Sakaki T., Okazaki M., Matsuo Y., (2010), Earthquake shakes Twitter users:
real-time event detection by social sensors, WWW 2010 pp 851-860
[27] Wilson R.E, Gosling S.D, Graham L.T, (2012), A Review of Facebook Research
in the Social Sciences, Perspectives on Psychological Science 7
[28] Trec 2011 microblog track http://trec.nist.gov/data/tweets/
[29] Wang D., Abdelzaher T., Ahmadi H., Pasternack J., Roth D., Gupta M., Han J., Fatemieh., Le H (2011), "On bayesian interpretation of fact-finding in information
networks." Information Fusion (FUSION), 2011 Proceedings of the 14th International
Conference on IEEE.
Trang 5[30] Wasserman S., Katherine F., (1994), "Social Network Analysis in the Social and
Behavioral Sciences" Social Network Analysis: Methods and Applications Cambridge
University Press pp 1–27
[31] Zaphiris P., Pfeil U., (2007), “Introduction to Social Network Analysis” Published
by the British Computer Society Volume 2 Proceedings of the 21st BCS HCI Group Conference
[32] Zubiaga A., Spina D., Amigó E., Gonzalo J (2012), Towards real-time summarization of scheduled events from twitter streams In Proceedings of the 23rd ACM conference on Hypertext and social media, pp 319–320