1. Trang chủ
  2. » Khoa Học Tự Nhiên

Chuyên đề chứng minh bất đẳng thức bằng phương pháp phản chứng

3 2,1K 18

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 229,52 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chuyên đề: PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC BẰNG PHẢN CHỨNG Bài toán chứng minh bất đẳng thức có rất nhiều dạng và đã gây không ít trở ngại cho các bạn học sinh trong các kỳ thi.M

Trang 1

Chuyên đề: PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC BẰNG PHẢN

CHỨNG

Bài toán chứng minh bất đẳng thức có rất nhiều dạng và đã gây không ít trở ngại cho các bạn học sinh trong các kỳ thi.Một trong các phương pháp được sử dụng để chứng minh bất đẳng thức chính là phương pháp phản chứng.Phương pháp này tỏ ra có ưu thế rõ rệt khi trong giả thiết và kết luận của bài toán có nhiều bất đẳng thức

Các ví dụ minh họa:

Ví dụ 1: Chứng minh rằng (ab) 2  4ab

Lời giải:

aab b  abaab b   a b  , Điều này là sai với mọi a,b Vậy giả sử trên là sai , suy ra đpcm

Ví dụ 2: Cho ba số a,b,c(0;1)Chứng minh rằng có ít nhất một trong các bất đẳng thức

sau đây là sai:

(1 ) 1; (1 ) 1; (1 ) 1

abbcca

Lời giải:

Gỉả sử cả ba bất đẳng thức trên đều đúng Theo giả thiết a, b, c, 1-a, 1-b,

1-c đều là các số dương,suy ra (1 ) (1 ) (1 ) 1

64

aa   a  ; tương tự ta có (1 ) 1; (1 ) 1

bbcc

Suy ra (1 ) (1 ) (1 ) 1

64

ab bc ca  (2)

Ta có (1) mâu thuẫn với (2) nên giả sử ban đầu là sai, suy ra đpcm

Ví dụ 3: Chứng minh rằng nếu a a1. 2 2(b1b2)thì ít nhất một trong hai phương trình sau

có nghiệm: 2

xa x b 

2

xa x b 

Lời giải:

Gỉa sử (1) và(2) đều vô nghiệm khi đó ta có (1)0 và (2) 0 suy ra

Trang 2

2 2 (1) (2) 0 a1 4b1 a2 4b2 0

 2 2

a12a22 4(b1b2)  2a a1 2

2

(a a ) 0.

Điều này là sai với mọi a a1, 2 Vậy giả sử trên là sai, suy ra đpcm

Ví dụ 4: ( Đề thi vô địch tiệp khắc 1959)

Cho các số thực a,b,c thỏa mãn điều kiện

0 (2)

a b c

ab bc ca

abc

  

Chứng minh rằng a, b ,c cùng dương

Lời giải:

Giả sử có một trong ba số a, b, c không dương.Không mất tính tổng quát,giả sử số không dương đó là a((a 0)

Từ (3) suy ra a0 và bc0

0 0 0

a b c

 

 

 (4) hoặc

0 0 0

a b c

 

 (5)

Nếu (4) xảy ra thì a b 0 suy ra theo (1)

c a b c a b a b ab c a b ab a b

ab bc ca a ab b

Mâu thuẫn với (2)

Nếu (5) xảy ra thì tương tự ta cũng chỉ ra được ab+bc+ca< 0 mâu thuẫn với (2)

Vậy giả sử ban đầu là sai và ta có đpcm

Ví dụ 5: (Đề thi HSG Mát-xcơ -va 1986)

Với mọi số thực x, y, z chứng minh rằng có ít nhất một trong ba bất đẳng thức sau là sai:

xyz y z x z x y

Lời giải:

Gỉa sử cả ba bất đăbgr thức trên đều đúng, suy ra

xyzxyz   xyz xyz

Tương tự ta có: (y-z+x)(y+z-x) <0

Trang 3

(z-x+y)(z+x-y) <0

Nhân theo từng vế 3 bất đẳng thức trên suy ra 2 2 2

(x y z) (y z x) (z x y) 0  là bất đẳng thức sai với mọi x, y, z  giả sử ban đầu là sai đpcm

Bài tập áp dụng:

Bài 1: Cho a+b=2cd Chứng minh rằng ít nhất một trong hai bất đẳng thức sau là

Đúng: 2

ca ; 2

Bài 2: Cho các số a, ,b, c, A, B, C thỏa mãn aC-2bB+cA=0 và ac b 2  0 Chứng minh rằng AC- 2

Bài 3: Cho các số dương a, b, c thỏa mãn abc=1, chứng minh rằng :

(a 1 )(b 1 )(c 1 ) 1

(Vô địch toán quốc tế)

Bài 4: cho abc0 chứng minh rằng ít nhất một trong 3 phương trình sau có nghiệm :

2

ax  2bx c 0; bx22cxa0; cx22ax b 0

Bài 5: Chứng minh rằng trong ba bất đẳng thức sau đây , có ít nhất một bất đẳng thức đúng

:

2

2

b c

2

2

c a

2

2

a b

Ngày đăng: 20/08/2015, 11:05

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w