TRIING II c} s}TUIWffi BS:l; uu#.ilr @ffih@M PHAM oUc uor GV trudng THCS NguyOn Luong Adng, Thonh MiQn, Hoi Duong Trong Sdch gi6o khoa llinh hoc 9 t6p hai trang 105 c6 bli to6n sd 9, n6i
Trang 1a%%wpffi mem eHffimmmm q:a&mm ffiffiffi'ffim
%6 ffirffimffi wffixpry
ffimwpm"-'"4 P'ffi#ffiffiffi 'ffi'ffiffi:ffiffi ffiw wmmrtmmg6 tr&86$
Trang 3TRIING II c(} s(}
TUIWffi BS:l; uu#.ilr
@ffih@M
PHAM oUc uor
(GV trudng THCS NguyOn Luong Adng,
Thonh MiQn, Hoi Duong)
Trong Sdch gi6o khoa llinh hoc 9 t6p hai
trang 105 c6 bli to6n sd 9, n6i dung nhu sau
Tr€n canh AC ldy m\t didm M vd vd dtdng
trbn V, dudng kinh MC Dudng thdng BM cdt
V, tqi D Dudng thdng DA cdt W, tqi S Chtng
minh rdng:
a) ABCD b trt gidc ndi tiip.
b) CA ld tia phdn gidc cil.a g6c SCB.
Ldi gitii a) Do tam gi6c ABC vuOng tai A nOn
D nam tr6n dudng trbn 31 nen fii = 90' (2)
Tt (1) vn (2) suy ra tir gi6c ABCD nQi tidp
dudng trbn ?" dudng kinh BC
b) Ta c6 frA = fiA GO" nQi tidp cirng ch6n
+) Trudng hqp D trtng vdi S Khi d6 AD
h tidp tuydn cria dudng trdn (%) Ta c6
frA=ffe,=fus.a
Khi giii c6u b) nhidu ban thudng chi x6t mot
trudng hqp (tiy thu6c vio hinh v6 ra) Honnfia ch6c it ban dat duoc cdc cdu h6i: Vi trf
cfra didm M th€ nio dd didm D nam trOn cung
nh6 ffi ? Didm S nim ren cung nnb frD t
Didm S trDng vdi D?
Ogai 1,rl6n 2 Cho tam gidc ABC vudng tai A
Didm M di dQng tr€n canh AC, vd dudng trdn
ff, drdng kinh MC, BM cdt V, tqi D, dudng
thdng AD cat fi tai S ){dc dinh vi tri cila didm
M tr€n canh AC dd:
a) Didm S ndm ftan cung nhd frD .
b) Didm D ndm tr€n cung nhd ffi
Ldi gitii a) (h 3) S thu6c cung nh6 frD yni
vi chi khi m fr60 .
Do ha.i tam gi6c OMS vd OSD ddu cdn tai O
n6n suy ra OMS > OMD o OMS > AMB (6)
TOff{ FiA(
' cfr*di$ si x61 l7-zoo7l I
Trang 4DHinh 3
Ndu ggi giao didm cia Vt v6i BC le / thi
frie = 900 din ddn tr1 gi6c ABIM noi tidp duo.c,
nen frc = tfri (ctng bir vot ,qui ) (7)
Lai do ICM =MCS (biLi to6n 1 cau b) vi'MC
id dudng kinh cira dudng ttdn Vr nOn 1 vi S
ddi xrlng nhau qua MC c6 ifra =eES (8)
Tt (7) vn (8) d6n ddn ffi =trEa (e)
<> 90" - frB > 90" - Tnfu o frtw frn.
b) Lap 1u6n tuong tu ta c6 kdt qui D thu6c cung
nh6 ffi khi vd chi khi frilrfri u tt
thu6c canh AC n6n cdn c6 didu kiQn AC > AB' A
TiI bai bdn2 d6n ddn suY nghi:
Khi ndo hai didm S vh D tring nhau? Tt d6 ta
cd bii to6n sau.
Ogai to6n 3 Cho tam gidc ABC vubng tai A,
Didm M thuAc canh AC, vd dtdng trdn V1
dudng kinh MC, BM cdt Vrtai D ){rtc dinh vi
tri cria didm M ffan canh AC dd AD ld tidp
ruyAh cfia dudng trdn ffr
L6p luan tudng tu bdi to6n 2 ta thdy AD la tidp
tuydn cfra dudng trbn V, khi vd chi khi
cdn c6 didu ki6n AC > AB J
Ddn day ta thdy d6ng phii suy-nghr vd"vi tri
ctra didm M Do didlrr M c6 thd thay ddi tron
canh AC nOn nhidu didm kh6c cfing thay ddi
theo C6c ban hdy quan s6t tia AI, n6 thay ddi
n6n giao didm K cira n5 v6i dudng trdn Vt
cfing thay ddi theo DAn ta ddn bbi to6n sau'
T6##t e+G{
2 Sd 361 (7-2007) & cigjige
Ogai !,rldn 4 Cho tam gidc ABC vuing tai A.Didm M thay ddi ffan canh AC Dung dtdngtrdn Vt dtdng kinh CM Goi giao didm cila BC
idi duang trdn Wt ld I, giao didm cfia AI vdi
tich didm D khi M chuydn ddng trdn canh AC ld
cung nh6 tri ciadudng trbn dudng kinh BC'
Tt d6 ta d1r do6n qu! tich didm K khi M
chuydn dQng tr6n canh AC li hinh ddi xung
vdi cung nh6 iD qua canh AC Qu! tfch niy
li m6t cung trbn cira dudng ttdn V2 ddi xrlng
vdi dudng trdn dudng kinh BC qua canh AC'
Tt d6 taxic dinh duoc dudng lrdn W, nhu sau:
-Ldy B' ddi xrlng vdi B qua canh AC;
- DUng dudng trdn W, dudng kinh B'C
Srl dung kdt qui cita ciic bli tdp tren ta d6
dlng'ch'rlng minh duoc B', M, K thing hing
suy ra B' KC = MKC = 90"
V4y qu! tich didm K khi M cbuydn d6ng trOncanhAC 1I cung rrho ID cira dudng trdn dudng
kinhB'C D
Nhu vay ndl quan siit tdt, nghi0n crlu ki thi chi
tt mOt bii tap trong s6ch gi6o khoa, chring ta
c6 thd khai ih6c duoc nhidu kdt qui thri vi'
Chfc c6c ban gat h6i duoc nhi6u kdt qui'
Trang 5rdu GL\n mrA flFtrfi cmot\ Hoc sNFil G]roflrdp s
g(p.766 @hiJllinh
Cflu 1 U) piAu kiQn x2 - 4 > o,hay x > 2hoic x < -2.
Fiat J* -+ : y A > 0) Phuong trinh cl5 cho
Ding thirc x6y ra khi vi chi khi
CAu 3 g) Ta thdy x, y, z Y,hLc 0 He da
clugc vi6t lai dudi d4ng
11s
xy12 115 yzlS
1 I 13
zx36Giei hQ ndy tim dugc ;r = 4, ! = 6, z : 9.
PT ndy vd d6i chi5u v6'i di0u kiQn tr€n ta
3-5duoc v = a DAn d6n x: +: (thoa m6n
kiQn).
luqn: Phuong trinh tld cho c6 hai nghiQm
55 22CAu 4 Nhqn xdt: MQt s6 chinh phuong 16 khichia cho 8 sE c6 15 au la t
Thflt viy, xdt s5 chinh phuongld m2 (m e Z),
m lil s614, dflt m = 2n * 1 Lric nity m2 : (2n + 1)2
: 4nz * 4n + I = 4n(n+ l) + 1 ohia cho 8 du i.
Trd lai bdi to5n, ta c6 biQt thric A : b2 - 4ac.
Do b 16 n6n theo nhfn xdt tr€n b2 chia cho 8
du 1 D[t b2 =8k + I (/r e Z) L4i vi a,cld
nln ac le, dAt ac = 2l - | (l e Z).
Khi d6 A = 8k+ I - 4(21 - l) = 8(t- /) + 5chia cho 8 du 5 Tir nhfln xdt tr6n ta th6y A
kh6ng ph6i ld s6 chinh phuong
NghiQm PT de cho (ndu c6) ld x : -
:
4d
nghiQm thi c6c nghiQm 6y kh6ng tfr€ ta sO hfru
dleuXet
Trang 6Mat kh6c do OM li dudng trung binh cira hinh
thang ABDC nOn OMllAC, md AC I CD suY
nira dudng trdn t6m 9.YdY c6c <li6m M, C, D
cirng nirn-tr€n titip tuy6n ctra ntra dulng trdn
vu6ng tai N, c6 ACB= 45o,
(2) Tri (1) vd (2) ta thu dusc(dpcm)
NGUYEN rAx roaN gP Hi chi Minh)suu tAm vd gi6i thiQu
1aN= 4!
JZ
TOAN HQC (Ti€p trang 3o)
T
cHurtll MnlI cffirill
TrOn mOt bing c6 25 b6ng dEn nhu A hinh 1,
m6i dEn c6 miu D6 ho[c mhu Xanh MQt bing
didu khidn c6 cdc c6ng t6c dugc ghi theo toa dO
dEn Khi dn c6ng tic cfia mdt dEn nio ddy thi
ddn d6 vdtdt ch c6c ddn tidp xric v6i dEn d6 ddu
ddi miu Ching han tr6n hinh 1 ndu dn c}rrgtic
D2 thi c6c ddn D2,DL,D3,E2, C2 ddu ddi miu
Dinh cho ban doc
1) Tr0n hinh 1 c6 8 dEn xdp thinh hinh vu6ng
miu D6, c6c ddn cdn lai miu Xanh Hdy dat
mdt lOnh (mQt d6y s6p thrl tu su dn c1ngtic cdc
ddn) dd sau khi thlrc hiQn lenh d6 thi tdt ch cic
dBn ddu c6 miu D6
2) Trdn hinh 2 c6 5 ddn xdp thinh hinh chfr T(vidt t6t cira To6n Tudi tr6) miu D6, c5c ddn cdn
lai mhu Xanh H6y d{t mqt lQnh dd sau
khi thuc hien lonh d5 thi tdt ce cdc ddn ddu c6
CB
A
E
D
CBA
K
Trang 7uffi m fifij$ u#p t,oj Tr a:Ulfiffi pfl
b) Tim rn d6 phuong trinh (l) vO nghiQm.
CAu 2 a) Gi6i b6t phuong trinh
| (-x + 3)(-r -r)l-21 , - I l< x2 -7 .
b) Giei hC phuong trinh
[yJi* 2*Ji =tyJ41.
CAu 3 a) Cho a, b ld hai sti thr,rc th6a rndn
Thdi gi.an ld,m bd;i: 150 phdt
Cha 4 Cho tam gi6c ABC nhon c6 tryc t6m li
H vit ilC: 60o Ggi M, N, P l6n luqt ld ch6nc5c dudng cao k0 ti A, B, C cuatam gi6c ABC
vi / ld trung cli6m cta BC
a) Chring minh ring tam gi6c 1NP d6u.
b) Gqi E vd K lin luqt ld trung.di6m cria PB
vd NC Cht?ng minh rdng c6c di6m I, M, E, K
cr)ng thuQc mdt dudng trdn
c) GiA sri /l ld ph6n giric ctta friP Hay tinh
s6 do cta g6c BCP
CAu 5 MQt cdng.ti may giao cho td A may
16800 s6n phdm, td B may 16500 sAn phAm vd
bat Oiu thUc hiQn c6ng viQc cirng mQt lirc N5u
sau s6u ngiy, tt5 A dugc h5 trq th6m 10 c6ng
nhdn may thi ho hoin thdnh cdng viQc cing
lirc v6i tO g N6u td A duqc h5 trq th6m 10
c6ng nhdn may ngay tir etAu thi hq s€ hodn
thinh c6ng.viQc sdm hon tis B mOt ngiy.H6.yx5c tlinh s6 c6ng nhAn ban tliu cria m5l tO.
Bi5t ring m5i c6ng nhdn m5i ngiy may dugc
20 s6n phAm.
NGUYEN DUc TAN (Tp Hd chi Minh)
suu tAm vd gi6i thiQu
BINH LUAN (Ti€p trans to)
I
tinh Jrlr;or.
0Bdi luyQn tSp Tinh t6ng
t =|."r, **"7, *I"i, * *-L-c*.
Trang 8ehudn bi
:1 Ntiu hC PT ba hn x,y, z kh6ng thay ddi khi
noan vi ulng quurh OOi ,Oi x, !, z th\ kh6ng m6t
tinh t6ng quit c6 th6 gin thi6t x = max (x, y, z).
Nghia ld x > !, x) 7 (xem thi du 3)
ViQc su dpng khio s6t bi6n thi6n cria HS dC
eiii hoic bie; ludn mOt s5 hC PT tgo n6n sg
pnong phf vC th6 loai vd phuong ph6p gidito6n, phir hqp v6i c5c ki thi tuy6n sinh vio
Dai hqc Sau ddy ld mQt sO ttri du minh hqa.
(1)
(2)
Giei h0 phucrng trinh
MQt sii luu y chung
1) Phuong trinhflx) : m co nghiQm khi vd chi
d,i , tf,rQ" tflp gi6 tri cria hdm sti y: f(x) vit
s6 nghiQm ctra phuong trinh (PT) li sd giao
diOm cria dO thi hdm sti (HS) y = flx) vdi
Nr5u HS y = JU) don diQu, thi tt (1), suy ra
x = y ftri OO bii to6n dua v6 gi6i holc biQn
lufln PT (2) theo 6n x
Ntiu HS r- = lU) c6 mQt cgc tri tqi t = a thi n6
thay cl6i chi"Au.bi6n thi6n mQt iAn \tri qva a.
fil-(f ) suy ra x = y hoflc x, y nim vd hai phia
cria a (xem thi du 2)'
(3)
x6tHS f (t) = et -t ,c6f '(t): d -l> 0, v/>
0-Do ct6 Hsflr) ddng bii5n khi r > 0.
l fG)= f(v) Tt(3)suyra -"\_/ J _ 1"' "'-.=x=Y.
[x>0,y>0
Thay vdo (2) duqc logr;+ log5 4x3 =10log2 x-l+2(2+3log2 x) =10, haylog2 x =l '
HQ c6 nghiQm duy nhAt @ ; Y) = 12 ;2).
theo mQt trong hai
6 sd 361 (z-2002) _ T@J & quditl6 HA(
Trang 9Tath6y f'(t)=0e/=0.
HS l(0 d6ng bii5n trong (-1 ; 0) vd nghich
bi€n trong (0 ; +oo).
Ta c6 (3) e /(.r) = f (y) Lric d6 x : y hoic
xy < O (n6u x, y thuQc cing mQt khoing clon
diQu thi x : !, trong trudng hqp ngugc lai thi
tl6i v6i x,y,z ndnc6th6gi6thi0t "r)y,x)2.
N6u x > y thi /(x) > fu) - y > z
cirng nghich biOn) thi li lufln nhu tr€n ta suy
1-Ldi gidi DK -1 < x,y <3 .
Tr* theo v6 cria (1) cho (2) vd chuy6n v6, a
8'(x) =-+ +, g'(.r) = 0 <> x - l.
2'lx +1 2tl3 - x
Ta c6 s(-1)=2, S(l)=2Ji, BQ)=2
Tir d6 2< s(x)<zJ,
Vdy he c6 nghiQm khi 2 < m <2J2 .
hQ phuong trinh sau cd nghiQm duy nhiit
fs*'y-2y2 -m=o
(l)
(2)
Ldi gidi Ni5u y -< 0 thi v6 trSi cria (l) 6m,
PT kh6ng thoA mdn, suy ra y > 0 Tuong tg c6
x>0.
Trir theo v6 cria (1) cho (2), ta dugc
3x2y -3y2x +2x2 -2y2 =0
[/(z) = s(x)
TCffi\8 HOC
" cfuonfe sd 361 l7-2oo7l 7
Trang 10Do d5 v6im> 0, hQ c6 nghiOm duy nhAtx : y> 0
(bpn doc tu vE d6 thi ho4c iQp bnng bi6n thiOn
cira HS AC Uam tra k6t quA tr6n)
bidn ddi
J;.1*{6-r
IIIII
Xin h6i ldi giii bidn ddi nhu tren dring hay sai?
(N.N., I lAt, THPT Lang Giong, Bdc Giong)
Mong nhAn duoc ! kidn tri ldi cia cdc ban gitip
2 ban N.N
vd,ln - dtatfoq*
1 (3.07) Y t<ign 3 li chua chinh x6c Ta ncn v€
tru6c bang brit chi rdi sau t6 lai bang brit muc
Ndu kh6ng lfc ddu vE bang n6t drlt nhfrng ch6
dudng khudt Lim ddn cdu sau m6i xem x6t vEdudng n6t lidn cho chinh x6c
(NhO Vdn Vlnh, t tAt , \HPT TAn YOn tt, Bdc Giang)
DAT MUA tAP cHiroAN HQc vA rud rnl
oAt u4trt TAt cAc co sd Buu DIF:N
rRorvc cA aa6c
Trang 11fiinhlufrn ui
dTfu WMm
pi thi TSEH m6n Todn tnAt a ndm nay sdt vdi chaong trinh phd th6ng Ti lQ gifra cdc cdu dd,
trung binh, kh6 t.d hqp li H7c sinh khd, gi6i vdi kidn thil:c chdc chdn mdi cd th€ dqt daqc didm
cao Vi(c giai day di vd chinh xdc cdc cdu 11.2, 1V.2 kh6ng phdi don gidn Sau ddy ld ldi gitii
md sii cau trong de thi vd m\t sij nhqn xil vA cdc ldi giai d6.
NhQn xdt l) Khi dAt di6u kiQn cho r, dE mac
sai lAm h chi th6y t > 0 md kh6ng th6y
0 < r < 1 Tir d6 d6n tdi k5t qun sailitm=1frl
J
2) Khi gap PT dpng auz +buv+cv2 =0, c6ch
giii chung li :
N6u v;r 0, chia ci hai vi5 cria PT cho ,', sau
d6 d6t 7 =! , tudugc mQt PT bdc hai dtii v6i r
v
(trudng hgp v : 0 dugc x6t ri6ng).
3) N6u PT c6 d4ng m : /(t), thi PT ndy c6
nghiQm khi rn thuQc tip gi6 tri cria HSI(0.
Bdi luyQn fip Bien ludn sii nghiQm cita PT
Jr{ + +**,[7-z* * z + (m +lJx -z = O
v' x2 +2(m + 1)x + m2 + 4m
m ld tham si5 Ti* m dii hdm sa (t) c6 cvc dqi
cqrc tidu, d67tg thdi cdc diiim cqc tri cila d6 thi"
cirng vdi g6c tog d0 O tqo thdnh mAt tum gidc
Nhfin x/r N6u str dpng dinh li Pythagore cho
tam gi6c vu6ng OAB th\ lli gi6i sE dii, tinh
toSn phirc t4p hon
Bdi tuyQn tfrp Chto hdm si5
x2 +(2m-3)x+3m+5
vd didm PQ; -l) Tim m ae ltam s6 c6 cqrc
.: -: , -.:
dqt cuc tteu, dong tnot cac dtem c$c tr! cua
dO thi cilng vdi diAm P @o thdnh mQt tam gidc
Trang 12*Ceu lY.l Tinh di€n ttch cila hinh phdng
gidi hqn boi cdc dadng y=(e+1)x,y=Q+d)x
Tinh dugc Iz =1, suy "2 ra S =: - 1 (dvdt) tr
NhQnxdr Ni5u HS dudi dAu tich ph6n c6 dang
p(x).e* , trong d6 p(x) ln mQt da thf'c, thi ta
giAi bdi to6n b6ng phuo'ng ph6p tich ph6n tirng
thay doi vd thoa mdn xyz = l Tim gid tri nhd
nhat cua bidu th*c
,_ x2(y+z) - y2(z+x) *
1- yly+zzlz t ^ t z!z t,+Zx.Jx
Ldi gi,fii Ap,dpng.BDT Cauchy cho hai s6
duong tr6n m6i tu s6, vd tir xyz : 1, ta dugc
khix:y:z:LA
NhPn xdt C6i kh6 cira bdi toSn o ch6 kh6o sil
dpng BDT Bunyakovski dO chirng minh BDT (4).
Bdi tuyQn tQp Cho a, b, I vd m, n ld cdc si5
thryc duong Chang minh ring abc-3
k=0Luu yi ting tt6u k ln s6 chin thi
10
!c5,*ua*
-0Khi k le thi
1
lc5,*oa* 0
, A TI -t
Trang 13PHUONG PHAP
Trudc hdt xin nhac lai kh6i ni€m GTLN,
GTNN cria him s6.
Cho him sdfl.r) x6c dinlitren midn D (DcR).
Gii srl M, m ldn lugt li GTLN, GTNN cira
Sau dAy ld m6t sd bdi to6n minh hoa.
Trang 14frnei to6n 3 Gid sft M ld gid tri lon nhdt cua
lbl sao cho 4bx3 +(a-lU) x 31, vdi moi
gid tri crta x.[-t;\) vd vdi moi sd thuc a'
suy ra ux lal < 1 vay M < l a
Dd cirng cd phuong ph6p, mdi c6c ban glbi cdc
bdi to6n sau:
onai h6n 4' cho hdm sd f (x)=ox2 tbx*c
stl M =max f(x); m=min f(x) Chftng minh
trong d6 a ld tham sd thuc tilY Y.
Goi M =,Ii3,1,1 f (*); r=,S-il,l t(-)
lu>t t
12 sd 361 (7-2002) &
Trang 15PhdG GrfiAm Gh@mn
tI THUYET
SO NOUYEN TO
6t trong nhfrng ngudi duoc giii thu&ng
Fields 2006, Terence Tao, di ddy viec
nghiOn cts ciLc sd nguyOn td di xa hon, bang
c6ch dua ra mot dinh li mdi
Nhi to6n hoc trd Terence Tao, &
trudng D+i hoc Los Angeles,
ngudi nam ngo6i duoc nhdn Huy
chuong Field vdi c6c kdt qui
nghi0n crlu vd cilc s6 nguyOn td,
dd lim cho li thuydt c6c sd nguy0n
td phdt tridn hon nfia Cing vdi
ban ddng su Tamar Ziegler b
trudng Dai hoc Michigan, Terence
Tao dd chirng minh rang ddy sd
nguy6n td chrla nhfrng
"cdp s6 da thric dhi
tilY 1i" rr).
56' nguydn t6'ld s6'tu
nhi€n l6n hon I chi chia h€i
cho I vd chinh s6' d6 Ydi
dinh nghia cuc ki don giin
d6, ngudi ta dd xAy dung nhfing vdn dd to6n
hoc rdt phrlc tap.
Tir thdi vdn minh cd dai, ngudi ta dd, bi6t c6c
sd nguyOn td tao thlnh m6t d6y v6 han Nhftng
sd nguy6n td ddu ti6n li 2, 3, 5,7, ll, L3, 17,
19,23 Khi c6c sd cing l6n thi vi6c x6c dinh
c6c sd nguyOn t6 cdng kh6 khan hon Dudng
nhu khi ci1c sd cing l6n thi sd nguy0n td clng
hidm Hi0n nay cdc nhi to6n hoc chua thd m6
tA 16 rlng c6ch thri'c md c6c sd nguyOn td duoc
phdn bd trong ddy c6c sd rU nhi0n
Nam 2004, cing vdi Ben Green, 6 trudng Dai
hoc Cambridge, Terence Tao dd chrlng minh
mOt trong nhtng kdt qui dd mang lai cho 6ng
Huy chuong Fields: Tdp hqp cdc sd nguy€n tdchtta nhfrng "cdp s6'cing c6 dO ddi tiy y" ttc
ld sd sd hang l6n tny y Vi du, d6y 5, Il, 17,
23 lh mdt cdp sd c6 4 sd nguy6n td hon k6m
nhau6(5+6= 11, 11+6= 17,17 +6=23).
Day ln m6t cdp sd c6ng c6 cOng sai lh 5.
Phii chang tdn tai nhfrng d6y sd khOng phii lncdp sd c6ng nhung c6 thd m6 ti quy luAt vd
khoing cdcb grtra hai sd nguyOn td li0n tidpthu6c ddy?
Dinh li mdi m6 rOng kdt qui tru6c cho nhfrng
cdp sd "da thfc", trlc ld nhtng cdp sd c6
khoing c6ch gifra ci{c sd hang 1i0n tidp kh6ng
nhdt thidt li mdt hdng s6, nhu trong trudng
hang tidp sau duoc x6c
thrlc cing loai, trong d6
chi dDng ddn hing r vh
c6c liy thira cfia n6 Su
chri'ng minh dinh li d6 dua tr6n cirng nhfrng f
tu&ng dd cho ph6p Ben Green vd Terence TaogiAi quy6t trudng hgp cr{c cAp s6 cdng TAp hqp
nhfrng sd nguy€n td duo c nhAn dinh nhu ld m6t
Qp hcr,p con cira tap ho,p nhfrng sd nguy6n goi lh
"gdn nhu nguy0n td" Tr0n tap hap d6, ngudi ta
xdy dqrng mOr ham dic bi6t cho ph6p lim ndi rdm6t sd tinh chdt d[c bi6t cia cdc sd nguyOn td
Nhu vdy c6c sd nguy6n td dd 16 ra th€m chrit it
nhfrng didu bi mAt cria chring
NGUYEN VAN THIEM
(theo "La Recherche" thdng I-2007)
Trang 16nAm gilng day thi didm tai gdn 50 trudng C6c kidn thfc v<i td hop vd xdc sudt dang
THPT vi tidp thu c6c f kidn t0m huydt cira rdt
nhidu c6n b6, gi6o vi0n trong cA nu6c
Ir)I-Ii?:hJ mE-&
6ch 916o khoa (SGK) Dai sd vd Gidi ttch
11 ndng cao dugc biOn soan theo chuong
trinh mOn Toiin Trung hgc Phd th6ng ban
hdnh theo Quydt dinh sd L6120061QD-BGDDT
ngiy 05-5-2006 cira 86 tru6ng B0 Gi6o duc vd
Dio tao, tron co s& tdng kdt cdc uu vh nhuoc
didm cira cudn SGK thi didm Dai sd vh Giii
tich 11 ban Khoa hoc Tu nhi6n (bO 1) sau hai
3ffiffiru *{W{
Sd 361 i7-2007i & €fr.{trUe
Trong khu6n khd cira bii b6o ndy, v6i ciicquan didm nOu tr0n, chring t6i trinh bdy nhfrng
,en ad trong ydu nhdt md m6i gi6o vien vh hoc
sinh cdn luu f khi sil dung cudn SGK niy
trong nam hoc sap tdi, d5c bi0t la nhfrng didm
mdi vd kh6c so v6i chuong trinh vd SGK ldp
11 chinh li ho p nhdt nam 2000 (SGK2000)
r vB NOr DLrNG cHUoNG rRiNH
So v6i SGK2000, SGK Dai sd vd Gidi tich 11ndng cao c6 nhfing didm kh6c bi6t sau ddy:
- Y6, luong gidc,hoc sinh d6 lim quen vdi c6c
kidn thrlc m& ddu vd 1uo ng giSc b ldp 10' Do d6
phdn luo.ng giSclop 11 chi cbn vdn dd cdc hinn
id tuong gidc vit phuong trinh luong gidc'
Chuongirinh kh6ng tli cQp cdc vdn dd' vd' bdt
phuong trinh vd h€ phaong trinh lrtong gidc'
iiJl f#i;1:, A @ @ @ N W [[a[[g qAO
ddi sdng, thuc ti6n khoa hoc
Truc quan, tfc ld coi truc quan ld phuong
phrip chir dao trong vi0c tidp cdn c6c kh6i
nigr, to6n hoc ; dAn d6t hoc sinh nhdn thrlc tir
truc quan sinh dOng ddn tu duy trtu tugng
Nhe nhhng, tri'c tri x6c dinh nhtng yOu cdu
vta phii AOi vOi hoc sinh ; trdnh him ldm ; cd
g6n[ trinh biy van dd ng6n gon, sfc tich,
khdng g?ty cdng thing cho ngudi hoc
Odi mOi, trlc li c6ch tan cilch trinh bly, ndng
cao tinh su pham ; g6p phdn ddi m6i phuong
ph6p day hoc vi phuong ph6p dSnh gi6
ngiy chng tri n0n quan trong ddi vdi m6i con
ngu-Oi trorg xd h6i hiOn dai Vi vAY, A
nhidu nudc,
nam 1995)
- Cdc vAn dd va hdm sd mfi vd hiim sd lAgaritduoc chuydn sang l6p 12, dlLnh thdi luong cho
chuong "Dao hdm" (gdm kh6i niOm dao hhm
vd c6c c6ng thfc tinh dao hlm, chi trir c6ng
thrlc dao him cira him s6 mfi vi him sd
l6garit) Chuong trinh quy dinh khdng tlua
vio kh6i nidm dao hdm m6t b€n.
Vi0c dua dao hdm cirng vdi c6c n6i dung
-tdhqp vd xdc sudt vdo l6p 11 lI m6t.d4c didm
nham cung cdp nhfing cOng cu to6n hoc cdn
348) th :
mrlc do rdt
th gdn vdi thuc (ChI bi6n SGK Dgisd vd Giditich l l Ndng coo) day ln ldn
;;e ;dod'nhrm ndng cao rinh khi thi cira sudt dttoc dua vho chuong trinh phd th6ng
"t oo.rg trinh vi SGK ;6i ; tidp ctn thuc ti6n (khong kd ddn chuong trinh phAn ban thi didm
14
Trang 17thidt chudn bi cho viOc hoc t6t mot sd m6n hoc
kh6c (nhu Vat li, Sinh hoc, H6a hoc, Dia Ii, ),
thd hien tinh lion mdn trong toin bO Chuong
trinh gido duc phd thdng
tt vi PHUoNG PHAP rdp cAN vA MOc
o0 vBu cAu
Chuong | (Hdm sd luong gidc vd phuong trinh
luong gidc) ld phdn ndi tidp cira phdn luong
gi6c l6p 10 Khi khdo sdt su bidn thi€n ctn cdc
hdm sd luong gi6c, SGK Dar sd vd Gidi tich
11 ndng cao srl dung phuong ph6p truc
quan, trlc li khio s6t su chuydn d6ng c[ra c6c
didm dd suy ra su tang-giim cfia c6c him sd
luong gi6c Phuong ph6p tinh tidn dd thi (dA
hoc & l6p 10) cflng duoc nh6c lai vi sir dung
dd vE dd thi ctra c6c hdm sd luo ng gi6c
Kh6i ni€m hdm sd tudn hodn khOng coi li nOi
dung trong ydu Do d6 SGK gi6i thiOu dinh
ngfr,a hdm sd tudn hodn rdi dua ra mOt vii vi
du nhu dd khdi qudt cdc tinh chdt dac trung vd
tinh tuen hoin ctra cdc hdm sd luong gi6c di
hoc tru6c d6.
Ya phuong trinh luong gidc, SGK d6 c6 g6ng
giim nhe c6c y€u cdu vi ki ning nhu: kh6ng
xdt cdc phuong trinh luong gi6c chita tham sd,
loai b6 ciic dang phuong trinh c5 bi6n ddi
hoac phAi x6t didu kiOn phrlc tap, khdng gidi
'r)
thiOu phuong ph6p dat dn phu ' r = tan I\2)
Vi0c dua cr{c ki hi6u arcsin, arccos, arctan v}r
arccot nham girip gi6o viOn vi hoc sinh trinh
bdy ldi grii cdc phuong trinh luo ng gi6c duo c
gon, khOng nham gidi thiOu c6c him sd luong
gi6c nguoc
Muc dich cira chuong Il (Td hop vd )fic sudt)
li dd hoc sinh lim quen v6i nhtng vdn dd don
glin c6 n6i dung td hgp thudng gap trong ddi
sdng vi khoa hoc Do d6 hdu hdt c6c vi du
trong SGK ddu duoc ldy tt thuc td cuQc sdng
Hoc sinh cdn hidu vd ph6n biOt duoc c6c kh6i
ni6m, nh6 vi vdn dung duoc c6c quy tltc, cdc
c6ng thrlc vio nhfrng bhi to6n don giin, khOng
dbi h6i suy luAn qua nhiCu budc trung gian
Dac biOt, cdn g6n v6i nhflng bii to6n thuc td
nhu vdn dd chon c6n bO l6p, vin dd didm s6,
vdn dd an tohn giao thdng, van dd din sd,
NOi dung chuong lll (Ddy sd, cdp sd c1ng vd
cdp sd nhdn) vd chuong IY (Gi6i han) vd, co
bin cfrng gidng nhu tru6c ddy Tuy nhiOn c6
nram gidi han vd cltc dttoc hidu theo nghia
gidi han hoac bang +co, hodc -oo, kh6ng ch0p
nhxn gi6i han bang co chung chung nhu trudcday Ching han, ding thrlc lim(-l)nn = a nay
kh6ng duoc chdp nhAn, mic dil n6 dfng theo
dinh nghia cira SGK2000 Sr,r thay ddi d5 c6
nhidu uu didm vd phi ho p v6i SGK cira nhidunu6c trOn thd gi6i Chac ch6n n6 sE gdy ra m6t
so kh6 khan cho gi6o vi6n b&i n6 dbi h6i gi6o
vi6n phii thay ddi trong mdt sd c6ch trinh bdy
Ngoii nhflng dinh li v6 gi6i han md c6c SGK
trudc diy thudng dd cdp, SGK cbn cung cdp
nhfrng quy tac chir ydu nham gifp hoc sinhbidt xdc dinh xem m6t gidi han vd cuc khi nio
thi bdng +"o, khi nio thi bang -.o .
Do c6 thay ddi nhu thd, gi6o vi6n cdn nghiOn
criu ki SGK dd tr6nh c6c so suat do th6i quen
cfi dd lai
Dao hdm li n6i dung kh6 quen thudc trongchuong trinh to6n phd thOng Didu d6ng luu f
Id su tldi mdi c6ch tidp cAn mdt sd vdn dr)
nhu: vi du m& ddu ddn ddn khdi ni€m dao
hdm, y nghTa hinh hoc cia dao hhm, dao him
cira hdm sd hop, vi phdn Ching han, vd f
nghia hinh hoc ctra dao hhm, SGK c5 trinh bhy
16 cdch x6c dinh ddu li "vi tri gi6i han cia cdtttrydn Mslvl khi M di chuydn doc theo dd thi
ddn ddn Ms" md trong ciic s6ch trudc dd kh6ng
dd cflp
Cdc tdc gi|l6t mong nhAn duoc c6c f kidn xaydung cria c5c thdy gii{o, cO gi6o, cdc nhi khoahoc vd ciacdc em hoc sinh dd SGK ngiy cdng
t6t hon
- GfudiUe s6 361 l7-20o7) 15
Trang 18(GV THCS Hing Bitng, Hdi Phdng)
tsir- T2l36L (Lfp 7) Gqi I/ ld giao diOm ba
dulng cao ctia mQt tam gi6c nhqn ABC vd M
lir trung di6m canh BC' Dudng thing vg6ng
g6c v6i MH b H cbt hai duhng thdng AB vit
AC tuong ring o P vd Q Chring minh ring
HP = IIQ
NGUYEN MINH HA
(GV DHSP Hd N1i)
Bni T3/361 Chring minh ring n6u a, b, c, d
ld c5c sl5 nguy6n duong ddi m6t khSc nhau
sao cho bi6u thric -+.+*J-* a+b b+c c+d d+ad
li mQt sO nguy6n thi tich abcd litmQt s5 chinh
x+y+z+-+-!-=- 'xyz9 rr-1111728
Y\l Y zxlz LtDANG QUdC CHA}I
(GV THCS Nam Son, Nam Trqc, Nam Dlnh)
Bni T61361 Cho hinh binh hdnh ABCD' Di€'m
M nim ctng m[t Phing vli ABCD sao cho
frD) = fril Chirng minh ring hai tam giSc
MAB vit MCD c6 cirng trYc t6m'
NGUYEN DANG KHOI
(GV THCS Bach LiAu, YAn Thdnh, NghQ An)
Be[ T71361 Gqi AD, BE, CF theo thir t'u ld c6c
duhng ph6n gi6c trong tam gi6c ABC (D e BC'
E e CA, F e AB); O vi R theo thrl tU le tam
vd b6n kinh dudng trdn ngopi ti6p tam gi6c
d6 Gqi Ot, Oz vd O: theo thf tu li tim dudng
trdn ngopi ti6p c5c tam giSc ABD, BCE vit
Bni T91361 Tim tAt ch cdc him s5 I R -+ Rthoa mdn di6u kiQn
lU' - y) + 2yQf2@) + Y') : 11Y + flx))
DUONG CHAU DINH
(GV THPT chuvAn LA Qu! D6n' Qudng Tri)